GRAPPLE
Graphics Application Programming Language

D.L. Williams
Bell-Northern Research
Ottawa, Canada

ABSTRACT
The main barrier to greater use of computer graphics
has been the lack of a suitable programming language.
This paper describes a new language, called Grapple,
which was developed at Bell-Northern Research during
twelve months of interaction with users and potential
users, It is in everyday use both as a means of compact
storage of graphics data and as a tool for graphics
systems programming. Grapple is based on a function
notation and the use of elementary operations called
'primitives', The primitives include simple picture-
drawing operations and input-output operations for
displays and computer files. Functions (which can be
given mnemonic names) are built up from primitives and
other functions,

RESUME
L'absence d'un langage de programmation approprié a
é6té, jusqu'a présent, le principal obstacle 3
l'utilisation &tendue des applications graphiques de
l'ordinateur., Ce mémoiré decrit un nouveau langage
intitulé Grapple (Graphics Application Programming
Language, ou langage de programmation graphique) mis au
point aux Recherches Bell-Northern, 3 la suite de
contacts qui ont duré un an entre les spécialistes de
la compagnie et des usagers actuels et futurs. Ce
langage est aujourd'hui d'un usage quotidien, servant
tant 3 mémoriser des donnees graphiques sous un forme
compacte qu'd la programmation graphique du'n
ordinateur. Grapple se base sur une notation par
fonctions et sur l'utilisation d'opérations
élémentaires appelées 'primitives'. Les fonctions (qui
peuvent recevoir des noms mnémoniques) sont construites
a partir de primitives et d'autres fonctions. Les
primitives comprennent des opérations simples de dessin
ainsi que des opérations d'entrée-sortie pour les
affichages et les dossiers d'ordinateur.

INTEODUCTION

Retore PL/1, before Algol, before Fortran and its kin, most
computer programming was done in 'Symholic Assembly
Languages', though some people were still writing directly
in machine codes. This formed a barrier to the use of
computers. R person with a problem to be solved had to
consult a programmer, who would write the program for him,
The availability of high-level lanquayes, which were fairly
2asy to learn, changed the situation. Proqrams could then be
written by the user himself, without another person having
to interpret his commands to the computer,

At present, yraphics programming is at the pre-Fortran
stage; users don't write graphics programs, professional
programmers do., Various languages are being developed which
should change all this., Grapple is one which is intended as
an easy-to-use lanquage for describing both pictures and
qraphics systems. These two facets are fasic to the design
of Grapple. A subset of the lanquage forms a convenient
means of describing pictures, while the language as a whole
is a powerful medium for designing complete computer
qraphics systems. For example, the interactive graphics
editor, which allows one to generate and modify pictures
directly, without manually encoding them as numbers, is
itself written in Grapple.

pevelopment started early in 1972, when it became apparent
that a means had to be found for encoding graphics data in a
compact standard form. Within a few weeks, Grapple code was
being used as the medium for transferring data between
various graphics machines. At the present time, Grapple is a
mature programming language., Development 1is continuing, but
the present features are stable., This paper is intended as a
bhrief primer to Grapple.

As in most lanquages, Grapple has some very basic operations
which can be used on their own, or can be put together to
perform more complicated operations. These basic operations
are called PRIMITIVE FUNCTIONS. To visualize what they do,
the location of the pen can be specified by giving 1ts x and
y coordinates,

For example: to put the pen at the position x : 20 units, vy
. 40 units, one uses the SET primitive, RAll primitives are

specified by their initial letter, so the command would be:
S(20,40) ;

This example illustrates three characteristics of the
language: the arquments of the function are enclosed in
parentheses and are separated by commas; the command is
terminated by a semi-colon; and dimensions are specified in
units whose value can be set to any length., The default
value is .01 inch, but one car just as well work in
millimetres or miles,

Having put the pen at that position, one can now draw a line
to another position., To draw a horizontal line to the
position x : 4 cms, y : 4 cms, using the DRRW primitive, the
complete command is

$(20,40),D(40,40) ;

successive function calls are separated by commas; they can
follow immediately after one another, be separated by
blanks, or be on successive lines if one prefers, because
it's the semi-colon that shows where the command ends.

Another way of specifying a position is to give, not the
absolute location, but the x-offset and the y-offset from
the current pen position. This is really telling the pen,
not where to go, but how far to go from where it is now., The

$(20,40),V(20,0) 3

One can now describe a small figqure in Grapple. Consider a
rectangle 2 cms by 3 cms, with its lower left corner at the
point (2,1). The command

s (20,10),v(20,0),v(0,30),V(-20,0),Vv(0,-30);

will draw its sides one after the other, going around
counterclockwise. Using the VECTOR primitive emphasizes that
the lengths of the sides are 20 and 30 units. This would not
have been immediately apparent if the DEAW primitive had
been used,.

There is a shorthand way of writing the above command, still
using the VECTOR primitive; several pairs of dx and dy
values can be put in one function call, so the command would
look like this:

s(20,10),v(20,0,0,30,-20,0,0,-30);

1f this statement looks a little confusing, it can be
written in this manner:

5(20,10),v (20,0, 0,30, -20,0, D;=30).;

A rectangle is a special kind of shape, in which successive
lines are parallel in turn to either the X-direction or the
y-direction. Two special primitives, X and XY allow lines of
this kind to be specified in a very compact manner, Each
primitive draws a strinqg of line segments, alternately in
the x-direction and the y-direction using the given values
as the lengths of the line segments. The X primitive draws
the first segment in the x-direction; the ¥ primitive draws
its first segment in the y-direction.

Using one of these, the above command shrinks to:

S (20,10) ,Xx(20,30,-20,-30) ;

Whether the above commands are typed at the keyboard or read
from a file, they are executed immediately and then
discarded. A command of this form, telling Grapple to
perform certain graphical functions, is called a FUNCTION

IMPERATIVE., By giving it a name, the command can be

converted into a FUNCTION DEFINITION., It will be stored, and

can be invoked more than once.

RLOCK: S(20,10),x(20,30,-20,-30);

A colon separates the function name from the rest of the
definition; the name itself can be up to eight characters
long, and the first character must be alphabetic,
single-character function names are not allowed, since a
user function called, say, S, would redefine the primitive
s, and cause great confusion. similarly, although the dollar
sign ($) is deemed to be an alphabetic character, one should
not begin a function name with a $§ since the name could
accidentally redefine a SYSTEk DEFINED FUNCTION.

AN ENLS SRR Fams ememm e ——

Now that the fiqure has been defined and given a name, a
Function Imperative will command that it be drawn. The

statement:
BLOCK;

will do this. Inside a function, all positions and
dimensions refer to its own private measurement system. For

example,

s (60,10) ,BLOCK;

would give the picture shown in fiqure 1,

The point marked with an asterisk (¥) is (60,10) as far as
the outside world is concerned, but is the point (0,0) for
everything within this copy ot BLOCK, The first operation
within BLOCK is S(20,10), bhut this is (20,10) with respect
to BLOCK's own reference point, not (20,10) of the overall
drafting board. One consequence of this feature is that one
can put several copies of BLOCK at different places in the
picture, such as

S(Z0,0),BLOCK,S(60,0),BLOCK,S(100,0),BLOCK;
which would give a horizontal row of BLOCKs,

The examples so far have been executed 'as written'., It is
often desirable to write a somewhat general function which
can be modified as it is executed. One way of affecting the
execution is to pass parameters to a function when it is
called. A square, for example, needs one parameter,
representing the length of side.

SQUARE (1) : X(&1,81,-81,-61);

Then SQUARE(27) would draw a 27 mm square. Inside a
function, the parameters are referred to by their position
in the formal parameter list, &1 being the first, &2 the
second, and sO On.

Another way of controlling the execution is by 'Action
Modifiers'. These control repetition, rotation, and
mirroring. Thus

2 (45) SQUARE (27)

will draw the square at 45 degrees. There is also an
"IFuuveeoseTHENesesso ELSE' mechanism that allows the
programmer to control which function or action list is to be
performed. There is not however any GO TO statement.,

The above primitives have been described in detail, as they
give the *flavour' of the lanquage. Further picture-drawing
primitives are available, but the ones described are
representative,

GRAPHICS SYSTEM PROGRAMMING

Before considering the special feature put into Grapple for
graphics programming, some mention should be made of
'Fuphemisms'. The penalty in terms of lovered efficiency for

5.6

introducing a new function name is quite low. Thus a rather
obscure primitive, such as F(3,n), can easily be renamed
$C0S(n). This principle has been used extensively. The
average user probably is not aware of it, but one finds that
a wide variety of mnemonically-named programming features is
actually based on three or four families of primitives,

Oone family is mathematical functions, an example of which 1is
shown above. Some others are $ABS, $ROUND, and $ARCTAN. The
existence of these functions implies computational
facilities in the language, and indeed Grapple has
constants, variables, arrays, assignments, and the usual
arithmetic and Boolean operators.

(ARRAY (2) +B) * 36 -> C;

A second family (based on the P primitive) is concerned with
file input and output. These functions give Grapple the
ability to open and close, read and write standard computer
files; Grapple can also generate files of graphics data for
plotting on a drum plotter or cutting on a mask cutter.

Tnput from a light-pen, 7joystick or other device has proved
a difficulty in many graphics systems. Grapple has taken a
direct approach with two primitives. One merely requests the
entry of a pair of coordinates from the operator, and passes
them to the program., The other checks whether a given point
scores a 'hit' on any line of a specified figure. This could
be a long, expensive process; the secret of its success
depends on two things; it happens that functions usually do
not contain much code in themselves because they can call
other functions; and picture-drawing functions contain
textent' data, which gives the maximum extent of the figure.
If the specified point lies outside the extent, there is no
nedd to search the fiqure for coincidence. The 'extent’
feature also increases the efficiency of the windowing
operation, on display.

Apart from certain miscellaneous operations (such as $ERASE
to erase the screen) the other major primitive group
controls the compilation of source data; which function is
to be compiled, which is to be re-compiled after a change,
what libraries should be searched for undefined functions,
whether a trace is to be made of compilation and execution,
and so on. The library facility has proved very useful, as
it enables designers working in various fields to build up
repertoires of functions that then become available to all;
each person does not have to re-invent the same function
over and over. An example of a standard function is a
menu-processor, which is given a list of names of functions
when it is called. The list is displayed on the screen of
whatever terminal is in use, and if a 'hit' is scored on any
word in the list, then the named function is called. Some
other standard functions are shown in fiqgure 2.

Although Grapple is a versatile language, it was recognized
that some parts of a program might more easily be written in
some other language - for example, report generation. Two
mechanisms were therefore provided for linkage to an
external PL/1 or Fortran program, One mechanism makes a call
to an external program each time each function 1is entered.
The other calls the external program each time $CALLEXT is
encountered (it will be realized that $CALLEXT is of course
a "euphemism').

No mention has yet been made of hardware. A Grapple
interpreter could be written tor almost any interactive
computer, but the present implementation is on a time-shared
360,67, Five different types of display terminal are in use;
one is a refresh-tube display, the others having direct-view
storage tubes. The Grapple system can be accessed from any
of these. Indeed, Grapple programs can be run from almost
any keyboard terminal, with the 'display' mode turned off.
Graphics input is a little tricky on a teletype, but is
achieved by typing out 'X: Y: ' and letting the user fill
in the blanks.

CONCLUSION

Tn twelve months of interaction with potential and actual
programmers, a graphics language has been developed which
can be used by people who are not necessarily professional
programmers. Several major programs, written in Grapple, are
in everyday use. The language is now stable, and further
development will mainly take the form of establishing
libraries of standard and special functions.

ACKNOWLEDGEMENTS

Reference has already been made to the interaction with
users that took place during the development. The authors of
Grapple would like to acknowledge the assistance given to
them by these long-suffering people. Special mention should
be make of G. Caple, R. Lewis and H. Rombeek, but there were
also many more who who contributed helpful comments and
suggestions.,

60

uo

20

20

up

FIGURE 1

60

80

100

$RECT

DRAU RECTANGLE

$RECT(X.Y),
$RECT(700.200).

$CIRCLE $CIRCLE (RADIUS) . .
DAY CIRCLE $CIRCLE(150).
$ARC $ARC (RADIUS , ANG1 . ANG2) . /\
DRA CIRCULAR ARC SACR(250.0.120). o
$ELIPSE SELIPSE (XRAD. YRAD. ANG1 . ANG2) .
[)
DRAU ELIPTICAL ARC SELIPSE(400.150,0,270) |
$TMARK $TMARK (DX. NX. NNX, DY, NY, NNY) .
DRAU AXES UITH TICKIARKS STMARK (30.20.2.20.12.3) .
$GRID SGRID(DX.NX.DY.NY).
DRAU RECTANGULAR GRID SGRID(100.7.50,4) .
$SHADE $SHADE (X, Y. DELTA) .

SHADE A RECTANGULAR ARER

$SHADE (700.209.20) .

¢ H4NOIA

-

D

DRAU ABSOLUTE LINES

D(X1.,¥Y1.X2.¥Ya2, .).,

D(700.90.700.300.309.300).

U J(DX1.DY1.DX2.DY2. . .).
DRAU RELATIVE VECTORS U(300.100.200.-100.200.200.0.-200) .
R R(DX1.DY1.DX2.DY2, .).

DRAU RELATIVE RADIALS

R(?OO.100.700.800.300.800).

X

DRAY RELATIVE ORTHOGONAL
LINES FROA X AXI9

X (DX1.DY2.DX3.DY¥4, .).

Y

DRAU RELATIVE ORTHOGONAL
LINES FROM Y AXIS

¥(DY1.DX2.DY3. .).
Y (209.709.-200.-500.100.300).

S

S(X.Y).
EEe e |
SET PEN ABSOLUTE S(200.100) .X(200.20). -
M M(DX.DY).
PERPESU—— |

MOVUE PEN RELATIVE

X(200).M(200.100).X(200.20).

0T

€ HINDIA

