
Introduction

DESIGNING A LANGUAGE FOR INTERACTIVE CONTROL PROGRAMS

M.A. Maclean

Communications Research Centre
Department of Communications

Ottawa, Ontario

Man-machine interaction through the medium of a graphical display is
becoming more widespread as the cost of hardware drops, and it is clear that
many possibilities exist for fruitful applications in a variety of fields.
This two-way communication process can involve messages in any form but it is
commonly done by having the computer write phrases on the display and allowing
the human operator to indicate his choice of one of these by pointing to it
with a light-pen or moving a cursor to lie close to it. When he does this,
the machine is programmed to take some appropriate action and the overall
result of this ongoing dialogue is to guide a complex process through a sequence
of decision points that require human judgment to resolve.

This style of interaction has spawned its own vocabulary. For example,
the messages displayed by the computer are referred to as 'light-buttons' and
collectively as a 'menu'.

The computer may display other kinds of information as well. Very
often the purpose of the interaction is to build or modify a stored model of
some situation in the real world; e.g., an electrical schematic, an engineer­
ing drawing or an architectural plan. Or the output of a computation might be
displayed in the form of a family of curves for different values of a stepped
parameter. In either case we can imagine an interactive process in which the
operator wishes to draw attention to certain displayed objects and to have
specific actions performed as a result. A scheme of classification is
necessary here, since the precise content of the displayed picture will usually
not be known when the program is written. The generic types of entity dis­
played in a picture will be referred to as 'picture parts' and the individuals
as 'instances'. Thus, in an electrical schematic, a resistor called RI would
be an instance of the generic type 'resistors'.

Of course there is no intrinsic difficulty in programming a computer
to display a series of messages and pictures or in branching execution to
specific routines when light-pen strikes are registered. However, the programs
can be long and tedious to write in conventional computer languages and
difficult to modify quickly when new features are wanted in an existing inter­
active system. Moreover, many display systems (e.g., storage-tube displays)
require the entire display to be drawn before searching can take place for an
operator intervention. This adds complexity to the program by forcing a
separation between the display and search operations. Other hardware-dependent
fac tors impose their mm logic on the program with the result that interactive
systems are difficult to move to a new machine.

30

One purpose of this paper is to show how a standard program model, with
its logical structure embodied in a special-purpose language, can bring some
relief in this area. A second is to show an example of a technique for im­
plementing such a language which is fast, flexible, and easy to use on a wide
variety of computers.

Development of the Approach

The initial impetus for the development of the language was the desire
to simplify the building of interactive programs by making use of man-machine
interaction in the design process itself. It was intended that light-button
menus should be created 'on-line' (see, for example, reference 1) to avoid the
tiresome chore of specifying screen layout as a series of calls to standard
graphical subroutines. , Furthermore, it was hoped that the other component of
an interac ti'veE;ystem coulg ,be speci,fied, in the same way, that is to say, the
actions required of the system in response to operator intervention. The
question then arose--"What would be the output of this design process?" A
machine-language program or a set of tables have the disadvantages of being
machine-dependent, unreadable, and difficult to modify. A much better method
would be to punch out a d~scription of the result of the design process in an
intermediate language. A compiler would then translate this to an executable
program. This technique has a number of advantages:

the result of the design process is r~corded in palatable form,

- the program at this stage can be modified easily,

- the intermediate-language program can be translated for any
suitable interactive display system. Thus, the design can be
carried out on one system for use with another.

Once this was realized, it became obvious that the first step should
be the implementation of the language and its translator so that the language
itself could be used as a tool in the building of the design system. Indeed,
the language is p~oving very useful in its own right and greatly reduces the
labour of writing interactive programs.

Interactive Control Programs

Cons ider the structure of an interactive system involving a CRT dis­
play as the man-machine interface (Figure 1). In this example the purpose o f

, the system is to build and edit a data-base and to carry out computations and
I/O operations under the direction of a human operator.

The system is shown as a collection of specialized functions, each
being realized by one or more routines ha~ing jobs such as data-base editing,
data extraction, numerical computation, data display, and so on. It is likely
that many of these routines will be standardized from one application to
another and can be drawn from a library that grows as new specialized functions
are implemented.

The routines that generate the light-button menus and those that
interpret the light-pen strikes and control the execution of the specialized

31

functions, however, are peculiar to each application and contain code that is
highly dependent on the structure of the display and light-pen system. It is
this latter class of routines which will be referred to collectively as the
'control program' for an application. It is convenient to include with this
any initialization which has to be done when the system is started up, as well
as the declaration of global variables, communication with the monitor, and so
on. In other words, the control program is host for the entire system.

Of course the display is not the only possible output channel for
messages, neither is the light-pen the only possible input. Other input de­
vices such as push-buttons are appropriate but the language has not yet been
extended to include them.

The Control Program Language

The overall aim is to present the designer of an interactive system
with a packaged 'construction kit' for control programs that has as much
f lexibil ity as he can usefully employ and yet which removes as much burdensome
detail as possible from his work.

The logical structure of the control programs is shown diagrammatically
in Fi gure 2, and an example of a simple program is given in Figure 3. The
con ten t s of the display at any particular moment constitute a 'page' which may
include ' light-buttons' which have been generated by the control program and
'pic t ures' displayed by external routines. There can be any number of pages.
When a pa rticular page is displayed, the display routines are executed first
a nd then t he computer loops through a routine which looks for a light-pen
strike . If a strike is detected, another routine tries to identify the object
poin ted to by the operator. If it is successful, control is passed to an
'act i on rou t ine' which ends either with another search for a light-pen strike
or in t he d i splaying of the same or another page. If the strike cannot be
identified, the system waits for another strike.

The light-buttons are displayed by the control program itself but
the disp l ay of pictures and the performance of complicated actions fol l owing
a l ight-pen strike are carried out by external routines. Thus the language
has a statement type whose purpose is to call an external routine with any
number of parameters.

The general form of a control program consists of the following:
(see Figure 3)

a) a declaration of the name of the program;

b) an entry sequence which must at least specify which page is to
be displayed first, but which generally initializes variables
as well;

c) one or more page descriptions consisting of a page number de­
claration, descript i ons of light-buttons and pi ctures to be
d isplayed, each followed by any actions that mus t ensue when
a l i ght-pen strike is registered, and finally an END OF PAGE
statement;

d) an END OF PROGRAM statement.

32

The description of a light-button is started with a LIGHT BUTTON
statement and consists of the statements necessary to display the button
followed by the action routines to be invoked by that button. A light-button
may consist of a number ·of separate objects (e.g., an alphabetic keyboard)
which are prefaced by statements ITEM 1, ITEM 2, and so on • . When the light­
pen sees a particular one of these, the item number is stored in a variable
called ITEM which may be referenced for branching purposes or passed to an
external routine.

The branching to the various action routines is controlled by integer
variables, here VI and V2, which may be created as required and given
arbitrary names. This form of branching allows the user to represent the
logic of his program as a matrix where the rows are the light-button or
picture-part numbers and the columns are values of a variable. It can also
be looked upon as an automaton having a 'state diagram,(2) whose changes of
state are triggered by light-pen strikes (Figure 4). Multiple variables are
allowed since interactive systems are often m6steasily represented by two
or more processes occurring at the same time. The form of the ACTION IF .
statement makes it easy to specify processes where a particular light-button
may initiate transitions from more than one state. Any number of ACTION IF .
statements may be used with alight-button. There is also an unconditional
ACTION statement.

A picture is displayed by calling an external routine with a PICTURE •
statement. An external routine is also responsible for identification of the
entity in the picture seen by the light-pen since, of course, the detailed
structure of the picture is not known to the control program. The identification
is specified by a statement of the form SEARCH PICTURE WITH • Certain
conventions must be observed in constructing the search routine. It has three
parameters which are, respectively,

the input to the search

- the light-pen strike number, counting from the start of the
picture

and the output

- the picture-part number, according to some scheme established
by the user

the item number, which is a sub-classification similar to that
used for light-buttons and corresponds to the particular
instance pOinted to.

If the search routine cannot identify the strike as belonging to the
picture; i.e., if there are not enough id~ntifiable entities in the picture,
it must return the negative of the number of entities it actually contains.

Following the search statement is the specification of the desired
actions in the form

33

PICTURE PART I
ACTION IF VI = 1,3,X,4

ACTION IF VI = 5

PICTURE PART 3
ACTION IF V2 = I

etc.

As with the light-buttons, the variable ITEM contains the item number of the strike
if it is needed.

The action routine specified in the control program may include elementary
assignment operations upon the integer variables and calls to external routines
which may use any of the variables or the special variable ITEM as parameters
Each action routine must end with a S~EK statement, .which causes the system to
look for another light-pen strike in the current page, or a DISPLAY • • statement
which triggers the display of one of the pages specified in the program.

One may wish to have the display of a particular light-button or picture
conditional on the value of a variable. This is expressed by statements such
a s

LIGHT BUTTON IF X = 2

or PICTURE Rl7 IF VI = V2

Another type of conditional statement is probably desirable for testing the
value of a variable returned by an external routine. However, this latter
feature has not yet been implemented.

Program Structure

The structure of the program in memory is a combination of straight-line
code, tables and list-structures. Certain functions, such as light-button
identification and the decision procedures involved in choosing a course of
action after a light-pen strike, are best handled by fixed routines which use
tables or parameters produced by the translator. Because the ordering of
statements in a control program is one designed for clarity and ease of use
rather than f or simple sequential translation, and partly because of the in­
herent complexity of the program, the translated program takes the form of a
number of segments connected by pointers.

As the contents of each page are described in the source lanv,uage, two
intertwined chains of code are generated (Figure 5). One consists of the code
to display the light-buttons and pictures, and the other contains the calls to
the identification routines and the tables which describe the logical structure
of the page (i.e., the number and ordering of the light-buttons and picture­
parts and pointers to the action routines). The action routines are chained
by pointers for each light-button or picture-part and each contains a decision
table to determine whether or not it should be executed. The physical locat ion
of the action routines is at the end of the translated program.

Translation

This is a two-step process. The first uses a general purpose
34

macro-processor called S.TAGE2 which translates the control program language into
assembly code for the target machine (in this case a DEC PDP-9) and establishes
the program structure of Figure 5. The assembler is used for the second step.

STAGE2 is a macro~processor with many powerful features that has been
designed as part of a programming system to be easily implemented on almost any
computer (3) (4). Apart from a small host program and a simple I/O interface, it
is written in the language of a pseudo-machine which can be translated with a
rudimentary macro-processor that is coded by hand or in FORTRAN. This boot­
strapping process makes it possible to place STAGE2 in operation without access
to a working version on another machine.

The task of writing the translator consists of building a set of macro
definitions which are read by STAGE2 before the input of the source language
program. All the processing done by STAGE2 is character-oriented and results
in the output of a character string; i.e., an assembly-language program for the
target machine. This step could be carried out on any machine having the same
set of character codes.

Each statement in the control program language is a macro call and one
of the attractive features of STAGE2 is the flexibility of format which is
allowed. Parameters can be of any length and can be arranged in any way within
a 'template' of fixed characters. By making it possible to interpret strings
such as l,4,15,Vl,3 .•. as a single parameter, and providing mechanisms for
scanning such strings and picking out the components, it is very easy to trans ­
late the ACTION IF V3 = 2,3,X,5 type of statement.

Some of the translation is very straightforward, for example the simple
assignment s tatement VI = 2, while other statements invoke complex mechanisms
whi ch are responsible for setting up the structure of Figure 5. A certa i n amount
of this work is passed on to the assembler. For example, the pointer chains
i n Figure 5 are created by using symbolic references to labelled locations . To
a considerable degree these mechanisms are machine-independent and so this par t
of the translater would not have to be rewritten to move the whole system to
another machine . The part which actually generates code for the target machine' s
assembler would, of course, have to be changed.

At the time of writing, no diagnostic features have been provided in
t he translator. This is partly because of the experimental nature of the
l anguage but it is expected that memory limitations will make it di f ficu lt to
do the necessa ry checks at the time of translation. A solution to thi s pr oblem
is to submit the source program to a diagnostic processor prior to t rans l ation.
This would also use STAGE2 but with a different set of macro definit i ons .
Another desirable improvement would be to free the input forma t from the r igid
indenting conventions and permit the user to use spaces freely.

The power and flexibility of the STAGE2 macro-processor greatly speed
the writing of a translator of this sort and encourage the development of
special-purpose languages . The first version of the control program language,
s i mpler than the present one, was written in four days and the features described
he r e were developed over a further period of about three weeks. New featur es
can usua lly be added rathe r quickly unless they involve radical changes i n
program structure.

35

Conclusion

We can summarize as follows: a well defined area has been outlined
(control programs for interactive graphical display systems) where a standard
program model is deemed to be able to satisfy a broad class of applications.
Then a language has been created which exemplifies the logical structure of the
program model, as seen by the user, and which he can use to express his
particular requirements without the burden of ~nnecessary detail and, most
important, without the danger of making trivial errors which can cause obscure
side effects. The translator now produces an executable program according to
the general form, but with detailed variations of structure to suit the
particular case.

A common objection to special-purpose languages is that translators
require a lot of work to write. This need not be so if the proper tools are
available. If, in addition, the tools are constructed in such a way that they
can be moved readily from one machine to another, the objection has very little
weight.

Acknowledgement

The writer is indebted to H.G. Bown and C.D. Shepard for helpful dis­
discussions during the project and the writing of this paper.

References

1. B.W. Boehm, V.R. Lamb, R.L. Mobley, and J.E. Rieber, 'POGO: Programmer­
Oriented Graphics Operation' Proc. SJCC 1969, pp. 321-330.

2 . W.M. Newrnan, 'A System for Interactive Graphical Programming' Proc. SJCC
1968, pp. 47-54.

3 . W.M. Waite, 'Building a Mobile Programming System', Computer Journal 13
no. 1, February 1970, pp. 28-31.

4. W.M. Waite, 'The Mobile Programming System: STAGE2', Comm. AGM 11 no. 7,
July 1970, pp. 415-421.

36

CONTROL
PROGRAM

----------------,
1 I
1
I
I
I

STRIKE
IDENTIFICATION

I LIGHT - BUTTON
~ M~~ I
L ____________ 1 ___

1
1
I

----I
I

f--------+: ----et 8
~===~

DATA-BASE

OUTPUT

Figure 1 Structure of an Interactive System

PAGE I PAGE 2
_____ 1 ______ l ____ _

,..-----'"-----, I
I
I
1
I
I
1
I
1
I
I
I
I
I
I
I
I

DIS~AY-N-~ -- - -i---
I

TO ANY PAGE

PAGE 3

r - - - - - ~ - - - - - -I
I
I
I
1
I
1
1
1
1
1
I
1
1
1
I
I
I
1
1

- ----+-----..1

Figure 2 Control Program Logical Structure

37

CONTROL PROGRAM WXYZ
VI = 1
DISPLAY 1

PAGE 1
LIGHT BUTTON

ITEM 1
BEAM 1500,1500
WRITE UP

ITEM 2
BEAM 1500,1400
WRITE DOWN

ACTION IF VI = 2
VI = 1
DO Rl (ITEM)
DISPLAY 1

LIGHT BUTTON
BEAM 1500,1600
WRITE MOVE

ACTION IF VI = 1,3
VI = 2
SEEK

PICTURE R2
SEARCH PICTURE WITH R3
PICTURE PART 1
ACTION IF VI = 1,2

VI = 3
DO R4(V2)
DISPLAY V2

END OF PAGE
PAGE 2

END OF PAGE
END OF PROGRAM

}

Figure 3 Typical Control Program

38

initialization

display generation and
action specification
for one light-button

action for one category
of object in picture R2

LIGHT -BUTTON {~
NUMBER

3

PICTURE-PART {I
NUMBER 2

VI V2
2 2 3'

(I)

(2) (6)

(4)

(3)

(5) ~

MATRIX REPRESENTATION

..... ACTION
ROUTINES::---·

PROCESS VI

PROCESS V2

Figure 4 Alternate Representations of Control Processes

SE "IEK

-I

ON LIGHT-BUTT
IDENTIFICAT

TABLE
ION

SEEK
CHAIN

PAGE TABLE
LIGHT -BUTTONL DISPLAY CODE

ACTION CHAIN ---

J }+ I
TERMINATOR

DISPLAY
CHAIN

DECISION
TABLE

ACTION ROUTINE

Figure 5 Control Program Structure

39

