
•

1-1

System In depend enc e for
Interactive Computer Graphics Application Programs

H.G.Bown, C.D.O' Brien, R.E . Warburton a nd G.W.Thorge irson
Commun icatio ns Research Centre

Department of Commun i cations
Ottawa, Ontario

ABSTRACT

This paper discusses the design of a general purpose
interactive graphics system. The system is intended for use
by application programmers , and its purp ose is to simplify
the writing of interactive gr aphic progra ms. The major
system design goal is to achieve a high degree of
environment independen ce through software portability and
the concept of a virtual display terminal. The paper
presents the requirements of such a terminal and develops a
set of commands for addressing it. These commands are
refered to as Graphical Task Instructions (GTI). A
conceptualization of a general purpose graphics system is
presented where the intent is to separate the application
dependent and system depe ndent functions. The paper outlines
the advantages and disadvantages of a dual processor
graphics system where one processor is dedica ted to the
provision of th e virtual display terminal and the other
processor is respons ible for the application program
execution.

, ~

ABREGE

Le present document traite d'un systeme graphique
interactif universel con~u a l'intention des programmeurs
d'applications en vue de simplifier la redaction des
programmes graphiques interactifs. Le but principal de ce
systeme est de realiser un haut niveau d'independance
vis-a-vis des conditi ons d'utilisat ion grace a la
portabilite du logiciel et a u concept d'un terminal
d'affichage virtuel. Le document presente les exigences d'un
tel terminal et expose un ense mbl e de commandes permettant
d'y acceder. Ces commandes sont appelees "Instructions
relatives aux taches graphiques" . On presente une
conceptual i sation d'un syst~me graphique un i versel qui vise
a separer les fonctions qui dependent des applications et
celles qui dependent du systeme. Le document expose les
avantages et les inconvenients d'un systeme graphique a deux
processeurs dont l'un sert au terminel d'affichage virtuel
et l'autre a l'execution du programme d'applications.

1-3

INTRODUCTION

This paper discusses methods to achieve a high degre e of
environment independence in the design of a general purpose
interactive computer graphics system. A graphic system
exhibits environment independence when the hardware and
software implementation details are made invisible to the
application programmer. Environment independence also
implies that new advances in the evolving computer graphics
technology can be accommodated with a minimum of programming
effort.

Most currently available graphics programming systems
(particularly manufacturer supplied graphics software
packages) utilize the hardware of an interactive graphics
systems in an environment dependent manner [1,2,3,4]. The s e
systems differ considerably in design and performance and
can be classified either as stand-alone systems or terminals
of varied intelligence on a timesharing port. These systems
reference their particular hardware in a machine dependent
manner and as such, application programs cannot be
transported from one machine to another without considerabl e
re-writing of software. Recently [5,6], attempts have been
made to develop systems which are easily programmable and
incorporate software which is both portable and exhibits a
high degree of graphical device independence.

A VIRTUAL DISPLAY TERHINAL APPROACH

A requirement of graphic system environment independence
is software portability. This can be achieved by utilizing
either a standardized base language such as FORTRAN or by
developing a specialized portable graphics language by
utilizing a translator writing system. The latter approach
is recommended because it presents an opportunity to develop
a language syntax that is particularly well suited to handle
the interactive environment associated with an interactive
computer graphic system. An interactive computer graphics
language called 'IMAGE' [6] that meets the above
requirements is currently under development at the
Communications Research Centre.

An additional requirement for environment independence
is independence of the system from the display terminal
hardware being utilized. The dividing line between user
application software and system software as presented in
Figures 1 and 2 suggests a solution to this problem. It is
proposed that this hardware independence can be achieved by
defining a virtual display terminal with specific
capabilities. All communications with this virtual display
terminal are made in such a manner as to be independent of
any particular realization of the virtual display terminal.
For example, an application program is unaware of the
technique being employed in the virtual display terminal
when it requests that a line, character or symbol be

1-4

generated. In fact, the application program is unaware of
whether a random access refresh, a raster refresh or a
storage display is being utilized. One virtual display
terminal may perform the function of vector and character
generation by hardware, whereas another may perform the same
functions entirely by software. In addition, a set of
instructions must be provided to enable the terminal to be
referenced in a hardware device independent manner [6]. A
proposed set of commands for addressing such a virtual
terminal is presented in Table 1. These commands are
referred to as Graphical Task Instructions (GTI) and are
subdivided into seven different catagories as shown below.

I •
11.
Ill.
IV.
V.
VI.
VI I.

Display Generation
Co-ordinate Specification
Graphical Modifiers
Status Mode Setting
Subpicture Definition
Display File Modifiers
Interactive Device Control

The GTI instructions have been defined in such a ma n ner
as to be independent of any particular coding scheme.
Different coding schemes would simply require modifications
to the GTI code generator and decoding routines as indicated
in Figure 2. The GTI instructions form an extensible set
allowing for future expansion to accommodate new hardware
and software innovations.

GRAPHIC SYSTEMS CONCEPTUALIZATIO N

A conceptualization of a general purpose graphics syste m
is presented in Figure 1 where the intent is to separate t h e
application dependent and system dependent functions.
Current graphics systems are readily represented by this
conceptualization. The application programs are usually
written in some high level language like FORTRAN, EULER/G
[7], or GINO [5]. The complexity of the various systems
software modules indicated in the boxes does not depend upon
whether the system is stand alone or an intelligent terminal
to some larger computer. These software modules are written
only once for a particular class of hardware and vary in
complexity depending to a large extent on the sophistication
of the graphics hardware available (e.g. vector generator,
character generator, and transformation hardware). The
definition of a virtual display terminal permits the
separation of these functions into independent processes. A
particular realization of a virtual display terminal may be
implemented in a single processor system, but the separation
of functions suggests a dual processor system design (Figure
2). This is achieved by dedicating one processor to the
ta s k of prov i ding the virtual display terminal capability
while the other processor is re s ponsible for the application
program execution. The class of the communications link
between the two processors and the relative sizes of the

1-5

processors define whether the system is stand alone or a
satellite graphics system.

The advantage of a single processor system for the
realization of a virtual display system is its lower cost
in hardware, software and communications. The dual
processor system provides the advantage of faster
performance due to the display housekeeping and I/O device
handling being performed by the second processor. Also the
graphics terminal is now a complete system utilizing the
second processor and can be driven by any computer which
outputs GTI, thus providing a high degree of flexibility and
standardization.

CONCLUSION

The implementation of a dual processor system as
presented in Figure 2 is nearing completion at the
Communications Research Centre. The terminal dependent
software is being written in MACRO 11 assembler for a POP
11/10 computer with 8K core memory. The terminal independent
software is being written in IfvIAGE [6] and/or FORTRAN for
the POP 9 and POP 11 / 4 0 c 0 mp u t e r s • For bot h the POP 9 and
POP 11/40 implementations , the communications link between
the host computer and the POP 11/10 virtual graphics
terminal is a 16 bit parallel interface. The GTI commands
transmitted over this link use a particular choice of opcode
and parameter data structure well suited for decoding and
storage on a 16 bit computer (e.g. POP 11/10).

This approach to achieving environment independence
suggests that the translator for application programs emit
GTI code, thus providing a standard code for addresing
graphics terminals, not dissimilar to the use of ASCII code
for addressing most alphanumeric terminals. Thus, graphical
system independence can be achieved through:

1) application program portability made possible through
a portable translator writing system or a standardized
base language,

2) and, the use of a virtual terminal concept utilizing
the graphical task instructions as presented in Table 1.

Application programs could then be moved
machine and could take advantage of
terminals of more speed and power
reprogrammin g.

from machine to
future GTI graphic

without requiring

USER
WRITTEN

SOfTlMRE

..-

LIBRARY
IIOOTINES

~

APPLICATION PROGRAM

~~j~ APPLICATION
DATA BASE ---

.,.

~

SYSTEM
SOFTWARE

INTERRUPT
DRIVEN

CONTROLLER

STRUCTURED
PICTURE

GENERATOR
r--

STRUCTURED
PICTURE

DEFINITION
STORE

-
THE STRUCTURED
PICTURE PROTOCOL
OPTIONAlLY STORED
IN THIS FILE
COMPRISES A
DESCRIPTION OF THE
PICTURE IN G T I

TRANSFORMATIONS

(TO'''''RT) FROM THE
STRUCTURED

PICTURE
OEFINITION

(GRAPHICAL TASK INSTRUCTIONS)

~

•

m r

INTERRUPT

--- 11; HANDLER

'- CfiilJ .,

DISPLAY HANDLER DISPLAY
(GENERATES THE) ~ ,........ DRIVER

DISPLAY FILE (OFTEN BUILT)
IN HARDWARE

lDTsPLA~ - -

8
ARROWS INDICATE INFORMATION FLOW

Figure 1 Conceptualization of a Graphics Syst e m

f-'
I

0-

PROCESSOR 1

TERMINAL INDEPENDENT SOFTWARE

PROCESSOR 2

TERMINAL DEPENDENT SOFTWARE

,----------, ,---- ------,
I INTERRUPT I' I' ~ INPUT ROUTINES

I -------------------1 (INTERRUPT)
DRIVEN --,....---i;: HANDLERS

I CONTROLLER I ~ ~---_________ -,
I ~ I, ~

GRAPHICAL _ 8

, TASK 5 I ~
ROUTINES

DISPLAY
DRIVER

I

I INSTRUCT IONS i .----~ i
I CODE g '~I ~

GENERATOR ,G T I/ U

I

'

CODE I
APPLICATION ,

I DATA BASE I 1

GRAPHICAL TASK

INS TRueT IONS

DECODING

ROUTINES

L--___ ;-=~~-----.... (D P U) i -.t 0
,

L ___________ J L __
-------~

ARROWS INDICATE INFORMATION FLOW

Figure 2 A Dual Processor Graphics System

1-8

TABLE I

GRAPHICAL TASK INSTRUCTIONS (GTI)

MNEMONIC FORMAT DESCRIPTION

I. Display Generation Instructions

LINES

LINES THRU

LINE TO

opcode
n

reI xl
reI yl

reI xn
reI yn

opcode
n

abs xl
abs x2

abs xn
abs yn

opcode
abs x
abs y

SPECIFY COORD. opcode
(SET) abs x

abs y

CHARACTERS

ARC

POINT

SYMBOLS

opcode
n

char 1,2

char n

opcode
m

parm I

parm n

opcode

opcode
sym #

- draw a sequence of concatenated
lines each having displacements
xi and yi respectively. Lines are
defined on a conceptual page ,
transformed and then drawn on the
screen.

- draw a sequence of concatenated
lines through specified points
on the conceptual drawing page;
the n mo vet h e 0 rig i n 0 f the con­
ceptual page to either the cur­
rent beam position or else to a
point specified by SET.

- draw a line from
set beam position
(x,y) on the page.

the current
to the point

- set the drawing beam to the
point (x,y) in the current page
co-ordinate system.

- draw a sequence of characters
beginning at the current beam
posi tion. ROT & REFL modi fiers
have a limited effect on char.
strings.

- draw an arc using the given
parameters. 'm' specifies the
mode. (An arc is defined by 3 x,y
points, or 2 points and a slope,
et c •) •

- draw a point at the current
beam position.

- draw a symbol from the library
of symbols.

1-9

11. Co-ordinate Specification

PAGE opcode
xmin
xmax
ymin
ymax

- defines
system &
unit x &
screen.

the user co-ordinate
specifies values for

y disnlacements on the

Ill. Graphical Modifier Instructions

ROTATE

REFLECT

SCALE

TRANSLATE

WINDOW

WITHIN

EN D MODIFIER

opcode
angle

opcode
parm

opcode
factor

opcode
dx
dy

opcode
xmin
xmax
ymin
ymax

opcode
xmin
xmax
ymin
ymax

opcode

- rotate a graphical item by the
stated angle.

- reflect graphical
the line y=a*x where

- scale graphical
factor.

items about
a=tan(parm)

items by a

- translate graphical items by an
amount dx in the x-direction & dy
in the y-direction.

- specifies a region for the
display of graphical items with
clipping being performed on all
graphical entities not fully in
the region specified.

- specifies a region of the pa~e
which graphical items are to be
mapped onto, with the graphical
items being specified in terms of
conceptual page co-ordinates.

- remove the last specified
graphical modifier from the st ack
of current graphical modifiers.

IV. Status Mode Setting Instructions

INTENSITY

COLOUR

LINE TEXTURE

opcode
level

opcode
value

opcode
type 11

- specifies the intensity level
for graphical items (0 - 1).

- specifies the
graphical item .

colour of

- specifies line texture
(solid, dash, dot-dash, etc.)

a

1-10

FLASH ON

FLASH OFF

CHARACTER SET
SPECIFICATION

SYMBOL SET
SPECIFICATION

opcode

opcode

opcode
set It

opcode
set #

- specifies that graphical items
to follow are to flash repeatedly
when being displayed.

- disable FLASH.

- specifies the character
be used.

s et to

- specifies
used.

the symbol set to be

V. Subpicture Definition Instructions

BEGIN opcode - delimits the beginning of a new
SUBPICTURE subp It subpicture.

END opcode - delimit the end of a subpicture
SUBPICTURE definition.

USE opcode - cause a subpicture to be
SUBPICTURE subp # re-used.

VI. Display File Modifier Instructions

a) delimiting

INVIS

VIS

TAG

b) control

ERASE

CLEAR

ON

OFF

WINK

opcode

opcode

opcode

opcode
begin tag 11
end tag #

opcode

opcode

opcode

opco de

- specify the beginning of an
entity pending later display.

- add INVIS entity to the display.

- delimit a picture for ident­
ification.

- delete specified tagged objects
from the display file.

- clears the display file.

- initiates the display.

- ~spends the display.

- cause an ON/OFF/ON sequence for
interaction acknowledgement.

l - ll

VII . Interacti ve Device Control Commands

DEVI CE ON

DE VICE OFF

ASSIGN
DE VI CE

SET MARK ER
POS I TIO N

MA RKER MODE

SKETCH
RESOLUTION

KEYBO ARD
ACTIVATION
CHAR

x & Y
IDENTIFIER
POS. REQ .

MARKER
POS. REQ

opcode
device #

opcode
device #

op code
de v i c e #
funct #

opc ode
x pos
y pos

opcode
code

opcode
angle

opcode
factor

opcode
n

char 1 t 2

char n

opcode

opcode

- en ab I e th e
device.

specified virtual

- disable a specif i ed device

- define the device to be used to
perform the specified function.

- specifies the pos i tion at which
a marker will appear on the
current page.

- specify t h e mar k er constraint s
3 horizontal o marker on

I marker off
2 fixed

4 ve rt ic al
5 free

- constrained to a tilted line

- set the minimum signifi cant
sketcher position change.

- enable specified characters for
use as activation characters on
ent ry •

- request the return of the co­
ordinates of the last identifier
interrupt.

- req u es t the return
marker position.

of the

The following GTI code s are returned from the graphics
terminal .

I DENT IFIER
RETURN TAG

IOENTIFIER
RETURN POS

opcode
tag #

opcode
x pos
y pos

- return the tag number for the
object interactively selected .

- return the x & y co-ordinates
indicated by the identifier.

1-12

HARKER
POS. REQ.

SKETCH
POS. RET.

CHARACTER
STRING
RETURN

PUSHBUTTON
RETURN

VALUATOR
SETTING
RETURN

ERROR
RE PORT 1

ERROR
REPORT 2

REFERENCES

opcode
x pos
y pos

opcode
xpos
ypos

opcode
n

ch ar 1,2

char n

opcode
pb #

opcode
valu #
value

opcode
error #

opcode
error #

- return the current x & y marker
position.

- return an x,y point visited by
the stylus from the queue of
such points.

- return the input character
string terminated by the
the activation character.

- upon a pushbutton interrupt
return the pushbutton code.

- upon a significant change in
valuator setting return the value.

- error report from the terminal
soft\\'are.

- error report to the terminal
software.

1) "GRAPHIC-IS Programming Manual", DEC-IS-ZFSA-D, Digital
Equipment Co., Maynard, Mass.

2) "BASIC/GT Language Reference Manual", Digital Equipment
Co., Maynard, Mass.

3) Bown,H.G., Hartman,W.A. and Warburton,R.E., "Applications
of the Interactive Computer Graphics Language, ICPL",
NRC 3rd Man-Computer Communications Seminar, May, 1973.

4) "GRAPPLE Language Reference Manual", Bell Nothern

S)

Research, Edition 4.0 Sept. 1973.

Woodsford,P.A., "GINO:
University of Cambridge
June, 1969.

Graphical Input/Output",
Computer Aided Design Group,

6) O'Bricn,C.D., "IMAGE - a language for the Interactive
Manipulation of a Graphics Environment", M.Eng. Thesis,
Carleton University, Ottawa, Canada, 1975.

7) Newman,W.t-I.. Gouraud,H. and Oestreichr,D.R., "A
Programmer's Guide to POP/ID EULER". Univ. of Utah,
Report No. UTEC-CSc-70-10S, June 1970.

