
ABSTRACT

GRAPPLE
Graphics Application Programming Language

D.L. Williams
ReIl-Northern Research

Ottawa, Canada

The main barrier to greater use of computer graphics
has been the lack of a suitable programming language.
This paper describes a new language, called Grapple,
which was developed at Bell-Northern Research during
twelve months of interaction with users and potential
users. It is in everyday use both as a means of compact
storage of graphics data and as a tool for graphics
systems programming. Grapple is based on a function
notation and the use of elementary operations called
'primitives'. The primitives include simple picture­
drawing operations and input-output operations for
displays and computer files. Functions (which can be
given mnemonic names) are built up from primitives and
other functions.

RESUME
L'absence d'un langage de prop,rammation approprie a
ete, jusqu'a present, le principal obstacle a
l'utilisation etendue des applications graphiques de
l'ordinateur. Ce memoire decrit un nouveau langage
intitulc Grapple (Graphics Application Programming
Language, ou langage de programmation graphique) mis au
point aux Recherches Dell-Northern, a la suite de
contacts qui ont dure un an entre les spcciali~te~ de
la compagnie et des usagers actuels et futurs. Ce
langage est aujourd'hui d'un usage quotidien, servant
tant a memoriser des donnees graphiques sous un forme
compacte qu'a la programmation graphique du'n
ordinateur. Grapple se base sur une notation par
fonctions et sur l'utilisation d'operations
elementaires appelces 'primitives'. Les fonctions (qui
peuvent recevoir des noms mnemoniques) sont construites
a partir de primitives et d'autres fonctions. Les
primitives comprennent des operations simples de dessin
ainsi que des operations d'entree-sortie pour les
affichages et les dossiers d'ordinateur.

5.1

5.2

Before Pt/'. before Algol. be fore t'ortran and it~ kin, most
comput.er programming was don e in 'Symbolic Assembly
Lanquaqes', though some p~or)le were still writing directly
in machine codes . This for~ed a barrier to the use of
computers. ft person with a probl e m to be solved had to
consult a proqramm~r, who would writ.e the proqram for him.
The a vailahility of high-leve l lanquayes, ~hich were fairly
~as y to learn, chanqed th e situation. Programs could then be
written by th e user himself. without another per son having
to interpret. his command s to th e computer •

. I\t present. 4[apiti c s [Jroqrdmrninq is at the [Jre-Fortr:an
staqp; user s don't write g raphics programs, prof ess ional
proqramme rs do . Variolls languaqes ar e bpinq de veloped which
s hould c~an4e all this. Grappl e is one which is int e nded as
an e asy-ta-use lanquaqe for ~escribing ~oth pictures and
graphics systems. These two facet.s ar e tasie to the design
of G ra pple . A s uLse t 0 f th e lang uaqe fonns a con ven ien t
m0dn s of de s cribing pictures , while the language as a whole
i s a powerful medium tor des igning complete computer
~raphics s ystems. For e xample, the interactive graphics
pr]i to r, whi c h allows one t o ~1 eTle rate and ·modify pictures
direc tly, without manually cncodinq them as numbers, is
it~pLf written in Grapple.

D~vplopment started early in 1Q72, when it became apparent
that a means had to be foun d for encoding graphics data in a
com p~ct standard form. Within a f e w weeks, Grappl e code was
be inq used as th e medium for transfen:ing data betw€ lo-' n
vari o us graphics machines . At the present time, Grapple is a
matur e programming lanquaq e . Development is continuing, but
th e present f e atures are stable . This pa[J er is intended as a
bri ef primer to Grapple.

As in most lanquages, Grapple has some ve ry basic operations
which can be used on their own, or can he put together to
perform more complicated op e rations. Thpse basic operations
are called £B!~lI!1] fQB~I1Q~~. To vi s ualize what they do,
it is best to imagine a pen moving over a drafting board;
the location of the pen can be specified by giving its x and
y coordina tes.

For example: to put the pen at the position x : 20 units, y
: 40 units, one uses the ~BIprimitive. All primitive s are
spec ified by their initial letter, so the command would be:

S(20,40) ;

Th i s e xample illustrates thre e charact er istics of the
language: the arguments of th e function are enclosed in
parentheses and are separated by commas; th e command is
terminated by a semi-colon; a nd dimensions are specified in
units whose valu e can be set to any lenqth. The default
valu e is .01 inch, but one can iust as we ll work .in
millimetre s or miles.

Having pu t the pen at that position, one can now draw a line
t o another position. To draw a horizontal line to the
position x : 4 cms, y : 4 ems, using th e QRA~ primitiv e , the
complete command is

S (20 ,UO) ,D(40,40)

successive function calls are separated by commas; they can
follow immediately after one another, be separated by
blanks, or be on successive lines if one prefers, because
it's the semi-colon that shows where the command ends.

Another way of spe cifying a position is to give, not the
absolute location, but the x-offset and the y-offset from
the current pen position. This is really telling the pen,
not where to go, but how far to go from wh e re it is now. The
Y~~IQli primitive draws a line in this manner, and the
example of a line could be drawn by:

5(20,40) ,V(20,0);

One can now describe a small t1gure in Grapple. Consider a
rectangle 2 cms by 3 cms, with its lower left corner at the
point (2,1). The command

S(20,10),V(20,0),V(0,JO),V(-20,0) ,V(0,-30)

will draw its sides one after the other, going around
counterclockwise. Using the VECTOR primitive emphasizes that
the lengths of the sides are 20 and 30 units. This would not
have been immediately apparent if the DRAW primitive had
been used.

There is a shorthand way of writing the above command, still
using the VECTOR primitive; several pairs of dx and dy
values can be put in one function call, so the command would
look like this:

S (20, 10), V (20,0,0,30,-20,0,0,-.30)

5.3

5.4

If this statement looks a little confusing, it can be
written in this manner:

S (20, 10),V (20,0, 0,30, -20,0, 0,-30) ;

~ rectanqle is a special kind of shape, in which successive
lines are parallel in turn to either the X-direction or the
I-direction. ~wo special primitives, I and Y allow lines of
this kind to be specified in a very compact manner. Each
primitive draws a strinq of line segments, alternately in
the x-direction and the y-direction usinq the gLven values
as the lengths of the line segments. The X primitive draws
the first segment in the x-direction: the Y primitive draws
its first seqment in the y-direction.

using one of these, the above command shrinks to:

S(20,10) ,X(20,30,-20,-30);

Whether the above commands are typed at the keyboard or read
from a file, they are executed immediately and then
discarded. A command of this form, telling Grapple to
perform certain qraphical function s , is called a IQN~I!Q~
Inf~gA!!Y~. By givinq it a name, the command can be
converted into a IYN~I!QN Q~IJ~!I!Q~. It will be stored, and
can be invoked more than once.

B L QC K: S (20, 1 0) , X (20,30, - 2 0, - 30)

A colon separates the .function name from the rest of the
definition; the name itself can be up to eight characters
lonq, and the first character must be alphabetic.
Sinqle-character function names are not allowed, since a
user function called, say, S, would redefine the primitive
S, and cause great confusion. similarly, although the dollar
siqn ($) is deemed to be an alphabetic character, one should
not begin a function name with a $ since the name could
accidentally redefine a ~l~I~~ Q~f!N§QrQN~T!QN.

Now that the figure has been defined dnd qiven a name, a
Function Imperative will command that it be drawn. The
statement:

BLOCK:

will do this. Inside a function, all positions and
dimensions refer to its own private measurement system. For
example,

S(60,10) ,BLOCK;

would give the picture shown in figure 1.

The point marked with an asterisk (*) is (60,10) as far as
the outside world is conc erned , hut is the point (0,0) for
everything within this copy of BLOCK. The first operation
within BLOCK is S(20,10), but this is (20,10) with respect
to BLOCK's own reference point, not (20,10) of the overall
drafting board. One conseguence of this fedture is that one
can put several copies of BLOCK at different places in the
picture, such as

s (2 0 .. 0) , B LaC K , S (6 0, 0) , B L 0 C K , S (1 00 , 0) , BLOC K ;

which would give a horizontal row of BLOCKs.

The examples so far hav e been executed 'as written'. It is
often desirable to write a somewhat general function which
can be modified as it is executed. One way of affecting the
execution is to pass parameters to a function when it is
called. A square .. for example, needs one parameter,
representing the length of side.

SQUARE (1): 1C (&1 t &1,-&1,-&1)

Then SQUARE(27) would draw a 27 mm square. Inside a
function, the parameters are referred to by their position
in the formal parameter list, &1 being the first, &2 the
second , and so on.

Anoth er way of controllinq the execution is by 'Action
Modifiers'. These control repetition, rotation, and
rnirroring. Thus

? (45) SQUARE (27)

will draw the square at 45 degrees. There is also an
·IF ••••••• THEN •••••• ELSE' mechanism that allows the
programmer to control which function or action list is to be
performed. There is not however any GO TO statement.

The above primitives have been described in detail, as they
give the 'flavour' of the language. Further picture-drawing
primitives are available, but the ones described are
representative.

Before considering the special feature put into Grapple for
graphics programming, some mention should be made of
'Euphemisms'. The penalty in terms of lovered efficiency for

5.5

5.6

introducinq a new function name is quite low. Thus a rather
obscure primitive, such as F(3,n), can easily be renamed
$COS(n). This principle has been used extensively. The
average user probably is not dware of it, but one finds that
a wide variety of mnemonically-named programminq features is
actually based on three or four families of primitives.

One family is mathematical functions, an example of which is
shown above. Some others are $~BS, $ROUND, and $ARCT~N. The
existence of these functions implies computational
facilities in the languaqe, and indeed Grapple has
constants, va~iables, arrays, assignments, and the usual
arithmetic and Boolean operators.

(ARRAY(2)+B) • 36 -) C;

A second family (based on the P prilnitive) is concerned with
file input and output. These functions qive Grapple the
ability to open and close, read and writ e standard computer
files; Grapple can also generate files of graphics data for
plottinq on a drum plotter or cutting on a mask cutter.

Input from a light-pen, joystick or other device has proved
a difficulty in many graphics systems. Grapple has taken a
direct approach with two primitives. One merely requests the
entry of a pair of coordinates from the operator, and passes
them to the program. The other checks whether a given point
scores a 'hit' on any line of a specified figure. This could
be a long, expensive process: the secret of its success
depends on two things: it happens th~t functions usually do
not contain much code in themselves because they can call
other functions: and picture-drawing functions contain
'extent' data, which qives the maximum extent ot the figure.
If the specified point lies outside the extent, there is no
nedd to search the fiqure for coincidence. The 'extent'
feature also increases the efficiency of the windowing
operation, on display.

Apart from certain miscellaneous operations (such as $ERASE
to erase the screen) the other ma;or primitive group
controls the compilation of source data: which function is
to be compiled, which is to be re-compiled after a chanqe,
what libraries should be searched for undefined functions,
whether a trace is to be made of compilation and execution,
and so on. The library facility has proved very useful, as
it enables desiqners workinq in various fields to build up
repertoires of functions that then become available to all:
each person does not have to re-invent the same function
over and over. An example of a standard function is a
menu-processor, which is given a list of names of functions
when it is called. The list is displayed on the screen of
whatever terminal is in use, and if a 'hit' is scored on any
word in the list, then the named function is called. Some
other standard functions are shown in figure 2.

Although Grapple is a versatile language, it was recognized
that some parts of a program might more easily he written in
some other lanquaqe - tor example, report generation. Two
mechanisms were therefore provided for linkage to an
external PL/1 or Fortran ~rogram. One mechanism makes a call
to an external program each time each function is entered.
The other calls the external program each time $C'LLEXT is
encountered (it will be realized that $CALLEXT is of course
a 'euphemism').

No mention has yet been made of hardware. A Grap~le
interpreter could be written tor almost any interactive
computer, but the present implementation is on a time-shared
360/67. Five different types of display terminal are in use;
one is a refresh-tube display, the others havinq direct-view
storage tubes. The Grapple system can be accessed from any
of these. Indeed, Grapple programs can be run from almost
any keyboard terminal, with the 'display' mode turned off.
Graphics input is a little tricky on a teletype, but is
achieved by typing out 'X: Y: • and letting the user fill
in the blanks.

In twelve months of interaction with potential and actual
programmers, a graphics language has been developed which
can be used by people who are not necessarily professional
programmers. several major programs, written in Grapple, are
in everyday use. The languaqe is now stable, and further
development will mainly take the form of establishing
libraries of standard and special functions.

Reference has already been made to the interaction with
users that took place during the development. The authors of
Grapple would like to acknowledge the assistance given to
them by these long-suffering people. Special mention should
be make of G. Caple, R. lewis and H. Rombeek, but there were
also many more who who contributed helpful comments and
suggestions.

5.7

5.8

60

llD

20

o

o 20 llD 60 80 100

FIGURE 1

$RECT.
DRAU RECTANCl£

$CIRCLE
DRA'" CIRCLE

$ARC
DRAI.I CIRCULM MC

$ELIPSE
DRA'" ELI~TICAL A~C

$TMARK
bRA", AXES "'ITH TICKMARKS

$GRID
~ ~ECTAMGUtAR CRIP

SRECT (x , Y) ,

SRECT (700 ', 200) ,

SCIRCLE(RADIUS),

SCIRCLE(150),

SARCCRADIU5,ANG1,ANG2),

SACRC250, 0,120),

SELIPSECXRAD,YRAD,ANG1,ANG2).

SELIPSE(400,150,0,270),

STMARKCDX,NX,NNX,DY,NY,NNY),

STMARKC30,20,2.20,12,3),

SGRIDCDX,NX,DY,NY).

SGRID(100,7,S0,4) ,

1

o

11111 ! l~
t----------..L.-------------~---------~--_+-------__;

$S~IADE ISHADE(X.Y , DELTA),

~SHA_ 1lE • .£er....,l •• . "'E.~_S_S_HADE (700.200.20) .

D D(Xl,Vl,X2,V2, ,) ,

DRAY ABSOLUTE LINES D(700,0,700,300.300.300),

V NCOX1.DV1.DX2.DV2. . •) .
~ DRAY RElATIVE VECTORS UC300,100.200.-100.200.200.0.-200).

R R(DX1.DV1.DX2,DV2, ,) ,

~. DRAY RELATIVE MDIALS R(700.100.700.200,300.200), ~

X XCDX1.DV2.DX3.DV4, ,) ,

I lJ DRAW RE~TlVE ORTHOGONAL X(400,200 , 200.-200,100,100), Cl
LINE' ~ X AXI'

Y
I

YCDV1 , DX2.DV3. .) .
1 DRAY RELATIVE ORTH~L Y(200,700,-200.-500,100.300), I

tINES FRO" V AXIS -

S S(X,V),
•

SET PEN ABSOUUTE S(200,100).X(200.20), •
-

M M (DX. DV) . ,
I'O..IE PEN RELAT IV£: X(200),M(200.100).X(200.20). •

