
DATA-BASE CONSIDERATIONS FOR ANIMATION SYSTEMS 

J. Barenholtz 
Simon Fraser University 

ABSTRACT 

151 

Trees have become a standard representation scheme for graphic 

data. The author's animation system, GRAX, uses trees to represent not 

only static organization within frames, but also time-dependent anima

tion parameters (rotation, position, etc.). This scheme works as well 

as long as all parameters are globally available to all data structures 

when they are interpreted. However, if one data structure contains 

information necessary to the interpretation of another (e.g., Item A 

refers to a position defined dynamically within item B), then it is 

necessary to create an interpretive procedure for extracting the needed 

data. 
This paper describes the data structures employed in GRAX, and 

discusses several possible techniques for communication of data between 

different trees. Amongst the techniques discussed are: (1) methods 

involving no pre-computation, (2) pre-interpretation of selected data 

under interpreter control, (3) re-ordering of the branches in the data 

tree, and (4) abandonment of the interpretive data structures in favour 

of compiled, optimized representations. 

CONSID~RATIONS SUR LES STRUCTURES INFORMATIONNELLES 

APPLIQU~ES A DES SYST~MES NUMfRIQUES D'ANIMATION 

~S~ 

Les structures arbre sont maintenant un methode de representation 

acceptee pour l'information graphique. Le systeme d'animation GRAX mis 

sur pied par l'auteur, utilise structures en arbre pour representer non 

seulement l'organisation d'un cadre simple, mais aussi pour le controle 

des parametres variables en animation. Cette approche fonctionne tres 

bien a condition que tous les parametres soient accessibles a toutes 

les structures en arbre lorsque celles-ci sont interpretees. Toutefois, 

si une structure contient de l'information essentielle a l'interpreta

tion d'une seconde structure (par exemple l'element A refere a une 

position definie dynamiquement dans l'element B), il est alors neces

saire d'~tablir une procedure d'interpretation pour extraire l'informa

tion desiree. 
Cet expos~ decrit les structures informationnelles utilisees dans 

les programmes GRAX et discute differentes techniques de communication 

informationelle entre les arbres differents. Entre autres on parlera 

de (1) methodes ne requerant pas de pre-calculation, (2) pre-interpret

ation d'information sous le controle de l'interprete, (3) restructura

tion des branches dans les structures en arbre, et (4) l'abandon des 

structures informationnelles interpretative en faveur de representa

tions compilees et efficaces. 



152 

DATA BASE CONSIDERATIONS FOR ANIMATION SYSTEMS 
Jerry Barenholtz 

The use of heirarchical data structures for representing graphic 
data has become quite widespread. In the author's animation system, 
GRAX [1], as in many others, each object is represented as a rooted, 
directed graph with no loops. Such graphs are called trees by those who 
do not mind leaves being shared by various branches. Those trees which 
represent static graphic entities may be analysed in terms of three 
types of nodes, which we call SKETCHs, MODifys, and GROUPs. 

SKETCHs are the simplest type of node, used to represent simple, 
static drawings. A SKETCH is a terminal node, and takes no display par
ameters. In GRAX, a SKETCH is just a collection of the X, Y, endpoints 
of a set of line segments, and a partition indicating where "pen-up" and 
"pen-down" instructions are to be executed. The MODify nodes have ex
actly one arc out. The several constants which MOD also accepts are pa
rameters which determine some part of the graphic context (e.g. scale, 
position) for the display of the subtree on the arc out. The GROUP 
nodes have any number of arcs out. They accept no parameters, and have 
no internal structure. They simply cause all the subtrees on out arcs 
to be displayed in the same fram e . 

The data structures of many graphics systems are similar to the 
GROUP-MOD-SKETCH trees used in GRAX. This is a useful representation 
scheme because it is apt to the organization of scenes, easy to edit and 
manipulate, and very flexible. In addition, trees lend themselves well 
to real-time interpretation by a task which sends data to the display 
unit. These features lead directly to the program organization used in 
GRAX and other systems. The animator communicates with the system via a 
foreground task, which contains commands for creating, editing, storing 
and fetching, etc., graphic items. There is also a background task 
which displays the items in the current animation. To add animation 
capabilities to a system designed for the display of still images, it is 
necessary to cause the background task to reinterpret each tree twelve 
or fifteen times per second, while some other tasks change parameters in 
various nodes. Such tasks may be part of the response routines assoc
iated with various editing commands (such as MOD), or may be associated 
with the data trees themselves. These self updating data forms are the 
animation data types. 

At present, GRAX contains two animation types, p-curves and 
keyframes. In p-curve animations, the successive endpoints which define 
a sketch are analysed to produce the value of some parameter in succes
sive frames of an animation. In this sense, p-curves are a generaliz
ation of the MOD commands. The P-CURVE nodes in GRAX have two arcs out. 
One of these, called the "path", can only accept a SKETCH, while the 
other arc is general. P-curve animation was first extensively developed 
by Bae cker [2]. 

In keyframe animations, a set of key frames and the relative timing 
for the pairs of key frames is specified. Linear interpolation produces 
frames between two key frames. Each line segment in one key frame ~s 
transformed into a corresponding line in the other key frame. The 



153 

KEYFRAME nodes in GRAX may have any number of arcs 0ut. Each arc out 
must take a SKETCH. Keyframe animation was extenively investigated by 
Burtnik and Wein [3]. 

When various parameters are being set or edited, as in the MOD or 
P-CURVE commands, the command response routines write the changing val
ues directly into the node's data fields, so that as far as the inter
preter is concerned, each node is self contained with respect to parame
ters. 

This scheme works admirably so long as the nodes remain self 
contained with respect to their parameters. However, allowing complex 
definitions in which one item refers to another requires that nodes use 
external references for their parameters. Currently in GRAX, this sit
uation occurrs only when one animation take its timing values from an
other. This permits synchronization of animations, and the application 
of p-curve animations to other p-curve or keyframe animations. In this 
way, animation effects can be built up in layers. 

It is desirable to allow more complex cross reference~ in time and 
in space between animations, since this will increase the expressiveness 
of the animation language. First, however, it is necessary to examine 
how the interpreter might handle data tress which result from the more 
expressive commands. 

The strategies for complex references to be discussed are: 
1- Straight interpretation of trees as they appear, with no preinter
pretation of values. 
2- Pre-interpretation of selected things, making the results globally 
available. 
3- Re-arrangement of the graph in order to get all the needed values 
available on one pass through the interpreter. 
4- Compilation of the data structure representing an animation into 
an optimized program, and abandonment of the interpretive structure. 

Before entering into the discussion of the various possibilities, 
we present as an example a bit of animation which demonstrates the 
typical timing problems we are trying to solve. A man throws a ball 
into the air, and runs across a field to the point at which the ball 
comes down, where he catches it. As he runs along, he trips over a 
rock, which slows him down. 

FIG 1: A Representation of a Complex Animation 

man ~rtps ~ 
~Ck. l~a.v~ ~ca.ult 

BaU~$ 
rltgh"t 

J , 

t::O 

I 

) 

I~I 'F 
I ~ I 

I , 
., 

"ttme 



154 

This animation might be described in terms of two paths, one of 
which is the ball's flight, and the other of which is the man's run. To 
insure the proper synchronization of the two sequences, they are tied in 
time at the instant when the man throws the ball, and at the instant the 
man catches the ball. 

Having tied the two animations together, we have yet to give any 
absolute time information about starting time or duration of the se
quence. The needs of the overall animation may provide some constraints 
in this regard. Suppose for example, that the ball's high point is to 
be synchronized with some other event, like a bird's entering the scene, 
and that the man's tripping over the rock is a cue to the rock to walk 
away. Then we may tie the ball's highpoint to some time to and the 
man's tripping to some time tl in the absolute time framework, intending 
to tie the other events to these times later. 

Assuming that only linear scaling is used in resolving the timing, 
there is now enough information to unambiguously determine Sand F, the 
start and finish times, and any other necessary timing information. 

THE NEED FOR SOME PRE-COMPUTATION 

The advantages of using no precomputation on the data are simplic
ity of implementation and economy of core memory. One is presumably 
willing to pay the price in time of recomputing unchanging values. But 
the gains are not forthcoming, so the cost is not worth paying. 

The major problem with attempting to interpret complex time map
pings without any precomputation is the amount of flexibility and power 
which must be coded into the interpr.eter. As it tries to evaluate the 
timing parameters in one tree, the interpreter finds itself chasing 
through other trees, trying to dig out various values. In the example 
of the man and the ball, the interpretation of the man's run requires an 
evaluation of timing information included in the description of the 
ball's path. More generally, if we assume that the interpreter will 
always be writing for itself a set of simultaneous equations or inequal
ities, then the interpreter must know what values to look for in a given 
data form, how to reduce the form to an equation in the variables that 
are already in use, how to recognize the relevance or irrelevance of a 
given datum to the computation at hand, how to resolve variable linkages 
and finally, how to go about solving sets of linear constraints. 

It must exercise all this knowledge a dozen or two times each 
second, and be able to do so no matter what order the relevant informa
tion is presented to it. 

A program might be written which could perform all the desired 
tnskR, nnd solvp thp reRulting sets of equations. Indeed, such a pro
~rlllll w i I I hllv P to be wr it ten, since one way or another, all the 
co ns! rnint A wi 11 hnvp to be evaluated. Solving constraint problems is 
not Il new or pxpprimental area in computer science. There is no doubt 
thnt the n~qllin~ d programs can be made to work. The question is whether 
thpy ca n be made to work in the environment of real-time animation. In 
such an environment, tables and scratch areas will have to be allocated 
befo r e the interpreter has a chance to evaluate the needs of the 
particular problem. The routines in standard software packages for the 
various mathematical operations involved were never intended to run in 
r ea l time, and will have to be rewritten accordingly. Attempting such a 
project would commit a programmer to a probable failure involving months 
or years of the most brutal type of coding. 



155 

Moreover, since the interpreter, using whatever algorithms, may run 
into any type of situation at any time in the interpretation of a tree, 
the entire interpreter must be core resident. There simply isn't time 
to swap in an arbitrary number of subroutines on demand in a frame by 
frame refresh system. 

One concludes that some type of precomputation is warranted. 

RE-ORDERING OF DATA TREES 

Perhaps the simplest class of precomputations which we may examine 
lS the re-arrangement of the tree, or equivalently, the computation of 
an optimal touring order. In some cases, a value is developed in the 
interpretation of one branch of a tree and used in another. As long as 
the value can be developed without reference to some other branch, it 
suffices to assure that the branch containing the value is interpreted 
before any references to it are encountered. In the example of the pre
vious section, the position of the rock along the runner's path may be 
determined by some external graphic process. If that process has been 
interpreted before the runner gets to the rock, then the interpreter 
need not reinterpret the branch which defines the rock's position. 
There are likely to be many simple cross references like this in a com
plex animation, and therefore it is worth the trouble to optimize the 
touring order so as to minimize the number of reinterpretations re
quired. The actual optimization is not all that difficult a task. 
Assuming that the interpreter has access to off line programs with 
enough capabilities to track down and extract the needed values, it is a 
simple process to keep records as to what branches of the tree were 
visited in developing a value for a given variable. After one pass 
through the tree, the interpreter will have a list of all the values 
needed to compute a given value, and all the references to a given val
ue. This list can then be used as input to an optimization program, 
which will produce the optimal ordering of nodes, subject to the 
constraints imposed by the graphic context and the needs of specific 
computations. 

Optimizers are not generally known for their speed of execution, so 
this technique could not be applied on an every frame basis. But that 
is not necessary, since most changes to a graphic data base will have no 
effect on the optimal order. Indeed, only those changes which actually 
restructure the tree, rather than just changing a parameter in some 
node, would require the optimizer to be called. The only time that this 
happens is when the animator issues a command which explicitly changes 
something. The optimizer can be called as part of the command response 
routine, when the animator is expecting a delay or interruption in the 
animation. 

PRE-INTERPRETATION OF SELECTED VALUES 

Whenever some process derives one of its parameters from a knob, 
the question arises whether the knob should be read once per frame, and 
the result stored in the process requiring it, or should be read on 
demand by the interpreter when it is required. As long as each knob 
occurs only once in a given frame, there is no practical difference in 
the two techniques. But since it is possible that some node will appear 
in several places in a tree, it is possible that the knob will be read 
several times per frame for the same value. 

.. I 



156 

The alternative to reading knobs on demand is to commission a task 
which will execute once per cycle, before the interpreter is called on 
any data forms, which provides the needed values to all the data forms 
which require it. The commissioning and decommissioning of tasks is not 
difficult to control. Whenever a knob is called for, it is called for 
by some particular process, such as an editing command. The command's 
initialization routine includes commissioning the knob tasks, and the 
exit routine consists of decommissioning these tasks. The data tree 
using the knob, and the interpreter proper need not be concerned with 
where the knob task is, or who owns it, etc. That is, the existence of 
knobs and their differences from static parameters is completely 
transparent to the interpreter. The fact that a knob ~s used in editing 
need not be a part of the data tree. 

In the above discussion, a knob has been used as an example of a 
data extractor whose value can be determined independently of the envir
onment in which it is evaluated. The same comments apply with much more 
force in the case of complex software extractors. For exarr.?le, GRAX's 
p-curve extractor is far more than a few lines of code, so the time it 
takes to interpret a given frame would increase as some function of the 
number of occurrences of a given tree in that frame if the extractor 
were called on demand, rather than once per display cycle. Smooth 
animations and synchronization between animations would not be 
achievable, nor would it be possible to get the maximum performance in 
terms of image complexity in a given frame. This difficulty is avoided 
by the same mechanism which was applied to knobs, namely moving the 
extraction process out of the interpretation of the data forms. 

The techniques of the above paragraphs discuss ways of dealing with 
self-contained data sources, such as data extractors. But the example 
of the man and the ball shows that these techniques are not adequate. 

As mentioned in the discussion of non-preinterpretive schemes, it 
ought to be possible in a program which is not expected to run at ani
mation speed to set up and compute the equations necessary to complexly 
interlocked timing problems. Given this, we may separate the setting up 
of the equations from their evaluation, leaving the former task to run 
as a once-only process whenever a new data structure is commissioned, 
and accepting the task of evaluation of the equations as a 
once-per-cycle task. 

Once the equations have been set up, the matrices triangulated, the 
scratch memory allocated, etc., the actual evaluation of the equations 
will probably be a small enough task to run at real-time speed. The pa
rametp.rs of the equations will be updated only once per frame, as was 
discussed in the previous section, and the results of the evaluation of 
t Ill' constraints wi II be made available before the interpreter is called 
in nny givpn frame. 

Prior to RctllRlly implementing this scheme, it is not possible to 
mllkl' nny goorl est imates of the complexity of mapping which can be 
rl'~olvprl in rl'nl time. But there is reason to at least hope that very 
goorl r e sults coulrl be achieved, since the actual equations resulting 
from most graphic situations would probably not be very involved. 

The techniques discussed in the next paragraphs are specific to the 
Evans and Sutherland Picture System I, in that they refer to some 
details of that machine's hardware and programming strategy. Most of 
these comments would not, for example, apply to the DEC GT-40 graphics 
system, because it uses the same core memory for its graphics processor 
and its cpu. On the other hand, many machines, such as the Vector 



157 

General and the Adage have some similarities to the Evans and Sutherland 
in the way data is handled, and these comments with appropriate 
modification will apply to them. 

The basic storage mechanism in GRAX for static graphic data is 
lists of X and Y endpoints. The Picture System I, on the other hand, 
uses homogeneous coordinates, thus requiring an X,Y,Z,W vector for each 
point. Within GRAX, the partitioning of endpoints into discrete pen 
strokes (i.e. the handling of "pen up" and "pen down" commands) is 
stored as an explicit partition at the head the list of endpoint data. 
The brightness of a given picture is stored in a global parameter. 
Within the Picture System, brightness is identified with the Z 
coordinate in the homogeneous vector representing a point, and the 
pen-up, pen-down functions are handled by command words interspersed 
wi th in the data. 

Conversion between the GRAX format and the Picture System format 
probably accounts for 75-90% of the total CPU cycles in GRAX, so it is 
worth the effort to try to cut the number of conversions necessary. To 
achieve this, when the conversions are first performed, the resulting 
data could be saved in a file in core, rather than being sent directly 
to the display hardware. That is, the picture is precompiled into a 
data structure which needs no computation before being shipped via the 
DMA interface to the display processor. All references to the original 
sketch are converted to references to the precompiled display file, and 
the interpreter deals only with the latter, never having to do any of 
the conversions at frame rates. 

Pre-compilation of sketches has two drawbacks, neither of which 
outweigh the advantages in performance which accrue from implementing 
the approach. The first drawback is that the compiled data form is 
twice as large as the uncompiled one. Using the Picture System in 
double-buffer mode to ensure smooth animations, it has the capacity for 
handling about 4000 endpoints per frame. In compiled form, each 
endpoint takes four words of the computer's memory, and there are a few 
words required for each pen-up, pen-donwoperation. Thus, 16K of memory 
is required to insure an adequate core buffer. Since it may be desira
ble to have the original data tree available for editing, this 16K is 
additional to the 8k buffer needed to contain uncompiled data forms. 
So, in total, a 24K buffer is required to insure adequate space in 
almost all conditions. The PDP 11 has a logical address space of 32K. 
The operating system and the GRAX programs need some space, and it is 
not desirable or even possible to swap everything often enough to make 
the n~eded space available. 

On the other hand, when a picture is very complex it is usually 
mndp. lip of several instances of one picture. Only one compiled version 
of thp. mnst ~ r image need be stored. That is, a picture made up of 40 
onp-hllndrf'd point circles takes about the same buffer as a picture with 
on p or two onp.-hundred point circles. So, in many instances buffers 
muc h smaller than 24K will suffice. 

By allowing the interpreter to display either compiled or 
uncompiled pictures, the choice of whether or not to compile a given 
pi ct ure may be made when the picture is first defined, with due regard 
to thp amount of huffer space currently available. A simple scheme c an 
h I"' I"' ff~ ct~d which will optimize for speed subject to the availability of 
s pn cl"', and rf'Rort to the slower method of interpretation as necessary to 
,,1 low maximum complexity. 



158 

In the same spirit, the various matrices which define graphic 
context information may be precomputed and stored in core, rather than 
re-computed each frame. The space penalty here is not as great as it is 
with the basic picture files, since an average picture will contain only 
a dozen or two matrices, at sixteen words each. The time savings on a 
percentage basis is greater in this case, since the conversion of a few 
values to the proper representing matrix is often not computationally 
trivial. But since there are relatively few matrices in a given 
display, the absolute savings will not be great. 

The second drawback to precompilation of display files for basic 
graphic entities is that it becomes difficult to maintain good communi
cations between the graphics processor and the CPU. In particular, it 
is difficult to figure out what the user is pointing at with the stylus. 
Using the interpreter with its slow, point-by-point method of displaying 
data, each point can be checked as it is drawn to see if it is within 
some defined distance of the tablet. (There is a mere 100+ % time over
head for this service, since each point is being drawn twic~--once for 
display, and once for hit-testing.) 

Using the fast-as-can-be DMA strategy, no hit testing is performed. 
There are two modifications possible to the fast-as-can-be approach 
which would allow it to support hit testing. The first approach would 
DMA out the display file twice, once for display and once for hit 
testing. This approach would return only the information that a hit had 
been detected somewhere, with no clue as to which pen stroke or 
individual line segment had been hit. The second modification would DMA 
out a penstroke (or if needed, an individual line segment) at a time, 
twice. With this approach, full sensitivity to hits could be achieved, 
but the advantage of DMA would be significantly reduced, since it takes 
very little longer over a DMA interface to send out 256 words than it 
takes to send out two words. But stroke-by-stroke or point-by-point hit 
testing would require that the time sacrifice be made. On the other 
hand, the advantage of not having to convert the GRAX representation to 
the Picture System representation would be retained. 

The complete implementation of this strategy would require four 
modes of operation. The first, straight non-precompiled interpretation 
of a sketch, would be used when the sketch was first being defined, 
since it would be more time-consuming to recompile the sketch each frame 
than to re-interpret it. Once the sketch is completed, the full frame, 
no hit test mode would be entered. This would be the usual mode of 
opp-ration, and is the fastest of the four modes in execution. When the 
system is expecting the animator to select a picture, the full-frame hit 
tpst mode is entered. Although the full advtanges of DMA transfer and 
pr ecompilation are achieved, each sketch is shipped out twice, so there 
is some loss of time. In editing operations, the fourth mode, which ~s 

single penstroke at a time with hit testing, would be used. This is the 
slowest of the precompiled modes, but gives the selectivity in hit 
testing necessary to the editing of a sketch. 

The mode-switching would be handled by the command response rou
tines. Whenever full-frame hit testing is required, it is required for 
every sketch in the display, so those commands requiring this service 
would simply set a flag in the interpreter. Stroke-by-stroke hit 
testing is only required in specific editing commands like ERASE, so 
these command would be able to apply the appropriate indicator to the 
item being edited, and switch modes when the edit is complete. 



159 

COMPLETE COMPILATION OF DATA TREES 

If all the strategies described above were implemented, there would 
be little work left for the interpreter to do. Basically, the only 
tasks left to it would be the actual touring of the tree, setting the 
context for any hit testing which was currently in effect, and sending 
already computed matrices and display files to the picture proc esso r in 
the right order. 

One view of the situation lS that the varl0US optimization routines 
have built a program schema, one instance of which is executed each 
frame. The overall structure of this program schema is: 

}- Extract all static values from knobs, etc. 
2- Extract all dynamic values from p-curves, etc. 
3- Use value s developed in (1) and (2) to evaluate current 
constraints. 
4- Run through data tree using values developed ln (1) through (3) to 
display the data files in the correct order. 

The tree could be pretoured, so that instead of using the interpreter 's 
data linkages and node-to-node linkages, there would be jumps and sub
routine calls in Step (4). The result would be a completely compiled 
representation of the data tree. 

The main reason that one might want to do this last compile step is 
to gain the few instructions difference between the interpreter's search 
for the next node and the compiled program's subroutine jump. The in
terpreter is efficient enough so that the probable gains in time would 
be negligable. There are, however, some fairly significant grounds for 
avoiding the last phase of the compile operation. These comments apply 
with equal force to other schemes which would compile the data tree out 
of existance . 

First, the difficulties involving hit testing which were mentioned 
in previous sections ar e amplified in a totally compiled scheme. In the 
compiled program, there is no explicit representation of the tree, so if 
any subroutinp. need s to know where it is in the tree, that information 
wil I hav e to be compiled in as an argument vector for the subroutine. 
Tn the interpretive scheme, the top level call to the interpreter, each 
call to a GROUP instruction, and each call to a SKETCH instruction 
causes an entry to be made into a trace tree, so that if . a hit is 
detected in a sketch, the line segment hit, the SKETCH of which the 
segment was a part, the arc in a GROUP of which the sketch was a 
part, ... back to the top-level name of the item being interpreted is 
ava i.lable for use by whatever program turned on the hit testing. 

To maintain this level of specificity in hit-testing, the compiler 
would have to not only list the graphics which are to be sent to the 
pic tur e proc es sor, but would also have to write a call to the hit-trace 
routine, and include the current context as an argument to the call. 
That is, the c ompiler would have to preface every call to a graphic rou
tin e with a representation of that call 's position in the data tree, so 
that if a hit wer e detected , its position ln the tree could be deduced. 
In the interpre ter, this same information is efficiently maintained in 
rf>.11 time, with little space penalty. 

As the hit-t e sting modes changed in respons e to commands entered by 
tllf' animator, thp. program representing the data structure would hav e to 
bp lIppris ed of this fact. Presumably, the program would just check some 



160 

flag somewhere in a global area, rather than be re-compiled. So, we 
find that short of recompiling our program every time anything changes, 
we still have to refer to a global data vector to find out what the pro
gram is to do. That is, the compiled program is still no more than a 
program schema. The difference between this and the optimized inter
pretive scheme is primarily that the latter takes the tree as data, 
while the compiled program wastes space distributing information which 
can be as well computed on the fly. 

Likewise, we may look at how a compiled representation might handle 
a sketch which is being added to the current animation. The animator is 
adding a new point every so often. (It cannot be assumed that the user 
will add exactly one new point each frame.) Therefore some process 
external to the program representing the data will have to be called to 
decide when and how to update the file representing the sketch. That 
is, the program can call as a subroutine exactly the same subroutine al
ready called by the interpreter, which performs just this update. Again 
assuming that we do not recompile every frame, we find that the compiled 
program, like the optimized interpretive scheme, is running program 
schema rather than self-contained programs. 

Given that the difference between the two styles is one of degree 
only, and that the interpretive scheme takes much less nit-picking dis
tribution of data, and that writing programs which write programs is not 
the easiest type of task, it seems advisable to retain the interepretive 
style of execution, and the explicit tree representation of data. 

CONCLUSION 

Complexly interlocking graphic data trees can best be interpreted 
in an environment which precomputes selected graphic values and 
partially precomputes the constraint conditions which govern the display 
of the graphic data. 

The requirements of good hit-testing dictate that the original data 
tree be retained, and used as input to the graphic interpreter. Given 
these strategies, it seems likely that good performance can be achieved 
in a real time animation system which is expected to handle complex 
timing and positioning scenarios. This optimistic result spurs the au
thor to development of such capabilities for GRAX. 

REFERENCES 

[11 Barp.nholtz, J., TOWARDS A NEW ANIMATION TECHNOLOGY, M.Sc. Thesis, 
D~pnrtmpnt of Computp.r Science:-ITniversity of British Columbia, 1978 

121 I\nf'ckf'r, R. M., INTERACTIVE COMPUTER-MEDIATED ANIMATION, Ph.D. 
Thl'RlA, Dppnrtment of Electrical Engineering, Massachusetts Institute of 
Tp chnology, 1969 

[31 Burtnyk, N. and M. 
J. Society of Motion 
pp149-l53, M~ch 1971 

Wein, "Computer Generated Keyframe Animation", 
Picture and Television Engineers,Vol. 80, Num. 3, 


