
A Device Independent Input Structure for a
High Level Graphics Language

C.D.O'Brien and H.G.Bown

Communications Research Centre
Department of Communications

Ottawa, Ontario

ABSTRACT

14-1

The syntax of an interactive graphics language 'IMAGE',
being developed at the Communications Research Centre, will
be presented with particular emphasis on the features of the
language which make it hardware input device independent.
Six forms of interaction have been identified and facilities
are provided in the language with which to program for six
virtual input devices which ideally suit these forms of
interaction. The programmer writes his programs in a device
independent manner by referencing only the virtual device.
The syntax for device independent identification removes the
graphics programmer from interrupt level programming and
structures his interaction dialogue. A number of example
'IMAGE' programs are given to illustrate the simplicity,
power and device independence of the input structure and
syntax.

, ,
ABREGE

La syntaxe d'un langage graphique interactif "H1AGE", en
cours de d6veloppement au Centre de recherches sur les
communications, sera presentee en mettant un accent
particulier sur les caract6ristiques du langage qui le
rendent non tributaire du dispositif d'entree. Six formes
d'interaction ont ete identifiees et le langage permet
d'etablir le programme en fonction de six organes d'entree
virtuels qui conviennent de fa~on ideale a ces formes
d'interaction. Le programmeur ecrit son programme sans tenir
compte du type d'appareil, en se r~ferant uniquement a
l'organe virtuel. La syntaxe d'identification non tributaire
du type d'appareil dispense le programmeur graphique du soin
de programmer les interruptions et structure son dialogue
d'interaction. Un certain nombre de programmes "IMAGE" sont
donnes pour illustrer la simplicite et les possibilites de
la structure d'entree et de la syntaxe et pour demontrer
qu'elles ne sont pas tributaires du type d'appareil utilise.

14-3

I NT RODUCT ION

Interaction with a computer graphics display can be
attained through the use of many input devices such as
tablets, light-pens, knobs, switches, pushbuttons and
keyboards, but whatever the device, there are only a few
basic modes of interaction. A programmer who makes use of a
particular device in an implementation dependent manner
restricts his program to operating only on a small number of
machines. Potentially his program could execute on any
machine having devices which support the mode of interaction
by which his program communicates. The cost of software is
high so it is economically advantageous to write portable
so ft ware.

This paper considers the problem of providing graphics
software portability by the use of a specialized high level
graphics language with a device independent input structure.
The arithmetic, character string manipulative, and logical
algorithims provided in most high level languages are
usually portable because the syntax allows for their machine
independent definition. However, the facilities provided
within most high level languages for graphics programming
reference the graphic I/O devices in a dependent manner.
For example, some FORTRAN graphic subroutine packages [1]
assume that the 'Display Processor Unit' references an
in-core display file. Thus, there appears to be a
requirement for a device independent input structure within
a programming system that permits input/output devices to be
functionally referenced. The 'IMAGE' language [2] being
developed at the Communications Research Centre provides
such a facility.

THE IMAGE LANGUAGE

A high level graphics language named 'IMAGE' has been
designed by the authors in order to provide a graphics
application programmer with tile ability to easily program
interaction. It utilizes the better features of several
current graphics languages and combines these features with
a unique interaction control structure. This control
structure, the display picture description syntax and the
hardware independent handling of input devices, are the main
features of the language. The device independent
input/output structure permits the implementation of a
portable language syntax, since there are no references to
particular display hardware devices.

The syntax for device independent identification is of
particular intrest because of its unusual form. All
displayed information is delimited into graphical OBJECT
blocks. An ACTION block may be associated with a block of
OBJECT code to indicate what action code will be executed
upon an identifier strike on that particular object. Thus,

14-4

an ACTION block is basically a high level interrupt handler
routine. A program is written as a group of OBJECT and
ACTION block pairs with each action associated with an
object. This removes the graphics programmer from low level
interrupt programming and structures his interaction
dialogue. Other methods of providing for device
identification utilize a polling mechanism. For example,
most FORTRAN graphics subroutine packages only provide a
routine to request the activity of a particular device. The
advantage of an interrupt driven identification scheme is
that it encourages the writing of natural man-machine
dialogues. Therefore, an IMAGE program reads as a series of
OBJECT /ACTION pairs whose execution is interactively
controlled.

FORMS OF INTERACTION

Conceptually, the 'IMAGE' language recognizes six input
functions and associates them with six virtual input
devices. The language provides facilities ideally suited
for programming interaction with these virtual input
devices. The programmer writes his program in a device
independent manner by referencing the virtual devices
utilizing the IMAGE instructions associated with the six
input functions. A real hardware device may be well suited
to perform one class of interaction or it may be able to
handle several classes of interaction with varying ease.
System software is used to permit different real hardware
devices to emulate the functions of the virtual device.

Three of the six input functions are general in nature
and three relate specifically to the graphics display. The
specific graphical functions and their associated default
virtual devices are:

r.
11.
11 I •

SPECIFIC
FUNCTION

Identifying
Sketching
Positioning

I. IDENTIFYING

VIRTUAL
DE VI CE

PICKER
DIr.ITIZER
LOCATOR

The function of identifying is handled through the
interrupt driven OBJECT / ACTION structure of I ~IAr.E. The
ACTION routine associated with an OBJECT is executed when an
identifier interrupt associated with that OBJECT occurs.
During the execution of the ACTION associated with the
OBJECT identified, the reserved integer variable 'ITEM'
contains the sub-delimiting tag count, indicating which part
of the object was identified. The x,y co-ordinates at which

14-5

the identifier stylus struck the displayed OBJECT may be
obtained using the IMAGE command 'COORD[INATES]
(xvar,yvar)', where xvar and yvar contain the requested
information. The virtual device associated with the function
of identifying is assigned using the following instruction:

IDENTIFY [USING]
[PICKER]
[DIGITIZER
[LOCATOR]

The virtual device PICKER may correspond to a light-pen,
the DIGITIZER to a tablet and the LOCATOR to a device such
as a track-baIlor joy stick. By using suitable software
techniques in the run-time system any of these real devices
can perform the task of IDENTIFYing. What these instructions
achieve is to separate the task of IDENTIFYing from the
devices which perform it.

11. SKETCHING

The sketching facility within IMAGE provides a mechanism
whereby the absolute X,y co-ordinates visited by the drawing
stylus are accumulated. The primary use of this facility is
in the creation of free-hand 'inked' drawings on the display
surface. The form of visual feedback is under direct program
control. The following commands permit control of the
sketching mechainism:

SKETCH [ON] or SKETCH OFF

- enables or disables the sketching mechanism.

SKETCH RESOL[UTION] (factor)

- defines the zone of insensitivity about the stylus. An
x,y position is accepted as valid only if it differs
from the last point by an amount specified by 'factor'.

SKETCII Q[UEUE] (length)

- a definitional command used at the beginning of a
program to define the length of the queue for
accumulated points. The positions of all points visited
by the drawing stylus are stored in this queue until
they are requested by the 'SKETCH LOCATION' command.

S K ET C If LO C [AT ION] (x v a r , y v a r)

- obtains the X,y drawing stylus positions
queue.

SKETCH Q[UEUE] CLEAR

- this command clears the sketch queue.

from th e

14-6

Ill. POSITIONING

The positioning facility permits specific screen
locations to be indicated by utilizing a controllable
marker. A single marker is available on the screen and the
following commands modify its operation:

MARKER AT(x,y) - sets the marker to position x,y.

MARKER
marker.

OFF & MARKER ; ON enables & disables the

VERT[ICAL] or
HOR[IZONTAL] or
FIXED or

MARKER
r·fARKER
MARKER
MARKER SLOPED (angle) - constrains marker motion.

MARKER LOC[ATION] (xvar,yvar) - obtains the current x,y
position of the marker.

The three general input functions and their associateu
default devices are:

IV.
V.
V I •

SPECIFIC
FUNCTION

Input of textual strings
Pushbuttons or switches
Input a numeric value

IV. INPUT OF TEXTUAL STRINGS

VIRTUAL
DE VI C E

KEYBOARD
PUSHBUTTONS
VALUATOR

Although I MAGE provides record-oriented input
conventional manner via an INPUT statement similar
FORTRAN 'READ' statement, it also provides a
interrupt based facility. The KEYBOARD command
provides this capability is a special case of the
block and is described below:

KEYBOARD or
KEYBOARD (activation character) , ••• or
KEYBOARD CIIAR[ACTER]

in the
to a

unique
which

OBJECT

- enables interrupts from the keyboard. When a character
is typed on the keyboard it becomes the current
ch arac t e r in the spec i al res erve d s t ri ng bu ffe r KEYIHJF.
The Carriage Return and Line Feed characters are the
default activation characters but other or all
characters may be specified. If an activation character
is typed, the ACTION associated with the OBJECT
containing the keyboard statement is executeu.

14-7

V. PUSHBUTTONS

The operation of a pushbutton is similar to the
operation of an OBJECT block within the identifier structure
of the program. A pushbutton is considered as a special type
of object within an OBJECT block in a similar manner to the
KEYBOARD statement. Upon a pushbutton strike, the action
associated with the OBJECT statement is executed and the
reserve variable 'ITEM' contains the number of the
pushbutton selected. The format of the pushbutton statement
is:

PUSH BUTTON [S] (number, •••)

enables pushbutton interrupts
pushbutton number.

VI. VALUATORS

from the indicated

The input of numeric information through a keyboard
requires syntax checking for the valid specification of the
number. It is desireable to have a direct form of numeric
input as can be provided by a hardware device such as a
potentiometer. Such a virtual device is termed a valuator
[3]. As the valuator is adjusted, the value is updated
continuously and returned via interrupt to an ACTION block.
A valuator is also treated as a special block within an
OBJECT block. The ACTION routine associated with the special
object VALUATOR is executed if a resolvable change in the
value associated with the valuator device is observed. The
valuator command has the form:

VALUATOR [# num] (var)

- enables the valuator device of number 'num'. The value
associated with the valuator will be stored in variable
'var'. and will always be in the range -1 to 1.

EXAMPLE IMAGE PROGRAMS

The following IMAGE programs illustrate the use of the
three specific device independent functions: identifying,
sketching and positioning.

IDENTIFYING

Tile following example uses both the TAG sub-delimiting
feature and the ability to obtain the x,y co-ordinate
'struck' with the stylus. The program draws two parallel
horizontal lines on the screen. Upon a strike with the
identifier on either of the lines, a vertical arrow is drawn
between the two lines to mark the indicated spot. The arrow
points up or down depending on which line was indicated. The
diagram below shows how the screen would look after the
upper line was struck in the middle.

14-8

f
INTEGER X
OBJECT

LINE 500,0 AT(100,200)
TAG
LINE 500,0 AT(lOO,lOO)

ACTION

** DRAW THE FIRST LINE
** DELIMIT WITH A TAG
** DRAW THE SECOND LINE

*

*

REMOVE ** ERASE ALL MATERIAL
** DRAWN BY PAST ACTIONS

COORD (X,) ** GET THE X POSe INDICATED
IF (ITEM = 1) ** UPPER LINE?

DO ARROW AT(X,lOO) ** YES, DRAW ARROW UP
ELSE ** NO, THEN LOWER LINE.

DO ARROW ;ROT(180) ;AT(X,200) ** DRAW ARROW DOWN
FIN

PROCEDURE ARROW
LINE 0,100 AT(O,O) ** DRAW THE VERTICAL SHAFT
LINE -10,10/-10,-10 AT(lO,90) ** DRAW THE ARROW HEAD

END

SKETCHING

The following program illustrates the use of the IMAGE
sketching commands. The purpose of this example is to allow
sketching in a free-hand manner on the display screen. A
line will appear on the screen joining the points vis i ted by
the stylus. A coarse resolution of 20 screen co-ordinates on
a 1000 unit square screen was chosen so that the number of
data points and the rate at which they are collected is not
too great. Straight l i nes are drawn between the points to
provide a continuous curve. In order to keep the program
simple no facility has been provided to allow 'lifting' the
stylus. Only one continous line may be sketched. The
sketching is enabled or restarted by touching the
light-button 'SKETCH' The light-button 'STOP' halts
execution.

14-9

INTEGER XI,X2,YI,Y2
SKETCH QUEUE (20) ** DEFINE THE LENGTH OF THE SKETCH QUEUE
*
ENTRY

** USE PICKER DEVICE TO IDENTIFY
USE DIGITIZER DEVICE TO SKETCH

IDENTIFY USING : PICKER
SKETCH USING : DIGITIZER **
SKETCH RESOLUTION (20)

*

'SKETCH' AT(900,700)
OBJECT

TEXT
ACTION

SEEK
*

SKETCH Q CLEAR

** ENABLE TilE IDENTIFIER INTERRUPTS SO
** THIS ACTION ROUTINE MAY BE ABORTED.
** REMOVE PREVIOUS SKETCHES SO THAT
** SKETCHING MAY BE RESTARTED. REHOVE

SKETCH ON ** ENABLE THE SKETCHING MECIIANISM.

*

S K ET C H LO C (X I , Y I) * *
REPEAT

FIN

SKETCH LOC(X2,Y2)
LINE TO X2,Y2 FROM
LET Xl = X2
LET YI = Y2

GET THE FI RST POINT.

** GET
Xl, Y I

THE NEXT POINT.
** JOIN WITH A LINE
** SAVE TillS POINT
** REFERENCE.

OBJECT
TEXT

ACTION
STOP

'STOP' AT(900,640)

** TERMINATE EXECUTION
*
END

POSITIONING

FOR

The following program allows the use of the marker to do
constrained drawing. Only horizontal or vertical lines may
be drawn. In this program, the virtual device PICKER has
been assigned the job of positioning in order to indicate
the syntax of such an assignment. When this program is
executed the marker appears ON and FREE in the default
position in the centre of the screen. and it may be freely
positioned to anywhere on the screen. The first menu item is
a horizontal line. A strike on this OBJECT constrains
motion to a horizontal direction. The character '0' is
placed on the screen to indicate the current marker
position. and a scale is drawn on the screen along the ax i s
of allowed motion. The marker may be moved left or right
along this scale. If either the vertical line or 'FRE E'
light-button is 'struck', a line is drawn from the position
of the marked character '0' to the current marker position ,
the scale is erased, and the task of the selecte a
light-button is performed. The vertical line l ight- bu~t on
allows vertical lines to be drawn in the same manner in
which the horizontal line light-hutton allows the marker to
be placed anywhere on the screen. The screen would appear as
helow after the horizontal light-button was struck.

14-10

INTEGER X,Y,XO,YO,FLAG
ENTRY

*

LET FLAG = 0.0
POSITION USING : PICKER
DISPLAY EXCLUDING SCALE

OBJECT
LINE 100,0 AT(900,700)

ACTION
IF (FLAG = 0)

MARKER LOC (XO,YO)
OR IF (F LAG = 2)

ERASE SCALE

o

FREE

** INDICATE TilE MARKER IS FREE
** USE PICKER DEV. TO POSITION
** EXECUTE ALL OBJECT BLOCKS
** EXCEPT OHJECT NAMED 'SCALE'

** HORIZONTAL LIGIIT-BUTTON

** IF THE MARKER IS FREE
** GET TilE CURRENT MARKER POSe
** IF THE MARKER IS VERTICAL
** ERASE THE OLD SCALE

*

MARKER LOC (X,Y)
LINE TO X,Y FRmf

LET XO = X
LET YO = Y

FIN

** GET THE CURRENT MARKER POSe
XO,YO ** DRAW A LINE FROM THE LAST

** TO THE CURRENT MARKER POSe
** SAVE THE CURRENT MARKER POSe

*

*

LET FLAG = 1
MARKER HORIZONTAL

DISPLAY SCALE

OBJECT
LINE 0,100 AT(950,550)

ACTION
IF (F LAG = 0)

MARKER LOC (XO,YO)
ORIF (FLAG = 1)

ERASE SCALE

** IF THE MARKER IS CONSTRAINED
** TO HORIZONTAL, NO CHANGE.
** INDICATE HORIZONTAL
** CONSTRAIN MARKER TO HORIZ.
** DISPLAY THE SCALE ABOUT XO,YO

** VERTICAL LIGHT-BUTTON

** IF TilE MARKER IS FREE
** GET TilE CURRE NT MARKER POSe
** IF TilE ~1ARKER IS HORIZONTAL
** ERASE TilE OLD SCALE
** GET TilE CURRENT f'.1ARKER POS.

*

MARKER LOC (X,Y)
LINE TO X,Y FROM XO, YO ** DRAW A LINE FRO~1 THE LAST

** TO TilE CURRENT MARKER pas.

*

*

LET XO = X
LET YO = Y

FIN

LET FLAG = 2
MARKER VERTICAL

DISPLAY SCALE

OBJECT

* * SAVE TIlE CU RRENT MARKE R POS.

** IF THE MARKER IS CONSTRAINED
** TO VERTICAL ; NO CIIANGE
** INDICATE VERTICAL
** CONSTRAIN MARKER TO VERT.
** DISPLAY SCALE ABOUT XO,YO

TEXT' FREE' AT(900,400) **' FREE' LIGHT-BUTTON
ACTION

ERASE SCALE
MARKER LOC
LINE TO X,Y

*
LET FLAG =
MARKER ON

*

(X,Y)
FRO~1 XO,YO

0

**
**
**
**
**
**
**

14-11

ERASE TilE DRAWING SCALE
GET THE CURRErn MARKER POSe
DRAW A LINE FROr·1 TilE LAST POSe

TO THE CURRENT MARKER POSe
INDICATE TIlE r.1ARKER IS FREE
ENABLE TIlE MARKER WITH NO

RE S T R I C T ION S •
OBJECT SCALE ** OBJECT TO DRAW A SCALE

IF (FLAG = 1) ** IIORIZONTAL SCALE
REPEAT X = 100,800,100 ** DRAW TICKS 100 UNITS APART

LET Y = Y + 10 ** TOP or TICK
LINE 0,-10/100,0 AT(X,Y) ** DRAW A TICK & LINE SECT.

FIN
LINE 0,10 ** DRAW TilE LAST TICK

ORIF (FLAG = 2) ** VERTICAL SCALE
REPEAT Y = 100,800,100 ** VERT. TICKS 100 UNITS APART

LET X = X + 10 ** TOP OF TICK
LINE 0,-10/100,0 AT(X,Y) ** DRAW A TICK & LINE SECT.

FIN
LINE 10,0 ** DRAW THE LAST TICK

FIN
TEXT '0' AT(XO,YO) ** MARK THE CURRENT POINT

END

SUMMARY

IMAGE is an interraction oriented interrupt based
language which provides the application programmer with a
tool for writing natural interaction dialogues. The primary
emphasis of the design is on solving the man-machine
interaction problem. The OBJECT / ACTION structure and the
interaction control mechanism supplied, provide a powerful
and easy-to-use tool for solving this interaction problem.
The LIGHTBUTTON structure in Maclean's 'ICPL' [4] and the
display procedure structure of Newman [5] were assimilated
with a conceptulization of the manner in which a man
interacts with a machine based on work by Foley and Wallace
[3]. This produces a device independent method of
controlling man-machine interactions. The procedure and
function oriented approaches of EULER/G [6] and GRAPPLE [7]
were combined with structured programming concepts to
produce an easy to use picture description grammar.
Graphical input response facilities are provided in a device
independent manner through the use of six virtual input
devices. A SKETCH and POSITION mechanism allows x,y
co-ordinates to be input, while an IDENTIrYing mechanism
based on the OBJECT / ACTION structure prov i des a powerful
interaction mechanism. A KEYBOARD and a PUSllBllTTON mechani s m
provide interrupt based charact e r and control input and a
VALUATOR [3] allows input of data in numer i c form.

14-12

REFERENCES

1) "GRAPHIC-IS Programming Manual",

Equipment Co., Maynard Mass.
DEC-l 5- ZFSA- D, Digital

2) O'Brien,C.D., "HfAGE a language for the Interactive

Manipulation of a Graphics Environment", tLEng. Thesis,

Carleton University, Ottawa, Canada, 1975.

3) Foley,J.D., and Wallace,V.A., "The Art of Natural Graphic

Man-Machine Communication", Proc. IEEE, Vo1.62, No.4,

April, 1974.

4) Maclean,r.t.A., "Designing a Language for Interactive

Control Programs", 2nd Han-Computer Communication

Seminar, 31 May - 1 June, 1971.

S) Newman,W.H., "Display Procedures", CACr.1,

Oct., 1971.

Vo1.l4, No.ll,

6) Newman,W.M., Gourand,H. and Oestreicher,D.R., "A

Programmer's Guide to PDP-lO EULER", Univ. of Utah,

Report No. UTEC-CSc-70-l0S, June, 1970.

7) "GRAPPLE Language Reference Manual" , Bell Nort he rn

Research, Editi on 4.0, Sept. 1973.

