
99

AUTOMATED DESIGN OF INDUSTRIAL SEQUENCE CONTROLLERS

R. Tabachnick**, T. Le-Ngoct, L.J. Vroomen*, and P.J. Zsombor-Murray*

*DATAC computer Laboratory, McGill University
tSPAR Aerospace Ltd.
+The Bailey Meter Company

ABSTRACT

A system for replacing solid-state or relay based industrial control
logic with custom firmware, implemented in a standard system is described.
A comparison to other approaches, such as OEM implemented high level lan­
guage based systems and large computer based systems is made. Existing
software developments, particularly high level languages for user conveni­
ence, are discussed. The approach includes three principal concepts, viz:­
(1) A high level user-oriented programming language which allows the

designer to describe an entire logic circuit with a series of
keystrokes.

(2) A compiler which generates object code for a standard microprocessor
based controller unit, and

(3) A microprocessor based, portable suitcase, development system which
includes all the necessary hardware and firmware for field implemen­
tation and modification of sequence controllers.
The portable development system is based on the Motorola MC6800

microprocessor family while the controller uses the Motorola MCI4500B
I-bit microprocessor family. The development of the keystroke language and
its compiler/interpreter.

AUTOMATISATION DE LA MISE EN APPLICATION DES CONTROLEURS
INDUSTRIELS DE MISE EN S~QUENCE

Un systeme pour remplacer les controles industriels logiques a com­
posants semi-conducteurs ou a relais par une microprogrammation adaptee
aux besoins particuliers de l'utilisateur d'un systeme standard est
decrit. L'on fait la comparaison entre les autres methodes telles que la
mise en application O.E.M. des systemes a langage de programmation evolue
et des systemes a base de gros ordinateurs. D'autres concepts de software
et particulierement les langages evolues pour la convenance de l'usager
sont trait~s. Les trois concepts principals de cette approche sont:
(1) Un langage de programmation evolue oriente vers l'usager qui permet

un concept decrivant un circuit logique entier au moyen d'un clavier.
(2) Un compilateur produisant un code pour un controleur standard

microprocesseur.
(3) Un systeme portatif a microprocesseur qui comprend tout le hardware

et la microprogrammation necessaire pour la mise en application et la
modification sur le chantier des controleurs de mise en sequence.
La realisation du systeme portatif est basee sur la famille de micro­

processeurs Motorola MC6800 et le controleur utilise la famille de micro­
processeurs Motorola MCI4500B I-bit. La mise en valeur du langage du
clavier et de son compilateur/interpreteur est accentuee.

100

AUTOMATED DESIGN OF INDUSTRIAL SEQUENCE CONTROLLERS

by

R. Tabachnick, T. Le-Ngoc,
&.J. Vroomen and P.J. Zsombor-MUrray

INTRODUCTION

Programmable sequence controllers were developed to reduce
the cost involved in relay or solid state based sequence controller
implementations. In order to understand the problem, consider the
steps required to develop a "hardwired" sequencing system:-

1. Definition of the sequences,
2. Design of the functional circuits,
3. Fabrication of component circuit subassemb1ies,
4. Testing them,
5. System integration,
6. Testing the entire system and
7. Installation and startup.

Steps 1., 6. and 7. are required regardless of the technology upon
which a sequence controller design is based. In programmable control­
lers, software writing and debugging represent steps 2., 3. and 4. By
anticipating features common to the entire class of applications for
which a sequence controller is intended, system integration, step 5.,
can be standardized to include all functions, whether they are requir­
ed for a given application or not. The waste of an unused function
is more than outweighed by eliminating the need to assemble and carry
a variety of controller configurations. Software is the only configu­
ration variable.

Ladder or flow diagrams are traditionally used to define
sequence requirements. This has led to the evolution of logic pro­
gramming 1anguages[4,5,6]. The development of "Eng1ish Language" pro­
gramming languages represents efforts made to put programmable control­
ler design within the reach of nonprogrammers[2]. These techniques
severely limit the complexity of controller sequences which can be con­
veniently implemented. Loops which include the sequencing of several
devices and which require many logic, memory and timing functions are
poorly served by "Eng1ish Language" descriptions. Their inadequacy
stems from the inherently sequential structure of text. On the other
hand, ladder diagrams, while capable of describing any sequence con­
troller accurately, have a relatively low level of information
"chunking" compared to the symbolism of multiple input logic gate
circuit diagrams.

For these reasons, the customer who needs a sequence con­
troller often insists that its functional description be in terms of a
logic gate circuit diagram. The inherent adaptability of circuit dia­
grams to parallel structure thus makes it easy to design and compre­
hend relatively complicated controller networks.

The central theme of this paper is union of the logic cir­
cuit diagram, a convenient vehicle of comprehension, with the sequen­
tial structure of a stored program; inevitable if one wishes to enjoy

101

the flexibility and hardware standardization offered by software
driven sequence controllers. In this regard, a keystroke language for
translating circuit diagram logic into object code instructions for the
PROM memory of a standardized hardware sequence controller is described.

STANDARDIZED HARDWARE

Consider the following prototype proposal of a standard
system. This consists of a central processor board and three types
of peripheral boards. Any given peripheral board may contain:-

1. Programmable timers,
2. Input buffers or
3. Output buffers, respectively.

Details of the prototype system are presented in [8] however it may
be noted that boards within any given system are interconnected by
a I-bit wide data bus and a 11-bit wide address bus. Input buffers
are used to convert field or process inputs into logic levels on the
data bus. Output buffers convert logic level pulses on the data bus
to latched, transistor driven field outputs capable of activating
process device relays or status lights on an operator1s console. A
specific buffer bit or timer is addressable, on any board, via the
address bus. Delay timing functions are performed by hardware timers
because software delays are cumbersome and if many timers are required,
software timing becomes entirely impractical. In the proposed system,
timers can be read simply by reading an input, thus eliminating the
need for interrupts. Timer hardware is described below because it is
important to understand how the timing function is interfaced to
software.

Timers
state automaton.

From a logical point of view a timer is a three­
Its three states are:-

1. I Inacti ve,
2. M ... Timing and
3. X ... Finished timing, expired.

Transitions between states are controlled by the circuit input and
circuit output variables:-

1. R ... Timing request, cicuit input to ·the timer and
2. T ... Timing flag, timer circuit output.

Fig. 1 summarizes these transitions.

Fig . 1

Timer State Transi tion Diagram

102

From this it can be clearly seen why this function is best implemented
in dedicated hardware. A®-classical sequential automaton, i.e.; a pro­
gram, cannot handle the M -~ transition wi hout ambiguity because
the circuit input R= 1 defines a transition M M, with a circuit
outPu~ = 1, while the unit is timing, as wel as he timeout transi­
tion ~-~ with a different circuit output, T = O.

A timer occupies one addressable memory location, conne~ted
to three one-bit timer locations (T, Rand R®T). Two (T and R®T) are
READ-ONLY, the third (R) is WRITE-ONLY with respect to th~ CPU. R is
accessed when the CPU is the WRITE state. Both T and R®T are ac­
cessed when the CPU is in the READ state, and the location is selected
by the status of a FLIP-FLOP which is toggled by a preceeding software
instruction.

The timer performs the following software functions:-
1. The program stores a 1 into timer location R in order

to start it. This generates a 1 in the T location.
2. The program stores a 0 into timer location R. This

generates a 0 in both the T and ReT locations.
3. The timer sets T = 0 when it has timed out. This forces

the R0T to 1 until a 0 is stored in the R location.
The program need not I. remember" the condi ti on of a ti mer.

This is established, as required, by reading T and R0T:-

R T ReT
Timer i nacti ve 0 0 0
Impossible condition 0 1 x
Timer expired 1 0 1
Timer active, timing 1 1 0

Peripheral Boards A peripheral board contains 16 devices,
all of the same type, i.e., 16 input buffers, 16 output buffers or 16
timers. A mix of up to 64 boards may be configured, with a processor
board, to constitute a system. Address, data and power bus wiring is
standard. Field wiring to input or output points on buffer boards is
customized to suit any given controller application and its connection
to customers· equipment.

Processor Board The Motorola MC14500 Industrial Control
unit (ICU)[7] was selected for this system because its I-bit wide data
processing architecture is ideally suited to the logical manipulation
of single bit data which constitute all the inputs and outputs. The
connective transformations performed internally upon these data by any
given controller implementation also result in single bit intermediate
results. A wider data path, peculiar to most microprocessors, would
be a disadvantage because all but one data bit would have to be tied
to a common logic level in order to perform single bit operations.
Otherwise, if data were stored wordwise, the processor would spend
most of its computational effort in unpacking and isolating single
bits.

The processor board contains EPROM for program instruction
storage. A 1024 x I-bit wide RAM is provided to store intermediate con­
nective results and other data. Since data and instruction addressing is

15

f· :

FIO. 2.
Instruction Word

12

:

Format

00
I1
n
n
~ ., ..
t7 ..
.si
lA

••
le
.0
.E
IF

.. .:
:>

GO ..
:>
c.
~

11 10 9

'I p R I: :
.f.!!l!!. Width

4
p 1
li
Am 10

Ab 6

Ad 4

1"..,,,cllonC,,

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
lOll
1100

"0'
"'0
1111

Bits

12-15

11

10

0- 9

4- 9
0- 3

M,, __ ""

Noro
LD

LDC
AND
ANDC

Oil
ORC

XNOA
STe

STOC
IEN
DEH
JMP
RTH
SKZ

HO'F

Description

Instruction (Dp Code)
Parity Bit
Input/Output Select Bit
RAM Memory Data Address
Board Select Address
Device Select Address

Act

No ct..np In ,-vit'.'" III - R. F LGO" J\.
\'0'" R •• wll Re, > 0" ... AR
load Campl.."."t il.'i"; - AA
Loek" AND. RR' 0" RA
LotiC .. AND Con~t. RR ·0'" RR
Loglcal on . RR" 0 -"fII
Lotiul OR Compt . RR + ii ... RA
l.du.We NOR . It RR • D. RR" t
51Of • . RA .. 0.11 ' in, W,Il. ~,
SIO'. eomP'. RH" 0 ... Pin, W,I '

Inpul EnabJe. 0'" IEN "".
Output (nanl • . 0" DEN "".
Jump , Flat - I\.
n.'",n. RlN fl.' .. n . Skip ""lINt.
Slllp nea. In"",ct ion i t AR ·0
No ch.nge tn Reai"ln RA -RR, fLGf"'J\.

Fig . 2b:- MCU5OOII1.", •• ,ionSo.

Timers

Fig . 3

System Block Diagram

.. .:
:>

GO

~ .
a. ..
:>
o

'0+ M ..
:>

!t
:11
o
~

-.;
i:::

103

104

performed by logic external to the ICU itself, the processor instruction
word format has been tailored to suit the needs of a generalized sequence
controller. This is shown in Fig. 2a. This 16-bit instruction contains
a 4-bit operation code which defines the operation to be performed by the
ICU during the current clock cycle; one of the 16 functions of the
instruction set of the MC14500, Fig. 2b. Aside from the error checking
parity bit, P, the rest of the word is an ~ddress operand which specifies
one of 1024 RAM memory bits if M = O. If M = 1, one of the 16 devices,
specified by Ad' is addressed on one of the peripheral boards, specified
by Ab.

An integrated system block diagram is shown in Fig. 3. The
bus interconnection among the modules carries not only the data and
address paths, but two processor flag signal lines as well. These serve
to access timer functions.

SOFTWARE

Programming Language The programming language was designed
on the assumption that the sequence controller to be implemented was
designed as a gate type logic circuit. The language is structured such
that logic elements and their interconnections, e.g., the circuit shown ·
in Fig. 4, are implemented by a sequence of keystrokes, on the key-
boa rd, Fig. 5.

Fig. 6 specifies the Backus Normal Form (BNF) of the keyboard
based, circuit specification language grammar. Figs. 7a through 7k
show in detail how the circuit of Fig. 4 is parsed into 11 subsequences
or records.

~T---------------------------------~16

S 17
till

R

-i 18
32

J.
~

S HO

}-~19
~----------------------------------~

Fig. 4
Example Sequence Controller Circuit

T
~

1
M

0-9

t
+

< RECALL OPERAND ,. :: • ;

~J ~
I ~I T

'--=-' '==-'

7 I I
8 I

~ 5 i
1 ~ >-"

,
0 ,

Description

R-S nip-nop
And-Gate
Or-Gate

~J J
-=J ~

9 I =
'-----'

6 i t
.-J

~ ~
; I .

'===:!

Negate signal
Input starts timer
Output true if timing
Output true if timer expired
Temporary storage in RAM
Assign signal unconditionally
Signal/function enumerators
Input signal separator .
Store/recall previous result for next input operand
End of line/enter
Delete to previous end of line
Delete previous symbol

Fig. 5

Programming Keyboard

< OPER{ND ,. :: • 01112131415161718191< OPERAND ,.< OPERAND ,.

< OPERATOR" :: • Qlel+ITH 11=
< TERN" :: • < OPERAND ", < OP~RAND ,. 1-< OPERAND ,. 1 H< OPERAND ,. 1 < OPERAND ", < TERN ,.

< EXPRESSION ,. :: • < TERN >< OPERATOR > 1 ; < TERN >< OPERATOR ,.

< INSTRUCTION > :: • < EXPRESSION >< OPERAND ". 1 < EXPRESSION ,.; 1 < EXPRESSION >H< OPERAND ".1
< EXPRESSION >< OPER{ND ,.;

< PROCEDURE > : : • < INSTRUCTION >.1 < INSTRUCTION >< INSTRUCTION >.

Fig. 6

B N F Grammar of Keystroke language

105

Note that multiple input operands are separated by (J) and
records are terminated by (.). A record is defined by a sequence which
results in an output. There are four types of record output:-

1. A field output connected to the customer's equipment,
2. An output which starts a timer,
3. An output which, though not assigned to the field or to a

timer, will implicitly constitute the first input in the
next record and

4. An output, such as 3. above, which cannot logically be used
in the next record and hence must be stored temporarily so
that it may be referenced explicitly, later, when it is re­
quired as an input.

-Sample Program

~)16 0
0-

1 0,1.,-2016. 0,1.-2816.

;3,-4 e ;
5+M1·

4 , MO +M 2 .

M1,M2 !;jI17.

; T32 .

-<32=18.

132,7019.
-7,1320;

/ I I '\---J fig. 71

6+;

4 ~MO •..

;3,-40; 5+Hl.

fig. 7b
Fig. 7e

..... ...
107

108

109

A record closed with a (.) must have an explicit output such as:-
1. Field output:- (.•• 17.),
2. Start timer:- (.•• T32.) or
3. Temporarily as si g'ned to memory: - (... M1.).

If not, it will be lost unless recalled ,by an initial, opening (j) in the
next record. Conversely, a record closed with a (.) will regenerate the
implied output as the implicit, first operand of the next record. Proper
use of (j) will enhance the object program by inhibiting the generation
of extra LD and/or ST0 instructions which would inevitably result if the
output, and its use as a subsequent input, were explicitly specified.
E.g., the sequence:-

0) 1)-2016.
j 3)-40 j

saves the extra LD which would be generated by the second record of the
following, logically identical, explicit sequence:-

0) 1)-2016.
16) 3)-4@ j

Fig. 8

Compiler Flow Chart

N

N

Fig. 11

Flow Sheet Controller Reprpsentatlon

110

The start timer input, (T32), is a grammatical output which
disappears into the timer function. Similarly, timer outputs, {~32}
and {132}, are grammatical inputs, to other circuit elements, which
originate in the timer function, e.g., {-i32=18,}. It should be not ec,
furthermore, that the first input operand to a flip-flop, (IjiI), is the
"set", S, input. The second is the "reset", R, input, e.g.:-

M 1.1 M2 t;i 17 ,
Compiler A flow chart outlining the logic of the compiler,

which implements a controller circuit specified by a k~ystroke ~equence
by translating this into object code for the MC14500, 1S shown 1n
Fig. 8. Currently, this compiler, composed in FORTRAN IV, runs on a
HS4020 system and uses a typer keyboard instead of the special keypad
of Fig. 5. The equivalent mnemonics, the typer input, the MC14500
symbolic assembler and the resulting binary object code that it gener­
ates are illustrated in Fig. 9.

COMPARISONS

The example, Fig. 4, has been programmed using procedures
outlined in[5] and in flow :chart form, but not strictly in accordance
with the procedure outlined in[4], respectively. The reader is invited
to compare the proposed logic circuit/keystroke system to the roughly
equivalent software implementations using:-

1. A ladder diagram based design approach, Fig. 10, and
2. One based on a flow sheet representation, Fig. 11, of the

sequence controller.

Relay Ladder Diagram Fig. 10 shows the relay ladder diagram
equivalent of the sequence controller circuit in Fig. 4. The number of
keystrokes required for the programmable matrix controller implementa­
tion is only slightly greater than the number of lines of assembly code
produced by the compiler and is about the same as the number of key­
strokes shown in Fig. 7. It must be pointed out, however, that the
Allen-Bradley system requires that input/output addresses be entered
separately, via thumbwheel switches. Keystrokes are used for operation
codes only. There are no operand keys. No special treatment is be­
stowed upon timers and this may be seen as an advantage or otherwise,
depending on the designer's preference.

It seems that ladder diagrams suffer from a shortcoming which
tends to obscure the controller function. The contacts of any given
relay, except in the case of a self-latching relay, are more or less
equivalent to the inputs of logic function whose output energizes the
coil of another relay. Simple, multiple input logic functions are spread
all over the ladder map. Even for those familiar with and partial to
ladder diagram design, it must be difficult to use a tool which distri­
butes, rather than concentrates, interrelationship. Furthermore, con­
troller inputs are not easily identifiable. One must search for contacts
which lack a solenoid.

Flow Sheet Implementation A translation of Fig. 4 into a
flow sheet is shown in Fig. 11. It is evident that controller functions,
even for this simple configuration, are obscured by piecemeal decomposi-

111

tion into auxiliary fragments. In this regard it was not obvious from

descriptions given in[4] how a "Versatyme" controller handles a timer

function if it is required to check timer status, i.e., (~) or (1).

EQUIVALENT MNEMONICS

Teletype
Keyboard

A
o
X
B
T
E
,
M

(carriage return)
F
L
>

Teletype Keyboard Input

MI4500
USER? 10106
01 11 X2AI6
MI 31 X4AM
501..1
41 L00L2
LIIL2FI7
MB32
T32> 18
£3217 A 19

Programming
Keyboa rd

®
+

T
~

1

I

(.;i
M
=

Fi g. 9

Using the Compiler

X7I E32AM
6CM

binary

Compiler Output

hexadecimal assembler

101 000 0 0
10111000
000 1 0 1 0 0
~Ot10l00

tAgglt88
00111100
0100 100
01011100
1 t) t) .) () 0 0 0

~ ? ~: t t A 8 8
tOt.lt)OOOO

§OQIOOOO
1 (I 1 0 f) ° 8
1 (10000

1 0 tJ I) 1 tJ 0 0
0001100

11110000
00011100
1 t' t) (I 0 1 0 0
o ° 0 (I 0 000
o t' 0) 1 1 1 0 0
00110100
1 (I 'J (I 1 1 0 0
00101100
OO()VOOOO
00110100
01011100
o 1 0 1 0 0 0 0
0lll(II00 8
1 000 1 0 0
11000000

o 000 0 000
00000000
Ot)(JOOl'OO
00000001
00000018
00t)1000
00000011
o 000 0 100
0000010 1
00000001
000001 yO
000000 0
000000 0
QOOOOOOl
000 I 000 1
00000010
0001t)001
00100t)00
o 0 0 0 000 0
o 0 1 0 0 000
000 1 001 0
o 000 0 0 0 0
o 0 1 0 0 0 0 0
00000111
000 1 001 1
00000111
00000000
00100000
00000110
o 0 0 0 0 000
00000100
o 000 0 000
00000000

AO 00
I:IS 00
14 00
34 01
'le 02
I::C 10
3C 03
'le 04
:se 05
BO 01
le 04
~ 00
eo 02
10 01
50 II
'10 O:i
e8 II
~'.. . ~o FO 00
le 20
e4 12
00 00
lC 20
34 07
BC 13
2C 0 ·'
00 00
~4 20 _·e 06
:::'0 00
48 04
B8 00
eo 00

lE'"
OION
Lll
ANlJ
ANOC
S10
ANLI
ANlJC
OR
5TO
L[)
Of<
STO
LV
Of(
AI~LlC
STO
STO
NOf'F
LD
STO
NOPO
LV
AND
SltJ
LOC
NOPO
AND
OR
OR
ANDC
STO
..IMP

o
o

1024
10:iS
1026
10'10
1027
1028
1029

1
1028

2
1

17
2

17
10:56

o
1056
1042

o
1056
1031
1043
1031

o
1056
1030

o

" o
o

112

16

---ll
5

---l

17

T32

T32

6

I()

XIC 0
XIC 1
XI0 2
SET 16
XIC 16
XIC 3

3

"

17

4

Z

4 ;r-

7

XIC 32
SET 18
XI0 32
XIC 17
XIC 6
SET 19
XIC 17

16

17

TIMER
32

19

~--.XI0 6
BRT
XIC 7
BRT
XIC MO
XI0 4
SET MO XI0 4

BRTv---~

XIC 5
BRT
XIC 17
XI0 4
XIC MO
SET 17
XIC 17
SET 32 XI0 32 ~--

XIC Normally Open contact
XI0 Normally Closed contact
BRT OR
SET Energize output

Fig. 10
Programmable Matrix Controller Implementation of Ladder Diagram Design

r-
113

CONCLUSION

The development of high level languages and complement ary

system development hardware serves to reinforce the advantages which

microprocessor based sequence controllers enjoy with respect to their

hardwired counterparts. The logic circuit/keystroke approach described

herein should yield a substantial improvement in the productivity of

sequence controller designers; especially those who have some background

in digital logic and assembly language programming.

An impromptu competition, with an interesting outcome, was

held. Five sequence controller designer/programmers set about the im­

plementation of a simple circuit based design; one which could be con­

veniently evaluated on a commercially available MC14500 Ieu evaluation

kit. The programmers had varying degrees of experience. One used the

preliminary, HS4020 based compiler while the others confined themselves

to hand coding in MC14500 assembly code. The computer assisted imple­

mentation tied for first place in terms of the number of instructions

required to correctly emulate the target control circuit. For obvious

reasons, the speed with which the five contestants accomplished their

task will not be compared.

ACKNOWLEDGEMENT

This research is supported by Natural Sciences and
Engineering Research Council Canada grant number A4219 and the
Bailey Meter Company Limited of Canada.

REFERENCES

[1] Maggioli, V.J., "How to Apply Prograrrmable Controllers", Hydrocarbon

Processing, Vol. 57, No. 12, Dec. 1978, pp. 137-142.

[2] Smith, G.H., "Converting Relay Logic to Software", Machine Design,
Vol. 50, No. 19, 24 Aug. 1978, pp. 93-99.

[3] Sanderson; L.B. and Lord, J.C., "Microcomputers Promise Less Stop

More Go", IEEE Spectrum, Vol. 15, No. 11, Nov. 1978, pp.30-32. '

[4] Versatyme System 2 Programmable Controller, Product Specification,

Versatyme Controls Corporation, 1333 Lawrence Expressway, Suite 360,
Santa Clara, CA 95051, 1978.

(5] Allen-Bradley Publication SD23, Allen-Bradley Systems Div., Highland
Heights, OH 44143, Apr. 1971.

[6] Togino, K. and Fukura, K., "A Computer Route to Ladder Diagrams and

PC Programs", Instrumentation Technology, Vol. 25, No. 5, Sept. 1978,
pp. 125-130.

[7] Gregory, V., Dellande, B. et al, "MC14500B Industrial Control Unit

Handbook", Motorola Semiconductor Products Inc., 1977.

[8] Tabach~ick, R.L. and .Zsombor-Murray, P.J., "An Approach to the Imple­

mentatlon of Industrlal Sequence Controllers with Standardized Hard­

ware.and Firmware", Proc. Cdn. Conf. on Auto. Control, McGill Uni­

verslty, Montreal, QU H3A 2K6, 23-25 May 1979. (to be published)

