
1. Introduction. 

THE ELECTRIC CHICKEN -
A LEARNING ROBOT 

W.W. Armstrong, G. Phung, 
C. Schneegans, P. Vaillancourt 

Departement d'informatique 
Universite de Montreal 

In this article we report on a type of adaptive digital system which 
acts somewhat like a brain, and on the role that conversational computer gra
phics is destined to play in our research. First, let us make it clear that 
we are not simulating cerebral activity on either the neuronal or global level. 
Rather, we take networks composed of elements far simpler than neurons from 
the point of view of stimulus-response behavior, and we try to find a simple 
adaptive structure for them which will lead to learning when reinforcement and 
weakening are applied as in a Skinner box. 

There have been attempts to do something like this before, using 
elements such as the Perceptron [1], the Adaline [2], the Neurotron [3], and 
the SLAM [4]. The first two employ the linear-threshold function commonly thought 
to model neuronal behavior, and the latter two use a universal boolean function 
approach similar to ours. Unfortunately, none of the elements named has been 
truly satisfactory for training in large multilayer networks. 

Recent progress has been made in training elements called ABLEs (adap
tive boolean logic elements) [5,6] in multilayer tree networks. These networks 
have also shown some ability to "generalize", in the sense that the same res
ponse learned to a training pattern is given for test patterns "similar" to it. 
This has led us to try ABLEs, each combined with a unit delay element, in net
works with feedback loops. The tasks to be learned by the networks are all of 
the form : the output at a certain instant of time is to be a prescribed fun ction 
of the L immediately preceding inputs. The upper limit for L in our early tests 
has been 3, although the principles used should be valid for larger L when better 
parameters for network and element structure are known. In determining these 
parameters, computer graphics will play a central role. 

Those researchers who study the animal brain seem to have made very 
little progress so far in finding out how or where learning takes place in it 
[7 ], and it is hoped that this study of adaptive networks, even though not based 
on any biological findings, when completed, may provide some fresh insights i nto 
the behavior of adaptive networks in general. 

2. Logic-delay networks as automata. 

The objects simulated are finite networks of Mealy automata [8], each 
of which acts (if we neglect the state-transition structure for the moment) as 
a two-input logic gate whose output is subjected to one clock-cycle delay. The 
network elements have fixed connections with each other and with network input 
and output terminals. 

Let there be K network elements denoted by superscripts I to K, and 
suppose that the superscripts K+l to K+M represent the logical input terminals 

85 



of the network. If yj(t) denotes the logical signal (0 or 1) at element out
put or network input number j at sampling time t, then the action of element 
k can be described as follows. Its input at t is the pair yk' (t) yk" (t), 
where k' and kIt are the terminals to which the two logical input leads of 
element k are connected. Internally, it has four time-varying logical values 

k k k k . 
bOO(t), bOl(t), blO(t), bll(t) Wh1Ch characterize its behavior at any instant. 

Its output yk(t+l) at t+l is just b~.(t), where ij is the input pair at 
k' kIt 1J k 

t, i.e. i = y (t), j = y (t). Determination of y (t+l) would be done simul-
taneously for k = 1, ... ,K in a hardware realization of a network, but must be 
done serially in simulation. This constitutes the information processing of the 
network during one cycle. 

K+l Randomly chosen logical signals are presented to network inputs 
y (t), ... , yK+M(t) at each multiple of T and are held constant for a total 

K+m K+m of T cycles of the network: y (nT+s) = y (nT) for m = 1, ... , M ; 
s = 1, ... , T-l. At t = (n+l)T the output of the network yK((n+l)T) (a single 
o or 1 for the sake of simplicity) is compared to the desired value, which is 
a prescribed function of yK+m(t) for m = 1, ... ,M ; t = nT, (n-l)T, ... ,(n-L+l)T. 
(We shall see that the network must cycle several (T) times faster than inputs 
are presented to compensate for the delay in each element's output). If the 
network response is the desired one, a "reinforcement" signal is sent to all ele
ments, and otherwise a "weakening" signal is sent. 

The network uses these signals to carry out a search for a satisfactory 
configuration of the b~.(t) according to a heuristic embodied in the state
transition structure of1J the elements.When no further weakenings occur, the 
b~.(t) cease to vary, and we say that the desired behavior has been "learned". 

1J 
We shall study a particular adaptation procedure in more detail in section 3. 

The automata theorist may regard learned behavior as a solution to 
a synthesis problem, and indeed, a very general one, for any Mealy automaton 
with boolean inputs and outputs can be realized by an appropriately connected 
network of logic gates and unit delays [8]. Combining two-input logic and 
delay into a single building-block leads to some restriction of the class of 
automata realizable, however to restore complete generality except for a 
delay in the output, it is merely necessary to allow the network elements 
to cycle several times for each cycle of the automaton to be synthesized 
and to sample and hold inputs and outputs of the network accordingly. We leave 
the details of the proof to the interested reader. 

It is partly for the sake of uniformity that we combine logic and 
delay into one element, for then, not only does one type of element suffice 
for a very general class of tasks, but in forming a network, any connection 
of an element logical input to an element logical output or to a network 
input terminal is legitimate even if it creates a feedback loop. Another 
reason, based entirely on conjecture, is that sequences of elements might 
ser ve as a form of temporary delay-line memory. In any case, most of what we 
say could be extended to networks of logic elements where at least one delay 
element is present in each feedback loop. 

Since we suppose that network connections are fixed in advance, and 
that all we can do to obtain a solution is to vary the boo lean functions of 

86 



the gates, the problem is not solvable by classical synthesis procedures for 
Mealy automata. Furthermore, if the given network is too small or unfortu
nately connected, there may be no solution ; and at the opposite extreme, 
the solution learned may be realizable with far fewer elements than are 
provided in the network. 

It is easy to see that one could construct a network to perform 
the given tasks by simply entering the M input signals into M shift-registers 
of length L at each cycle of the "Skinner box" and adjusting the output 
corresponding to each minterm of the resulting M x L array using the rein
forcement and weakening signals. This method would only work if the product 
ML is small «25) because of the number of minterms (2ML) required, and 
would not make any use of similarity between sequences of inputs. Fortuna
tely, in cases where learning is required for many input terminals and a 
long past history, it will usually be the case that "similar" stimuli will 
be required to evoke identical responses. Because of the results in [6] 
conc~rning generalization, our choice of logic-delay elements as components 
seems quite natural and promising. 

3. Heuristics for learning. 

k What must be devised is some way of telling when the value of each 
b .. (t) should be inverted in the hope of improving network performance. 

1J k 
When the value of b~.(t) is used to determine the output y (t+l), this 

1J 
may contribute strongly to an immediately following reinforcement or weake
ning, and probably less strongly to future reinforcements and weakenings. 
At least, the assumption that such is the case can be used to derive a 
measure of satisfaction with the value of b~. at any instant t . 

1J 

To implement this measure in a way that attempts to be economical 
in terms of hardware, we include four "satisfaction" counters in each ele
ment with values c~ . (t) in the set {O, 1, ••• , MAX}, and four "input" 

1J k 
counters with values d .. (t) in the set {0, •.. ,2T} 

1J k 
lized to 0 at the start of training, and d .. (t) 

1J 
unit each time element k receives input ij. The 

The d's are initia-

is incremented by one 
k b .. (0) are initiali zed 
1.J k randomly to 0 or 1 and the c .. (0) 

1J 
are initialized to MAX. Every T cycles 

of the network a reinforcement or weakening occurs, 
date the values of the b's and c's as follows 

and this is used to up-

If K 
Y (nT) is the desired response, then there is a reinforcement 

signal which sets 

k c .. (nT) ~ min 
1J 

k k {c .. (nT-l) + d .. (nT-l), MAX} 
1J 1J 

for k = 1, ... , K i = 0,1 ; j = 0,1. The b's are left unchanged. 

Similarly, a weakening signal causes 

k 
c .. (nT) = 

1J { 
k k c : .(nT-l) - d . . (nT-l) 

. 1J 1.J 
if this difference is non

negative, 

MAX otherwise (i.e. reset) , 

87 



b~. (nT) = { 1J 

k b .. (nT-l) 
1J 

k b .. (nT-l) 
1J 

if the above difference is non-negative, 

otherwise (i.e. invert). 

Before the next T cycles are begun, the input counters are reset: 

d .. (nT) = J 
k {Ld~.(nT-l)/2J 
1J 0 otherwise. 

if the above difference is non
negative, 

Doing this instead of resetting all d's to zero allows the actions of ele
ment k under input ij since the last time b~. was changed to be held 
responsible in part for future reinforcements 1J and weakenings. 

Another adjustment which may be performed with a certain probabi
lity in any network cycle is a universal unit down-count of all "satisfac
tion" counters. This is a trick which worked well for ABLE networks helping 
to push learning to completion. We shall omit the details here. 

Despite the seeming complexity of this state-transition structure 
for our logic-delay elements, it is easily programmed in a variety of machine 
languages (for speed), and might be realizable in hardware by a single module 
per element. 

4. Simulation using computer graphics. 

Since the "fixed connections" synthesis problem involves boolean 
logic in an unfamiliar and complex way, it would seem almost impossible to 
s olve it in practice except by heuristic search. Our hope is that improved 
heuristic procedures may be devised using insight gained by observing 
visually, and interacting with, a simulation of network operation. We are 
encouraged by results on networks without delays or feedback loops, where 
a heureistic has been devised improving on trial-and-error by a factor of 
over one million for networks with five input terminals [5]. 

A set of programs has been written for the CDC 1700 DIGIGRAPHICS 
system at the Universite de Montreal whereby an adaptive network is made 
to serve as the "brain" of an "electric chicken". The effigy of a fowl appears 
on the CRT display, intently concentrating on an array of three lights within 
a "Skinner box". The lights are made to light up at random at times 0,T,2T, ... 
and rules can be prescribed for when the chicken should touch a button below 
the lights. If he touches after anyone of a list of prescribed sequences of 
length three of patterns of illumination he gets a reinforcement, which shows 
up as a pellet of food which he eats. If he fails to touch the button in 
these circumstances, he gets a weakening signal appearing as an electric 
shock under his feet. Weakening also occurs if he touches the button when 
he shouldn't;.: 

Thus the adaptive network is encouraged to become a (definite) 
automaton whose output {touch, don't touch} depends on the last L = 3 
input symbols from the alphabet of eight illumination patterns. 

The percentage of successful responses appears as a graph as lear
ning progresses, and certain parameters can be varied interactively. So far, 

88 



we have not written routines to permit observation of the operation of the 
network - the signals, the values of b's, c's, and d's, and the statistics 
of various changes. We must do considerable experimentation before we can 
answer such questions as 

1) What is the best way to represent visually the significance 
of signals in these networks ? 

2) What are the different paths between input and output termi
nals, and how does each affect behavior ? 

3) What fraction of the element output signals tend to become 
constant when the lights are held constant for several network 
cycles, and to what degree is this usable as a mechanism for 
short-term memory ? 

4) Is there a systematic connection structure which improves per
formance over the essentially random connections we are now 
using ? 

At the present time (April 1971) we have been able to obtain com
plete learning of simple tasks with L = 2. For example : "if the bottom 
light is illuminated and then the top one lights up, touch the button". 
Here the illumination of other lights does not matter and the sequences 
requiring touching may overlap. A task involving only the most recent input, 
e.g. "if the middle light is illuminated, touch the button", is solved very 
rapidly. Hence it is probably safe to assert that the use of logic-delay 
elements is sound in principle. The near future should shed much more light 
on the potentialities of networks of these elements. 

The program for the electric chicken employs a monitor written by 
Claude Schneegans to control the "Skinner box". It is designed to be called 
by a user program written in FORTRAN or ASSEMBLER, or both, which describes 
the operation of the chicken's "brain". In this way it should be possible 
for researchers who are more interested in biological brain modelling to try 
out their theories of learning mechanisms and compare their results to ours. 

5. Sunnnary. 

A program has been developed to test and display visually the pro
gress of learning in certain adaptive systems under a regime analogous to 
operant conditioning in a Skinner box. A particular type of adaptive network 
element is proposed which has proved successful in early trials. It is hoped 
that conversational computer graphics can provide the insight necessary to 
determine optimal network parameters for this type of element. This type of 
simulation may also be useful in studies of biological learning networks. 

89 



References. 

[1] M. Minsky and S. Papert, Perceptrons, an Introduction to Computational 
Geometry, MIT Press, Cambridge, Mass. 1969. 

[2] B. Widrow and J.B. Angell, Reliable, Trainable Networks for Computing 
and Control, Aerospace Engineering 21, 1962, pp. 78-123. 

[3] R.J. Lee et aI, Theory of Probability State Variable Systems, Vol.l 
Clearinghouse for Federal Scientific and Technical Information, U.S.A. 
AD 427 872, 1963. 

[4] J. Aleksander, Some Psychological Properties of Digital Learning Nets, 
Int. J. Man-Machine Studies 2, 1970, pp. 189-212. 

[5] W.W. Arms trong, Training Strategies for Networks of Adaptive Boolean 
Logic Elements, Publ. #20 (revised March 1971), Dept. d'informatique, 
Universite de Montreal. 

[6] W.W. Arrns trong, ~ Practical Solution to the Multilayer Learning Problem, 
Publ., Dept. d'informatique, Universite de Montreal 

[7] H. Blum, A New Model of Global Brain Function, Perspectives in BioI. and 
Med. 10 no.~pp. 381- 408. 

[8] T.L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons 
1967. 

90 


