
- 105 -

PROGRAMMING BY EXAMPLE FOR THE CASUAL USER: A CASE STUDY

I.H. Witten

University of Calgary

ABSTRACT

One way of giving casual users access to
some of the power of a computer, without the
need to learn formal programming methods, is to
allow complex tasks to be defined extensively
by example, rather than intensively by a
procedural specification. This paper studies
the extent to which iterative computations on
an electronic calculator can be inferred
interactively from an initial part of the
sequence of key-presses, using techniques of
non-deterministic structural identification of
behaviour sequences. The aim is to construct
an interactive device which is partially
self-programming.

Despite the fact that the device has no
prior knowledge of the syntax or semantics of
the dialogue, it is remarkable successful.
Several short, repetitive calculator problems
have been analysed. Even in a mixed sequence,
~ver 75% of the dialogue elements were pre­
dicted, with an error rate between 0.5% and
1.5%. However, casual users have not yet been
exposed to the scheme.

11 est possible de permettre aux usagers
occasionnels de faire appel a une partie de la
puissance de traitement d'un ordinateur sans
avoir a etudier les methodes de programmation
standard si l'on definit les taches complexes
de maniere "extensive", au moyen d'un exemple,
plut5t que de fa~on "intensive", ~ l'aide d'une
procedure de traitement. La presente communica­
tion evalue dans quelle mesure on peut obtenir
des calculs iteratifs par voie interactive, sur
une calculatrice electronique, ~ partir d'une
portion initiale de la sequence des pressions
sur les boutons en faisant appel a des methodes
d'identification structurale non deterministe
des sequences de comportement. 11 s'agit de
creer un organe interactif qui soit partiel­
lement autoprogrammable.

En depit du fait que cet organe ne soit
prealablement dote d'aucune connaissance
syntaxique ou semantique. il don ne d'excellents
resultats: plusieurs courts problemes de calcul
repetitifs ont ete analyses avec succes. Meme
dans le cas d'une sequence mixte, plus de 75%
des elements de dialogue ont ete predits, avec
un taux d'erreur variant entre 0.5% et 1.5%.
Toutefois, les utilisateurs occasionnels n'ont
pas encore mis ces methodes a l'essai.

CMCCS '81 I ACCHO '81

- 105 -

PROGRAMMING BY EXAMPLE FOR THE CASUAL USER: A CASE STUDY

I.H. Witten

University of Calgary

ABSTRACT

One way of giving casual users access to
some of the power of a computer, without the
need to learn formal programming methods, is to
allow complex tasks to be defined extensively
by example, rather than intensively by a
procedural specification. This paper studies
the extent to which iterative computations on
an electronic calculator can be inferred
interactively from an initial part of the
sequence of key-presses, using techniques of
non-deterministic structural identification of
behaviour sequences. The aim is to construct
an interactive device which is partially
self-programming.

Despite the fact that the device has no
prior knowledge of the syntax or semantics of
the dialogue, it is remarkable successful.
Several short, repetitive calculator problems
have been analysed. Even in a mixed sequence,
~ver 75% of the dialogue elements were pre­
dicted, with an error rate between 0.5% and
1.5%. However, casual users have not yet been
exposed to the scheme.

11 est possible de permettre aux usagers
occasionnels de faire appel a une partie de la
puissance de traitement d'un ordinateur sans
avoir a etudier les methodes de programmation
standard si l'on definit les taches complexes
de maniere "extensive", au moyen d'un exemple,
plut5t que de fa~on "intensive", ~ l'aide d'une
procedure de traitement. La presente communica­
tion evalue dans quelle mesure on peut obtenir
des calculs iteratifs par voie interactive, sur
une calculatrice electronique, ~ partir d'une
portion initiale de la sequence des pressions
sur les boutons en faisant appel a des methodes
d'identification structurale non deterministe
des sequences de comportement. 11 s'agit de
creer un organe interactif qui soit partiel­
lement autoprogrammable.

En depit du fait que cet organe ne soit
prealablement dote d'aucune connaissance
syntaxique ou semantique. il don ne d'excellents
resultats: plusieurs courts problemes de calcul
repetitifs ont ete analyses avec succes. Meme
dans le cas d'une sequence mixte, plus de 75%
des elements de dialogue ont ete predits, avec
un taux d'erreur variant entre 0.5% et 1.5%.
Toutefois, les utilisateurs occasionnels n'ont
pas encore mis ces methodes a l'essai.

CMCCS '81 I ACCHO '81

- 106 -

Introduction

The casual user, who can be characterized
as one who uses computers relatively
infrequently as an information processing tool
for his other professional or recreational
activities, has been the subject of some
controversy in the literature. Anderson
(1980), discussing the role of programming in
the home of the future, bases his work on the
premise that programming will be a widespread
activity, and declares that

"this must be so for effective use of
resources."

Cuff (1980) argues against the view that
programming ability will in the future be as
common in civilized society as numeracy or
literacy is today. For him, casual users may
or may not have some programming ability; but
even if they have, such skills

"are unlikely to be sharply honed through
working with the system."

It may be that such skills need not be
"sharply honed", at least not in any formal
sense. Anderson sees programming in the
future

"as gardening is today - a subject about
which many people have knowledge at
different levels, where knowledge
resources are many and varied, and
accessed in different ways."

Perhaps the view one takes depends upon how
far ahead one is looking. At any rate, it
seems clear that lack of programming ability
is likely to remain a stumbling-block to
casual use of computers for a long time to
come.

One way of giving casual users access to
some of the power of a computer without the
need to learn formal programming methods, is
to allow complex tasks to be defined
extensively by example, rather than
intensively by a procedural specification.
This paper stUdies the extent to which
iterative computations on an electronic
calculator can be inferred interactively from
an initial part of the sequence of key­
presses, using simple techniques of non­
deterministic structural identification of
behaviour sequences. The aim is to construct
an interactive device which is partially
self-programming. Even this rather modest
goal presents some interesting problems of

the technique may have application to a far
wider range of tasks involving simple command
languages - interactive editing, operating
system control languages like the Unix
"shell", and the like - where the user
occasionally has to choose between writing a
program for a short repetitive sequence of
operations and executing them manually.

Related work

Extensive rather than intensive problem
specification was studied by Zloof (1977) in
the context of data-base retrieval. The
Query-by-Example system, which is intended for
a user with no programming and little
mathematical experience, allows him to specify
the information to be retrieved by presenting
an example of the kind of item which should be
included. Although the system can be
criticized - one quickly gets bogged down in
built-in functions, condition boxes, and
metalinguistic symbols like single and double
underlining - it illustrates that useful
interactive systems can be built which allow
users to define complex tasks extensively
instead of intensively. One of its great
advantages is that it frees the user from
thinking of his retrieval problem in an
artificially sequential form: instead he can
specify the links, conditions, and constraints
as they occur to him. In contrast, the
present paper explores how strictly sequential
information may be inferred by a machine from
an initial subsequence.

Automatic inference of programs from
examples is another domain in which the
problem is specified extensively. Given a set
of input-output correspondences, the goal is
to construct automatically a program that
implements them. Amarel (1971), during the
course of a long investigation of this topiC,
distinguished derivation problems from
formulation problems. In the former, one is
given parts of a solution and asked to
complete it by using given rules for
construction. A classic example is automatic
theorem proving in elementary logic, for which
several successful systems have been built (eg
Wang, 1960 for propositional calculus;
Robinson, 1965 for predicate calculus).
"Formation" problems are more complex:
construction rules do not exist and one must
proceed to the goal by hypothesizing solutions
and testing them against the given input­
output correspondences. Little real progress
seems to have been made in automatic inference
of programs for these problems.

man-machine engineering. If it is successful, When a detailed trace of an example

CMCCS '81 / ACCHO '81

- 106 -

Introduction

The casual user, who can be characterized
as one who uses computers relatively
infrequently as an information processing tool
for his other professional or recreational
activities, has been the subject of some
controversy in the literature. Anderson
(1980), discussing the role of programming in
the home of the future, bases his work on the
premise that programming will be a widespread
activity, and declares that

"this must be so for effective use of
resources."

Cuff (1980) argues against the view that
programming ability will in the future be as
common in civilized society as numeracy or
literacy is today. For him, casual users may
or may not have some programming ability; but
even if they have, such skills

"are unlikely to be sharply honed through
working with the system."

It may be that such skills need not be
"sharply honed", at least not in any formal
sense. Anderson sees programming in the
future

"as gardening is today - a subject about
which many people have knowledge at
different levels, where knowledge
resources are many and varied, and
accessed in different ways."

Perhaps the view one takes depends upon how
far ahead one is looking. At any rate, it
seems clear that lack of programming ability
is likely to remain a stumbling-block to
casual use of computers for a long time to
come.

One way of giving casual users access to
some of the power of a computer without the
need to learn formal programming methods, is
to allow complex tasks to be defined
extensively by example, rather than
intensively by a procedural specification.
This paper stUdies the extent to which
iterative computations on an electronic
calculator can be inferred interactively from
an initial part of the sequence of key­
presses, using simple techniques of non­
deterministic structural identification of
behaviour sequences. The aim is to construct
an interactive device which is partially
self-programming. Even this rather modest
goal presents some interesting problems of

the technique may have application to a far
wider range of tasks involving simple command
languages - interactive editing, operating
system control languages like the Unix
"shell", and the like - where the user
occasionally has to choose between writing a
program for a short repetitive sequence of
operations and executing them manually.

Related work

Extensive rather than intensive problem
specification was studied by Zloof (1977) in
the context of data-base retrieval. The
Query-by-Example system, which is intended for
a user with no programming and little
mathematical experience, allows him to specify
the information to be retrieved by presenting
an example of the kind of item which should be
included. Although the system can be
criticized - one quickly gets bogged down in
built-in functions, condition boxes, and
metalinguistic symbols like single and double
underlining - it illustrates that useful
interactive systems can be built which allow
users to define complex tasks extensively
instead of intensively. One of its great
advantages is that it frees the user from
thinking of his retrieval problem in an
artificially sequential form: instead he can
specify the links, conditions, and constraints
as they occur to him. In contrast, the
present paper explores how strictly sequential
information may be inferred by a machine from
an initial subsequence.

Automatic inference of programs from
examples is another domain in which the
problem is specified extensively. Given a set
of input-output correspondences, the goal is
to construct automatically a program that
implements them. Amarel (1971), during the
course of a long investigation of this topiC,
distinguished derivation problems from
formulation problems. In the former, one is
given parts of a solution and asked to
complete it by using given rules for
construction. A classic example is automatic
theorem proving in elementary logic, for which
several successful systems have been built (eg
Wang, 1960 for propositional calculus;
Robinson, 1965 for predicate calculus).
"Formation" problems are more complex:
construction rules do not exist and one must
proceed to the goal by hypothesizing solutions
and testing them against the given input­
output correspondences. Little real progress
seems to have been made in automatic inference
of programs for these problems.

man-machine engineering. If it is successful, When a detailed trace of an example

CMCCS '81 / ACCHO '81

- 107 -

t=a(O) s=O i=1 i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1) x i=i+1 i<t-1 a(i+1»a(i)
i=i+1 i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1)=x i=i+1 <t-1 a(i+1)<a(i) s=i x=a(i)
a(i)=a(i+1) a(i+1)=x i=i+1 i=t-1 s>O s=O i=1 i<t-1 a(i+1>a(i) =i+1 i<t-1 a(i+1»a(i) i=i+1
i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1)=x i=i+1 i<t-1 a(i+1»a(i) i=i+1 i=t-1 s>O
s=O i=1 i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1)=x i=i+1
i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1»a(i) i=i+1 i=t-1 s>O s=O i=1 i<t-1 a(i+1»a(i) i=i+1
i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1»a(i) i=i+1 i=t-1 s=O end

Figure 1. Trace of a sorting process (after Gaines, 1976b)

execution of a program is available, however,
program inference can be easy. Biermann
(1972) discusses the inference of Turing
machines from traces of sample computations.
For example, the trace of a sort of the
three-element tape "baa" into "aab" can be
expressed as

b bR a bL b bL # -R b aR b bR a bL b bL a
aR b aR b bR

where single a's and b's represent the current
symbol read from the tape, and aL means "wri te
an A in the current place and move the
scanning head to the l.eft". The "(1" input
signifies that the end-marker has been read;
nothing should be written over it so a null
writing action ,,_It is specified. Given that
the model should be deterministic, with the
single a's, b's, and #'s as inputs and the
composite symbols as outputs, Biermann showed
that a data-driven, simplest-first search with
recursive back-tracking finds it very quickly.

While. interesting, this method is not of
any great practical significance because it
requires the trace to be error-free. Consider
the example of a sort program considered by
Gaines (1976b) and reproduced as Figure 1. It
is unlikely that such a trace would be entered
without error, and even if it were, it is not
obvious that it is any easier for a casual
user to generate than a structural description
-- a program -- for the sorting process.

Non-deterministic modelling Qf behaviour
seauences

Recently-developed techniques of non­
deterministic modelling seem to offer a way
out. Whilst non-deterministic input will

while if an exact fit is sought the model
becomes unreasonably complex. Models which
cannot be improved in simplicity without
sacrificing goodness-of-fit, and cannot be
improved in goodness-of-fit without
sacrificing simplicity, are called admissible,
and in general there is a set of such models
for a given behaviour, each with a different
complexity.

Another advantage of non-deterministic
modelling is that it can automatically
separate (unpredictable) inputs to the system
from its (predictable) outputs. Thus the user
need not specify which symbols are predictable
and which are not, nor remember the necessary
metalinguistic conventions. for such
specification. For example, the conditional
statements in Figure 1 are inputs, and this
fact is inferred by non-deterministic
modellers (Gaines, 1976b; Witten, 1979).

A recent paper (Witten, 1981) identifies
three primary techniques which have been used
to form non-deterministic models of behaviour
sequences, together with some variants of each
method. The present application calls for
incremental modelling, where new elements of
the incoming sequence are integrated into the
existing model as they are seen. Most non­
deterministic modelling methods require the
complete input sequence to be stored, and re­
model it from scratch when new information
shows the current model to be inadequate. The
only exceptions are "limited-context"
modelling methods, which assume that the
structure of the sequence can be characterized
by the set of overlapping k-tuples of symbols
that occur in the sequence, for some limited
"context" length k.

cause havoC in a deterministic modeller Witten (1979) has investigated how k-
(Gaines, 1976a), sensible results can be tuples can be recorded economically by
obtained if the modeller does not assume massaging them into the form of an automaton
determinism in the first place. There is a model. First the "ingenuous" model of k-
trade-off between model simplicity and tuples is constructed, with one state for each
goodness Qf ~ to the behaviour sequence. tuple and transitions which reflect the
Structurally simple models cannot provide a succession ·of tuples in the behaviour
good fit to non-deterministic behaviours, sequence. Only the last element of a tuple is

CMCCS '81 / ACCHO '81

- 107 -

t=a(O) s=O i=1 i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1) x i=i+1 i<t-1 a(i+1»a(i)
i=i+1 i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1)=x i=i+1 <t-1 a(i+1)<a(i) s=i x=a(i)
a(i)=a(i+1) a(i+1)=x i=i+1 i=t-1 s>O s=O i=1 i<t-1 a(i+1>a(i) =i+1 i<t-1 a(i+1»a(i) i=i+1
i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1)=x i=i+1 i<t-1 a(i+1»a(i) i=i+1 i=t-1 s>O
s=O i=1 i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1)<a(i) s=i x=a(i) a(i)=a(i+1) a(i+1)=x i=i+1
i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1»a(i) i=i+1 i=t-1 s>O s=O i=1 i<t-1 a(i+1»a(i) i=i+1
i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1»a(i) i=i+1 i<t-1 a(i+1»a(i) i=i+1 i=t-1 s=O end

Figure 1. Trace of a sorting process (after Gaines, 1976b)

execution of a program is available, however,
program inference can be easy. Biermann
(1972) discusses the inference of Turing
machines from traces of sample computations.
For example, the trace of a sort of the
three-element tape "baa" into "aab" can be
expressed as

b bR a bL b bL # -R b aR b bR a bL b bL a
aR b aR b bR

where single a's and b's represent the current
symbol read from the tape, and aL means "wri te
an A in the current place and move the
scanning head to the l.eft". The "(1" input
signifies that the end-marker has been read;
nothing should be written over it so a null
writing action ,,_It is specified. Given that
the model should be deterministic, with the
single a's, b's, and #'s as inputs and the
composite symbols as outputs, Biermann showed
that a data-driven, simplest-first search with
recursive back-tracking finds it very quickly.

While. interesting, this method is not of
any great practical significance because it
requires the trace to be error-free. Consider
the example of a sort program considered by
Gaines (1976b) and reproduced as Figure 1. It
is unlikely that such a trace would be entered
without error, and even if it were, it is not
obvious that it is any easier for a casual
user to generate than a structural description
-- a program -- for the sorting process.

Non-deterministic modelling Qf behaviour
seauences

Recently-developed techniques of non­
deterministic modelling seem to offer a way
out. Whilst non-deterministic input will

while if an exact fit is sought the model
becomes unreasonably complex. Models which
cannot be improved in simplicity without
sacrificing goodness-of-fit, and cannot be
improved in goodness-of-fit without
sacrificing simplicity, are called admissible,
and in general there is a set of such models
for a given behaviour, each with a different
complexity.

Another advantage of non-deterministic
modelling is that it can automatically
separate (unpredictable) inputs to the system
from its (predictable) outputs. Thus the user
need not specify which symbols are predictable
and which are not, nor remember the necessary
metalinguistic conventions. for such
specification. For example, the conditional
statements in Figure 1 are inputs, and this
fact is inferred by non-deterministic
modellers (Gaines, 1976b; Witten, 1979).

A recent paper (Witten, 1981) identifies
three primary techniques which have been used
to form non-deterministic models of behaviour
sequences, together with some variants of each
method. The present application calls for
incremental modelling, where new elements of
the incoming sequence are integrated into the
existing model as they are seen. Most non­
deterministic modelling methods require the
complete input sequence to be stored, and re­
model it from scratch when new information
shows the current model to be inadequate. The
only exceptions are "limited-context"
modelling methods, which assume that the
structure of the sequence can be characterized
by the set of overlapping k-tuples of symbols
that occur in the sequence, for some limited
"context" length k.

cause havoC in a deterministic modeller Witten (1979) has investigated how k-
(Gaines, 1976a), sensible results can be tuples can be recorded economically by
obtained if the modeller does not assume massaging them into the form of an automaton
determinism in the first place. There is a model. First the "ingenuous" model of k-
trade-off between model simplicity and tuples is constructed, with one state for each
goodness Qf ~ to the behaviour sequence. tuple and transitions which reflect the
Structurally simple models cannot provide a succession ·of tuples in the behaviour
good fit to non-deterministic behaviours, sequence. Only the last element of a tuple is

CMCCS '81 / ACCHO '81

- 108 -

.. r~corded as the output of the state. The
~odel is then subjected to a reduction process
wh:i.ch. coalesces states in a way that does not
destroy information about the k-tuples which
occurred in the behaviour. For example, in an
extreme case when modelling a random sequence
whose elements are drawn from an alphabet of q
symbols; qOOk different k-tuples will occur,
but this will become a mere q states (for a
Moore model) after reduction. Thus although
an. increased value of k normally provides a
larger, more accurate, model; it does not
necessarily do so if structure does not exist
in 'the behaviour sequence - as in our
example.

With this method, which we call length-k
modelling, each new element of the behaviour
sequence can be incorporated into an already
reduced model to form an updated version of
it. This crucial advantage offsets the
inherent weakness of limited context
modellers, namely that they can only cope with
"non-counting" events (McNaughton and Papert,
1971). In fact, this weakness has not proven
to be a disadvantage in the present study.

Programming A calculator Ql example

People who use interactive computers
regularly know that there are many situations
in which it is difficult to decide whether to
do a minor, but repetitive, task by hand or to
write a program to accomplish it. Interactive
editing provides many good examples. It is
often necessary to change each occurrence of a
particular token in a file to another token,
and many of those who have used small
computers for years will recall their joy when
first encountering an editor with a "global
change" facility. However, some tasks are not
quite so simple: hence the notion of
regular-expression-searching .. together with a
special character which designates the matched
expression, was introduced. More flexibility
is provided by making the editor programmable,
either from within via a macro facility or
from without via editing command files. As a
consequence, using the editor has become a
more highly skilled task.

Simple, repetitive arithmetic operations
are a second problem domain which. often
presents a quandary as to whether a task
should be done by hand or by program. For
example, one may wish to plot y = x exp(l-x)
for a dozen or so values of x: should one do
it on a hand calculator or write a BASIC
prvgram? The first is easier and more
certain; it will not take more than 10
minutes. The second may be quicker, but could

involve a session with the manual to refresh
one's memory with the vagaries of BASIC
syntax. This seems to be an ideal domain to
investigate the application of non­
deterministic modelling techniques to
automatic program formation.

Consider the possibility of an invisible
non-deterministic modeller "looking over the
shoulder" of the user; and prepared to perform
actions automatically for him if it has
sufficient confidence that it knows what to
do. The user must pay a price for this
serVice, for the modeller cannot help but be
wrong occasionally. Extra keys must be
provided to enable him to accept or reject the
entry.

~ dialogues. Figures 3, 4, and 5 show
some results obtained from a simulation of
length-k modelling applied to a calculator.
The device chosen was the Casio fx-20, an
infix machine whose relevant keys are
summarized in Figure 2. These illustrations
were produced under somewhat idealized
conditions - we will discuss later the
detrimental effects of operator error and
negative transfer of learning between tasks.
However, they are remarkably successful.

Figures 3 and 4 are each divided into
two, showing the keys pressed by the operator
and those suggested by the model. Time
proceeds from left to right and top to bottom,
and for conciseness the symbols are run on to
the same line wherever possible. Figure 3
evaluates x exp(l-x) for a range of values
of x, and the task has been learned by halfway

0 4 8
1 5 9 numeric keys
2 6
3 7

+ 11 infix operators
I

+1- (negate)
exp post fix operators
log
cos

= (evaluate)
mc (clear memory)
mr (retrieve operand from memory)
m+= (evaluate and add to memory)

Figure 2. Relevant keys on the calculator
which was used for the examples

CMCCS '81 I ACCHO '81

- 108 -

.. r~corded as the output of the state. The
~odel is then subjected to a reduction process
wh:i.ch. coalesces states in a way that does not
destroy information about the k-tuples which
occurred in the behaviour. For example, in an
extreme case when modelling a random sequence
whose elements are drawn from an alphabet of q
symbols; qOOk different k-tuples will occur,
but this will become a mere q states (for a
Moore model) after reduction. Thus although
an. increased value of k normally provides a
larger, more accurate, model; it does not
necessarily do so if structure does not exist
in 'the behaviour sequence - as in our
example.

With this method, which we call length-k
modelling, each new element of the behaviour
sequence can be incorporated into an already
reduced model to form an updated version of
it. This crucial advantage offsets the
inherent weakness of limited context
modellers, namely that they can only cope with
"non-counting" events (McNaughton and Papert,
1971). In fact, this weakness has not proven
to be a disadvantage in the present study.

Programming A calculator Ql example

People who use interactive computers
regularly know that there are many situations
in which it is difficult to decide whether to
do a minor, but repetitive, task by hand or to
write a program to accomplish it. Interactive
editing provides many good examples. It is
often necessary to change each occurrence of a
particular token in a file to another token,
and many of those who have used small
computers for years will recall their joy when
first encountering an editor with a "global
change" facility. However, some tasks are not
quite so simple: hence the notion of
regular-expression-searching .. together with a
special character which designates the matched
expression, was introduced. More flexibility
is provided by making the editor programmable,
either from within via a macro facility or
from without via editing command files. As a
consequence, using the editor has become a
more highly skilled task.

Simple, repetitive arithmetic operations
are a second problem domain which. often
presents a quandary as to whether a task
should be done by hand or by program. For
example, one may wish to plot y = x exp(l-x)
for a dozen or so values of x: should one do
it on a hand calculator or write a BASIC
prvgram? The first is easier and more
certain; it will not take more than 10
minutes. The second may be quicker, but could

involve a session with the manual to refresh
one's memory with the vagaries of BASIC
syntax. This seems to be an ideal domain to
investigate the application of non­
deterministic modelling techniques to
automatic program formation.

Consider the possibility of an invisible
non-deterministic modeller "looking over the
shoulder" of the user; and prepared to perform
actions automatically for him if it has
sufficient confidence that it knows what to
do. The user must pay a price for this
serVice, for the modeller cannot help but be
wrong occasionally. Extra keys must be
provided to enable him to accept or reject the
entry.

~ dialogues. Figures 3, 4, and 5 show
some results obtained from a simulation of
length-k modelling applied to a calculator.
The device chosen was the Casio fx-20, an
infix machine whose relevant keys are
summarized in Figure 2. These illustrations
were produced under somewhat idealized
conditions - we will discuss later the
detrimental effects of operator error and
negative transfer of learning between tasks.
However, they are remarkably successful.

Figures 3 and 4 are each divided into
two, showing the keys pressed by the operator
and those suggested by the model. Time
proceeds from left to right and top to bottom,
and for conciseness the symbols are run on to
the same line wherever possible. Figure 3
evaluates x exp(l-x) for a range of values
of x, and the task has been learned by halfway

0 4 8
1 5 9 numeric keys
2 6
3 7

+ 11 infix operators
I

+1- (negate)
exp post fix operators
log
cos

= (evaluate)
mc (clear memory)
mr (retrieve operand from memory)
m+= (evaluate and add to memory)

Figure 2. Relevant keys on the calculator
which was used for the examples

CMCCS '81 I ACCHO '81

Querator presses

. ,1 mc m+= +1- + = exp x mr =

.2 mc m+=

.3

.4

- 109 -

Calculator

+1- +

mc m+= +1- +
mc m+= +1- +

indicates

[answer]

= exp x mr = [answer]
= exp x mr = [answer]
= exp x mr = [answer]

[from here on the device behaves as though it had been explicitly
programmed for the calculation]

Figure 3. Evaluation of x exp(1-x)

Operator presses Calculator indicates

2 log m+=
.0018 log 1 mr 1 8 = + 1 =
.0156 log 1

.025

.03125

8

log
log

mr /

/ mr 1 8
/ mr 1 8

[answer]

= +
= [answer]

= + 1 = [answer]
= + 1 = [answer]

[from here on the device behaves as though it had been explicitly
programmed for the calculation]

Figure 4. Evaluation of 1 + (log x)/(8 log 2)

45 cos x 2 x .9 mc m+= .9 x x = + 1 - mr = log x 10 = [answer; -2.69858]
100 1 4000 x 180 ~ <DEL)
= cos x 2 X .9 mc m+= .9 X X =- ± 1 ::..!!!r. =- .lQg X 10 =- <DEL)
+ 20 + 2.69858 ± <DEL)
= [answer]
500 L 4000 X 180 =- QQ1! X 2 X ~ m+= .Q....2. X X =- ± ~::. mr =-.lQg X 1Q + 20 ± 2.69858 =- [answer]
1000 L .!!QQQ. X 180 =- QQ1! X g X ~ .!!!±.:. .!L..9. X X =- ± .1 ::. !!!.!: =- .lQg X 1Q + 20 ± 2.69858 _ [~]
1500 L 4000 X lM. =- cos X g X ~ m+= .lW! X X =- ±.1::. mr =- log X 1Q + 20 ± 2.69858 _ [answer]
2000 L .!:!QQQ. X lM. =- QQ1! X g X ~ m+= .lW! X X =- ± .1 ::. mr =- .lQg X 1Q + 20 ± 2.69858 _ [answer]
2500 L .!:!QQQ. X lM. =- QQ1! X g X ~ m+= M X X =- ± .1 ::. mr =- .!Qg X 1Q + 20 ± 2.69858 _ [answer]
3000 L .!!QQ.Q. X lM. =- QQ1! X g X ~ .!!!±.:. Q...9. X X =- ± .1 ::. mr =- .!2.& X 1Q + 20 ± 2.69858 =- [answer]
3500 L .!:!QQQ. X 180 =- cos X g X9......!!!. .!!!±.:. .Q...2. X X =- ± .1 ::. mr =- .!Qg X 1Q ± 20 ± 2.69858 _ [answer]
4000 L .!!QQ.Q. X lM. =- QQ1! X g X ~ m+= .lW! X X =- ± .1 ::. .!!!r. =-].Qg X 1Q ± 20 ± 2.69858.:. [answer]

Figure 5. A more complicated calculation (suggestions from the model are underlined)

CMCCS '81 I ACCHO '81

Querator presses

. ,1 mc m+= +1- + = exp x mr =

.2 mc m+=

.3

.4

- 109 -

Calculator

+1- +

mc m+= +1- +
mc m+= +1- +

indicates

[answer]

= exp x mr = [answer]
= exp x mr = [answer]
= exp x mr = [answer]

[from here on the device behaves as though it had been explicitly
programmed for the calculation]

Figure 3. Evaluation of x exp(1-x)

Operator presses Calculator indicates

2 log m+=
.0018 log 1 mr 1 8 = + 1 =
.0156 log 1

.025

.03125

8

log
log

mr /

/ mr 1 8
/ mr 1 8

[answer]

= +
= [answer]

= + 1 = [answer]
= + 1 = [answer]

[from here on the device behaves as though it had been explicitly
programmed for the calculation]

Figure 4. Evaluation of 1 + (log x)/(8 log 2)

45 cos x 2 x .9 mc m+= .9 x x = + 1 - mr = log x 10 = [answer; -2.69858]
100 1 4000 x 180 ~ <DEL)
= cos x 2 X .9 mc m+= .9 X X =- ± 1 ::..!!!r. =- .lQg X 10 =- <DEL)
+ 20 + 2.69858 ± <DEL)
= [answer]
500 L 4000 X 180 =- QQ1! X 2 X ~ m+= .Q....2. X X =- ± ~::. mr =-.lQg X 1Q + 20 ± 2.69858 =- [answer]
1000 L .!!QQQ. X 180 =- QQ1! X g X ~ .!!!±.:. .!L..9. X X =- ± .1 ::. !!!.!: =- .lQg X 1Q + 20 ± 2.69858 _ [~]
1500 L 4000 X lM. =- cos X g X ~ m+= .lW! X X =- ±.1::. mr =- log X 1Q + 20 ± 2.69858 _ [answer]
2000 L .!:!QQQ. X lM. =- QQ1! X g X ~ m+= .lW! X X =- ± .1 ::. mr =- .lQg X 1Q + 20 ± 2.69858 _ [answer]
2500 L .!:!QQQ. X lM. =- QQ1! X g X ~ m+= M X X =- ± .1 ::. mr =- .!Qg X 1Q + 20 ± 2.69858 _ [answer]
3000 L .!!QQ.Q. X lM. =- QQ1! X g X ~ .!!!±.:. Q...9. X X =- ± .1 ::. mr =- .!2.& X 1Q + 20 ± 2.69858 =- [answer]
3500 L .!:!QQQ. X 180 =- cos X g X9......!!!. .!!!±.:. .Q...2. X X =- ± .1 ::. mr =- .!Qg X 1Q ± 20 ± 2.69858 _ [answer]
4000 L .!!QQ.Q. X lM. =- QQ1! X g X ~ m+= .lW! X X =- ± .1 ::. .!!!r. =-].Qg X 1Q ± 20 ± 2.69858.:. [answer]

Figure 5. A more complicated calculation (suggestions from the model are underlined)

CMCCS '81 I ACCHO '81

- 110 -

through the second iteration. From this point
onwards the calculator behaves as a special­
purpose device tailored for the problem: it
executes all necessary instructions, pausing
only for input. The evaluation of
1 + (log x)/(8 log 2) in Figure 4 shows
similar behaviour.

The rather more complicated calculation
of

20 + 10 10g[1 + a**2 - 2a cos(180x/4000)]
- 10 10g[1 + a**2 - 2a cos 45]

(for a=0.9) is depicted in Figure 5. For
conciseness, the interaction is shown in a
different form from that of the previous
figures. Suggestions from the model are
underlined. There is no special significance
in the placing of the line breaks. Since the
calculator possesses only one "memory"
location, it was expedient to compute the last
sub-expression first and jot down the result.
Some interference occurred between this
initial task and the main one: three
suggestions had to be rejected by the operator
(the key rejects the previous
suggestion). On the positive side, note that
the result of the preliminary calculation,
2.69858, had to be keyed only twice before the
system picked up the fact that it could be
predicted. However, only towards the end of
the interaction does the device become fully
programmed, for the penultimate "+" in most of
the lines has to be inserted by the user.

Method. These illustrations use the length-k
modelling technique outlined above, with k set
to 4. However, the technique was tailored
somewhat to the problem at hand. It is clear
from a cursory analysis of calculator
sequences that numbers and operators should be
treated rather differently, for a typical
sequence comprises different numbers embedded
in a fixed template of operators. This rule
is not universal, because fixed constants
appear in the stream as well as variable input
data. Notice how the constants 1 in Figure 3,
8 and 1 in Figure 4, and 4000, 180, 2, .9, 1,
10, 20, and 2.69858 in Figure 5 are all
quickly picked out as predictable by the
system.

In order to prevent differences in data
values from rendering the length-k sequences
inoperative, two length-k models were formed
side by side. One used the raw behaviour
sequence as observed, and the other mapped all
numbers into the same token <NUM>.

prediction. Furthermore, the system was
constructed to be more conservative about
predicting a number than an operator. No
prediction was made unless it would have been
correct the previous n times it occurred, and
n was set differently for operators (n= 1) and
numbers (n=2).

For example, consider the state of the
model after the second line of Figure 3 has
been generated, that is, after

has
have

. 1
mc

m+=
+/-

+

=
exp

x
mr
=
.2

.1 mc m+= +/- + 1 = exp x mr =

.2 mc m+= +/- +

been seen. With k=4, the tuples which
accumulated are

mc m+= +1- (2) <NUM> mc m+= +/-
m+= +/- + (2) m+= +1- + <NUM>
+/- + (1) +/- + <NUM> =

+ = (1) + <NUM> = exp
1 = exp (1) <NUM> = exp x
= exp x (1) x mr = <NUM>

exp x mr (1) mr = <NUM> mc
x mr = (1) = <NUM> mc m+=
mr = .2 (1)
= .2 mc (1)
.2 mc m+= (1)
mc m+= +1- (1)

(3)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

The numbers in parentheses count how many
times each tuple has been encountered. Hence,
although the current context "m+= +/- +"
predicts a "1", it has only been confirmed
once and this falls short of the threshold for
predicting numbers (namely 2). Once the "1"
has been entered, the new context "+/- + 1"
predicts an "=", again with a single previous
confirmation. This is used because the
threshold for predicting operators is only 1.

If an erroneous suggestion is made, the
modeller is very cautious about making a
prediction from that tuple in the future.
However, as time passes and its belief in the
model is continually confirmed, it will
.eventually venture a suggestion. This is the
reason why the penultimate "+"s on most of the
lines in Figure 5 are only suggested at the
end of the interaction. Both of the tuples

log x 10 =
log x 10 +

have occurred in the interaction, but a long
run of the second is enough to cause it to be
used eventually.

Predictions from the latter model were only Possible enhancements. There are several
used when the former one failed to yield a fairly obvious modifications which could be

CMCCS '81 / ACCHO '81

- 110 -

through the second iteration. From this point
onwards the calculator behaves as a special­
purpose device tailored for the problem: it
executes all necessary instructions, pausing
only for input. The evaluation of
1 + (log x)/(8 log 2) in Figure 4 shows
similar behaviour.

The rather more complicated calculation
of

20 + 10 10g[1 + a**2 - 2a cos(180x/4000)]
- 10 10g[1 + a**2 - 2a cos 45]

(for a=0.9) is depicted in Figure 5. For
conciseness, the interaction is shown in a
different form from that of the previous
figures. Suggestions from the model are
underlined. There is no special significance
in the placing of the line breaks. Since the
calculator possesses only one "memory"
location, it was expedient to compute the last
sub-expression first and jot down the result.
Some interference occurred between this
initial task and the main one: three
suggestions had to be rejected by the operator
(the key rejects the previous
suggestion). On the positive side, note that
the result of the preliminary calculation,
2.69858, had to be keyed only twice before the
system picked up the fact that it could be
predicted. However, only towards the end of
the interaction does the device become fully
programmed, for the penultimate "+" in most of
the lines has to be inserted by the user.

Method. These illustrations use the length-k
modelling technique outlined above, with k set
to 4. However, the technique was tailored
somewhat to the problem at hand. It is clear
from a cursory analysis of calculator
sequences that numbers and operators should be
treated rather differently, for a typical
sequence comprises different numbers embedded
in a fixed template of operators. This rule
is not universal, because fixed constants
appear in the stream as well as variable input
data. Notice how the constants 1 in Figure 3,
8 and 1 in Figure 4, and 4000, 180, 2, .9, 1,
10, 20, and 2.69858 in Figure 5 are all
quickly picked out as predictable by the
system.

In order to prevent differences in data
values from rendering the length-k sequences
inoperative, two length-k models were formed
side by side. One used the raw behaviour
sequence as observed, and the other mapped all
numbers into the same token <NUM>.

prediction. Furthermore, the system was
constructed to be more conservative about
predicting a number than an operator. No
prediction was made unless it would have been
correct the previous n times it occurred, and
n was set differently for operators (n= 1) and
numbers (n=2).

For example, consider the state of the
model after the second line of Figure 3 has
been generated, that is, after

has
have

. 1
mc

m+=
+/-

+

=
exp

x
mr
=
.2

.1 mc m+= +/- + 1 = exp x mr =

.2 mc m+= +/- +

been seen. With k=4, the tuples which
accumulated are

mc m+= +1- (2) <NUM> mc m+= +/-
m+= +/- + (2) m+= +1- + <NUM>
+/- + (1) +/- + <NUM> =

+ = (1) + <NUM> = exp
1 = exp (1) <NUM> = exp x
= exp x (1) x mr = <NUM>

exp x mr (1) mr = <NUM> mc
x mr = (1) = <NUM> mc m+=
mr = .2 (1)
= .2 mc (1)
.2 mc m+= (1)
mc m+= +1- (1)

(3)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

The numbers in parentheses count how many
times each tuple has been encountered. Hence,
although the current context "m+= +/- +"
predicts a "1", it has only been confirmed
once and this falls short of the threshold for
predicting numbers (namely 2). Once the "1"
has been entered, the new context "+/- + 1"
predicts an "=", again with a single previous
confirmation. This is used because the
threshold for predicting operators is only 1.

If an erroneous suggestion is made, the
modeller is very cautious about making a
prediction from that tuple in the future.
However, as time passes and its belief in the
model is continually confirmed, it will
.eventually venture a suggestion. This is the
reason why the penultimate "+"s on most of the
lines in Figure 5 are only suggested at the
end of the interaction. Both of the tuples

log x 10 =
log x 10 +

have occurred in the interaction, but a long
run of the second is enough to cause it to be
used eventually.

Predictions from the latter model were only Possible enhancements. There are several
used when the former one failed to yield a fairly obvious modifications which could be

CMCCS '81 / ACCHO '81

- 111 -

made to the algorithm to improve its
performance. Firstly, it does not notice
multiple occurrences of the same input data.
For example, if x exp(l-x) were evaluated on
a calculator without a memory element, x would
have to be entered twice. The modelling
procedure we have outlined is incapable of
spotting this redundancy. It would clearly be
easy to incorporate a special-purpose "demon"
which noticed such repetition. On the whole,
however, we prefer more generally-applicable
techniques. (It may, for example, be possible
to solve this problem using a recursive model;
see Witten, 1981.) Furthermore, calculator
manufacturers very sensibly try to design
their machines to minimize such redundancy!

Secondly, the procedure is entirely
lexical and does not recognize the properties
of numbers. For example, in the sequence 0.1,
0.2, 0.3, ... (which occurs in Figure 3), it
is evident what probably comes next; however,
the system as presently implemented does not
spot the pattern. Again, a special-purpose
"demon" could easily be introduced.

Finally, calculator interactions have a
definite syntax which is not exploited at all.
For example, the system will learn nonsense
sequences like "1 1 + + 1 1 + +" and
regurgitate them just as readily as it will
syntactically meaningful sequences. (The
sequence "x x" which occurs in Figure 5 may
seem anomalous too: in fact this is Casio's
way of squaring a number.) This, we feel, is
an advantage rather than a disadvantage of the
scheme. It is obedient, uncritical, and -­
above all -- general.

Effects Q(~. Now let us examine the
effects of free variation in the behaviour
sequence. As noted above, non-deterministic
modelling methods do not produce absurd models
in the presence of noise as do deterministic
ones.

One source of variation in calculator
control sequences is the discovery of an
easier way to do the task. For example,
half-way through Figure 5 one may decide to
enter 1.81 directly instead of ".9 x x = + 1",
for it is the same quantity. However, this
will surely not be a temptation in the
interactive system we propose, for no penalty
is associated with the latter sequence once it
has been assimilated.

x exp(l-x) by two different methods. One
evaluates l-x using the calculator and the
other evaluates it mentally. Three
suggestions had to be rejected in this
dialogue. The last error was rather unlucky,
being caused by the coincidence of the .8 in
".8 exp(.2)" and ".8 exp(1-.8)". This
illustrates how difficult it is to predict the
behaviour of the modeller in advance: it is
only of use in truly interactive applications.

All three errors are caused by incorrect
predictions across the boundaries between
individual "calculations", that is to say,
between separate evaluations of the function
x exp(l-x). If the modeller were informed of
the points in the sequence where an "answer"
is obtained, this could be used to delimit the
individual calculations and the erroneous
suggestions would be avoided. However, since
the calculator produces a display after every
entry it is not possible to discern these
points automatically: a separate "delimiter"
key would be required.

These errors are examples of negative
transfer of learning from one task to another,
for the two ways of doing the calculation are
really two separate tasks from the pOint of
view of the non-deterministic modeller. For a
larger example, the calculations of Figures 3,
4, and 5 were concatenated together and run
through the modeller with the same parameters
as before. The results were much worse than
for the problems considered separately. There
were 484 good predictions and 9 bad
(incorrect) ones out of a total of 643 lexical
items. Note that less than 2% of predictions
are incorrect.

This figure can be reduced even further
by changing the parameters of the modeller.
For example, using a length-5, -6, or -7 model
instead of the length-4 one increases the
number of correct suggestions slightly to 510,
and decreases the number of incorrect ones to
3 (0.6%). A single error occurs at the
transition between each problem; one between
the calculation shown in Figure 3 and that of
Figure 4, one between those of Figures 4 and
5, and one between the two parts of Figure 5
(which as noted above are really separate
tasks). No suggestions were made for the
remaining 130 lexical items. Over the three
problems treated individually (as shown in
Figures 3-5), a total of 119 items are not
predicted, and thus the penalty paid for

If the simplifying discovery is made very combining the problems into one behaviour
early on in the interaction, however, it may sequence is quite small.
cause some incorrect predictions. For
example, Figure 6 shows the evaluation of

CMCCS '81 I ACCHO '81

- 111 -

made to the algorithm to improve its
performance. Firstly, it does not notice
multiple occurrences of the same input data.
For example, if x exp(l-x) were evaluated on
a calculator without a memory element, x would
have to be entered twice. The modelling
procedure we have outlined is incapable of
spotting this redundancy. It would clearly be
easy to incorporate a special-purpose "demon"
which noticed such repetition. On the whole,
however, we prefer more generally-applicable
techniques. (It may, for example, be possible
to solve this problem using a recursive model;
see Witten, 1981.) Furthermore, calculator
manufacturers very sensibly try to design
their machines to minimize such redundancy!

Secondly, the procedure is entirely
lexical and does not recognize the properties
of numbers. For example, in the sequence 0.1,
0.2, 0.3, ... (which occurs in Figure 3), it
is evident what probably comes next; however,
the system as presently implemented does not
spot the pattern. Again, a special-purpose
"demon" could easily be introduced.

Finally, calculator interactions have a
definite syntax which is not exploited at all.
For example, the system will learn nonsense
sequences like "1 1 + + 1 1 + +" and
regurgitate them just as readily as it will
syntactically meaningful sequences. (The
sequence "x x" which occurs in Figure 5 may
seem anomalous too: in fact this is Casio's
way of squaring a number.) This, we feel, is
an advantage rather than a disadvantage of the
scheme. It is obedient, uncritical, and -­
above all -- general.

Effects Q(~. Now let us examine the
effects of free variation in the behaviour
sequence. As noted above, non-deterministic
modelling methods do not produce absurd models
in the presence of noise as do deterministic
ones.

One source of variation in calculator
control sequences is the discovery of an
easier way to do the task. For example,
half-way through Figure 5 one may decide to
enter 1.81 directly instead of ".9 x x = + 1",
for it is the same quantity. However, this
will surely not be a temptation in the
interactive system we propose, for no penalty
is associated with the latter sequence once it
has been assimilated.

x exp(l-x) by two different methods. One
evaluates l-x using the calculator and the
other evaluates it mentally. Three
suggestions had to be rejected in this
dialogue. The last error was rather unlucky,
being caused by the coincidence of the .8 in
".8 exp(.2)" and ".8 exp(1-.8)". This
illustrates how difficult it is to predict the
behaviour of the modeller in advance: it is
only of use in truly interactive applications.

All three errors are caused by incorrect
predictions across the boundaries between
individual "calculations", that is to say,
between separate evaluations of the function
x exp(l-x). If the modeller were informed of
the points in the sequence where an "answer"
is obtained, this could be used to delimit the
individual calculations and the erroneous
suggestions would be avoided. However, since
the calculator produces a display after every
entry it is not possible to discern these
points automatically: a separate "delimiter"
key would be required.

These errors are examples of negative
transfer of learning from one task to another,
for the two ways of doing the calculation are
really two separate tasks from the pOint of
view of the non-deterministic modeller. For a
larger example, the calculations of Figures 3,
4, and 5 were concatenated together and run
through the modeller with the same parameters
as before. The results were much worse than
for the problems considered separately. There
were 484 good predictions and 9 bad
(incorrect) ones out of a total of 643 lexical
items. Note that less than 2% of predictions
are incorrect.

This figure can be reduced even further
by changing the parameters of the modeller.
For example, using a length-5, -6, or -7 model
instead of the length-4 one increases the
number of correct suggestions slightly to 510,
and decreases the number of incorrect ones to
3 (0.6%). A single error occurs at the
transition between each problem; one between
the calculation shown in Figure 3 and that of
Figure 4, one between those of Figures 4 and
5, and one between the two parts of Figure 5
(which as noted above are really separate
tasks). No suggestions were made for the
remaining 130 lexical items. Over the three
problems treated individually (as shown in
Figures 3-5), a total of 119 items are not
predicted, and thus the penalty paid for

If the simplifying discovery is made very combining the problems into one behaviour
early on in the interaction, however, it may sequence is quite small.
cause some incorrect predictions. For
example, Figure 6 shows the evaluation of

CMCCS '81 I ACCHO '81

- 112 -

Operator presses Calculator indicates

. 1 mc m+=+/- + 1 = exp x mr = [answer]

.8 exp x 0.2 = [answer]

.3 mc m+= +/- +
= exp x mr = [answer]

.4 exp
(DEL) mc m+= +/- + 1 = exp x mr = [answer]
.5 exp x
.5 = [answer]
.4 mc
(DEL) exp x
.6 = [answer]
.7 mc m+= +/- + = exp x mr = [answer]
.8 exp
(DEL) mc m+= +/- + = exp x mr = [answer]
.1 exp x
.9 = [answer]
1.1 mc m+= +/- + = exp x mr = [answer]
-. 2 exp x 1.2 = [answer]
1.3 mc m+= +/- + = exp x mr = [answer]
1.4 mc m+= +/- + = exp x mr = [answer]
-.5 exp x 1.5 = [answer]
-1 exp x 2 = [answer]
2.5 mc m+= +/- + = exp x mr = [answer]
3 mc m+= +/- + = exp x mr = [answer]
-3 exp x 4 = [answer]

Figure 6. Evaluation of x exp(l-x) using two different methods

The user interface

As was noted above, there are severe
problems in engineering such an interface so
that it can help the user in an unobtrusive
way. Nothing is more infuriating than an
assistant who keeps giving wrong hints!

When the system we have described makes
mistakes, it makes them in a way that seems to
the user to be erratic and capricious; thus
breaking one of the cardinal rules of
interactive programming -- that the user
should see the system as predictable and
reliable (Gaines and Facey, 1975). Thus we
have aimed for a ~ small number of errors,
and a substantial amount of help from the
modeller -- even over a short interactive
sequence.

It is possible to moderate the operation
of the non-deterministic modeller in two
different ways, and these could be provided to
the user in the form of

(i) an under-confident/over-confident control
(ii) a complex-model/simple-model control.

The first is provided by altering the number
CMCCS '81

of times a tuple is seen before the modeller
ventures a suggestion; while for the second,
the parameter k of the model is adjusted.
Whether such controls should be provided is an
open question at present. It is interesting
to note that they are a form of "phatic"
communication (Jacobson, 1960), which is a
mode that heretofore has played little part in
man-machine dialogue (Witten, 1980). A
different communication modality, such as a
limited word recognizer, could be an ideal
medium for these controls.

Conclusions

This paper has shown how systematic
processing of a "history list" of previous
interactions can be used to predict future
entries. Some time ago, artificial
intelligence researchers discovered the
potency of a history list of subgoals
attempted during the solution of a problem.
(Recall the "Why did you pick up the green
pyramid?" type of question in Winograd's
(1972) famous dialogue.) Explicit reference
to the history list is permitted in some
recent command language interpreters (eg Joy,
1979). However, we propose here implicit use
of the history list for providing assistance

I ACCHO '81

- 112 -

Operator presses Calculator indicates

. 1 mc m+=+/- + 1 = exp x mr = [answer]

.8 exp x 0.2 = [answer]

.3 mc m+= +/- +
= exp x mr = [answer]

.4 exp
(DEL) mc m+= +/- + 1 = exp x mr = [answer]
.5 exp x
.5 = [answer]
.4 mc
(DEL) exp x
.6 = [answer]
.7 mc m+= +/- + = exp x mr = [answer]
.8 exp
(DEL) mc m+= +/- + = exp x mr = [answer]
.1 exp x
.9 = [answer]
1.1 mc m+= +/- + = exp x mr = [answer]
-. 2 exp x 1.2 = [answer]
1.3 mc m+= +/- + = exp x mr = [answer]
1.4 mc m+= +/- + = exp x mr = [answer]
-.5 exp x 1.5 = [answer]
-1 exp x 2 = [answer]
2.5 mc m+= +/- + = exp x mr = [answer]
3 mc m+= +/- + = exp x mr = [answer]
-3 exp x 4 = [answer]

Figure 6. Evaluation of x exp(l-x) using two different methods

The user interface

As was noted above, there are severe
problems in engineering such an interface so
that it can help the user in an unobtrusive
way. Nothing is more infuriating than an
assistant who keeps giving wrong hints!

When the system we have described makes
mistakes, it makes them in a way that seems to
the user to be erratic and capricious; thus
breaking one of the cardinal rules of
interactive programming -- that the user
should see the system as predictable and
reliable (Gaines and Facey, 1975). Thus we
have aimed for a ~ small number of errors,
and a substantial amount of help from the
modeller -- even over a short interactive
sequence.

It is possible to moderate the operation
of the non-deterministic modeller in two
different ways, and these could be provided to
the user in the form of

(i) an under-confident/over-confident control
(ii) a complex-model/simple-model control.

The first is provided by altering the number
CMCCS '81

of times a tuple is seen before the modeller
ventures a suggestion; while for the second,
the parameter k of the model is adjusted.
Whether such controls should be provided is an
open question at present. It is interesting
to note that they are a form of "phatic"
communication (Jacobson, 1960), which is a
mode that heretofore has played little part in
man-machine dialogue (Witten, 1980). A
different communication modality, such as a
limited word recognizer, could be an ideal
medium for these controls.

Conclusions

This paper has shown how systematic
processing of a "history list" of previous
interactions can be used to predict future
entries. Some time ago, artificial
intelligence researchers discovered the
potency of a history list of subgoals
attempted during the solution of a problem.
(Recall the "Why did you pick up the green
pyramid?" type of question in Winograd's
(1972) famous dialogue.) Explicit reference
to the history list is permitted in some
recent command language interpreters (eg Joy,
1979). However, we propose here implicit use
of the history list for providing assistance

I ACCHO '81

- 113 -

to the casual user.

Despite the fact that the modeller has no
prior knowledge of the syntax or semantics of
the dialogue, it is remarkably successful.
Three short repetitive problems for an
electronic calculator were examined. Although
the problems are quite different, they were
concatenated into a single input sequence.
Even with the default settings for the
modeller (which were intended for isolated
problems), over 15% of the sequence elements
were predicted; and less than 1.5% of
incorrect predictions were made. There is
always a temptation to adjust the parameters
of the modeller in retrospect to give good
performance. When this was done, nearly 80%
correct predictions were achieved with an
error rate of under 0.5%. However, the
reaction of casual users to the scheme has not
been obtained: clearly this is a next step.

Like much research, this project raises
many more questions than it answers. For
example,

should the complex/simple-model parameter
for the raw behaviour sequence be different
from that of the model where numeric tokens
are mapped into <NUM>?
should the under/over-confident parameter
be different for the two models?
if the modeller made several models with
different values of k, could it choose
between them on an adaptive basis to
improve its predictions?

These are system-theoretic questions, which we
hope to resolve using arguments based on the
distribution of real-world data for calculator
interactions.

Finally, it is crucial that if such a
modeller is employed, it works instantly. It
would be extremely irritating to have
suggestions for a token made after it had
actually been typed, due to non-realtime
response! The technique is suited to
powerful, personal computers; to the home or
office environment; to the microcomputer age,
where casual users must employ sophisticated
information-processing tools.

Acknowledgements

It is a great pleasure to acknowledge the
influence and encouragement of Brian Gaines,
John Cleary, and especially John Andreae. The
techniques described here (but not the
applications) have their origin in Andreae
(1911).

References

Amarel, S. (1911) Representations and models
in problems of program formation, in
Machine Intelligence Q, edited by
B.Meltzer and D.Michie, 411-466.
Edinburgh Univ Press.

Andreae, J.H. (1911) Thinking with the
teachable machine. Academic Press,
London.

Anderson, D.B. (1980) Programming in the home
of the future, Int ~ Man-Machine Studies
.lG., 341-365.

Biermann, A.W. (1912) On the inference of
Turing machines from sample computations,
Artificial Intelligence~, 181-198.

Cuff, R.N. (1980) On casual users, Int ~ Man­
Machine Studies.lG., 163-181.

Gaines, B.R. and Facey, P.V. (1975) Some
experience in interactive system
development and application, Proc IEEE 21,
894-911.

Gaines, B.R. (1976a) On a danger in the
assumption of causality, IEEE Trans
Systems, Man, and Cybernetics SMC-Q, 56-
59.

Gaines, B.R. (1976b) Behaviour/structure
transformations under uncertainty, Int ~
Man-Machine Studies ~, 337-365.

Jacobson, R. (1960) Linguistics and poetics,
in Style in language, edited by
T.A.Sebeok, 350-311. Wiley, New York.

Joy, W. (1979) An introduction to the C shell,
Computer Science Division Report, Univ of
California, Berkeley.

McNaughton, R. and Papert, S. (1911) Counter­
free automata. MIT Press, Boston, Mass ..

Robinson, J.A. (1965) A machine-oriented logic
based on the resolution principle, ~
Association for Computing Machinery 1£,
23-41.

Wang, H. (1960) Toward mechanical mathematics,
IBM ~ Research and Development ~, 2-22.

Winograd, T. (1912) Understanding natural
language. Academic Press.

Witten, I.H. (1919) Non-deterministic
modelling of behaviour sequences, Int ~
General Systems 2, 1-12.

Witten, I.H. (1980) Semiotics in the real
world, International Congress on Applied
Systems Research and Cybernetics,
Acapulco, December.

Witten, I.H. (1981) Some recent results on
non-deterministic modelling of behaviour
sequences, Proc Society for General
Systems Research Conference, Toronto,
265-214.

Zloof, M.M. (1917) Query-by-example, IBM
Systems Journal lQ. 324-343.

CMCCS 'S1 I ACCHO 'S1

- 113 -

to the casual user.

Despite the fact that the modeller has no
prior knowledge of the syntax or semantics of
the dialogue, it is remarkably successful.
Three short repetitive problems for an
electronic calculator were examined. Although
the problems are quite different, they were
concatenated into a single input sequence.
Even with the default settings for the
modeller (which were intended for isolated
problems), over 15% of the sequence elements
were predicted; and less than 1.5% of
incorrect predictions were made. There is
always a temptation to adjust the parameters
of the modeller in retrospect to give good
performance. When this was done, nearly 80%
correct predictions were achieved with an
error rate of under 0.5%. However, the
reaction of casual users to the scheme has not
been obtained: clearly this is a next step.

Like much research, this project raises
many more questions than it answers. For
example,

should the complex/simple-model parameter
for the raw behaviour sequence be different
from that of the model where numeric tokens
are mapped into <NUM>?
should the under/over-confident parameter
be different for the two models?
if the modeller made several models with
different values of k, could it choose
between them on an adaptive basis to
improve its predictions?

These are system-theoretic questions, which we
hope to resolve using arguments based on the
distribution of real-world data for calculator
interactions.

Finally, it is crucial that if such a
modeller is employed, it works instantly. It
would be extremely irritating to have
suggestions for a token made after it had
actually been typed, due to non-realtime
response! The technique is suited to
powerful, personal computers; to the home or
office environment; to the microcomputer age,
where casual users must employ sophisticated
information-processing tools.

Acknowledgements

It is a great pleasure to acknowledge the
influence and encouragement of Brian Gaines,
John Cleary, and especially John Andreae. The
techniques described here (but not the
applications) have their origin in Andreae
(1911).

References

Amarel, S. (1911) Representations and models
in problems of program formation, in
Machine Intelligence Q, edited by
B.Meltzer and D.Michie, 411-466.
Edinburgh Univ Press.

Andreae, J.H. (1911) Thinking with the
teachable machine. Academic Press,
London.

Anderson, D.B. (1980) Programming in the home
of the future, Int ~ Man-Machine Studies
.lG., 341-365.

Biermann, A.W. (1912) On the inference of
Turing machines from sample computations,
Artificial Intelligence~, 181-198.

Cuff, R.N. (1980) On casual users, Int ~ Man­
Machine Studies.lG., 163-181.

Gaines, B.R. and Facey, P.V. (1975) Some
experience in interactive system
development and application, Proc IEEE 21,
894-911.

Gaines, B.R. (1976a) On a danger in the
assumption of causality, IEEE Trans
Systems, Man, and Cybernetics SMC-Q, 56-
59.

Gaines, B.R. (1976b) Behaviour/structure
transformations under uncertainty, Int ~
Man-Machine Studies ~, 337-365.

Jacobson, R. (1960) Linguistics and poetics,
in Style in language, edited by
T.A.Sebeok, 350-311. Wiley, New York.

Joy, W. (1979) An introduction to the C shell,
Computer Science Division Report, Univ of
California, Berkeley.

McNaughton, R. and Papert, S. (1911) Counter­
free automata. MIT Press, Boston, Mass ..

Robinson, J.A. (1965) A machine-oriented logic
based on the resolution principle, ~
Association for Computing Machinery 1£,
23-41.

Wang, H. (1960) Toward mechanical mathematics,
IBM ~ Research and Development ~, 2-22.

Winograd, T. (1912) Understanding natural
language. Academic Press.

Witten, I.H. (1919) Non-deterministic
modelling of behaviour sequences, Int ~
General Systems 2, 1-12.

Witten, I.H. (1980) Semiotics in the real
world, International Congress on Applied
Systems Research and Cybernetics,
Acapulco, December.

Witten, I.H. (1981) Some recent results on
non-deterministic modelling of behaviour
sequences, Proc Society for General
Systems Research Conference, Toronto,
265-214.

Zloof, M.M. (1917) Query-by-example, IBM
Systems Journal lQ. 324-343.

CMCCS 'S1 I ACCHO 'S1

