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ABSTRACT 

One way of giving casual users access to 
some of the power of a computer, without the 
need to learn formal programming methods, is to 
allow complex tasks to be defined extensively 
by example, rather than intensively by a 
procedural specification. This paper studies 
the extent to which iterative computations on 
an electronic calculator can be inferred 
interactively from an initial part of the 
sequence of key-presses, using techniques of 
non-deterministic structural identification of 
behaviour sequences. The aim is to construct 
an interactive device which is partially 
self-programming. 

Despite the fact that the device has no 
prior knowledge of the syntax or semantics of 
the dialogue, it is remarkable successful. 
Several short, repetitive calculator problems 
have been analysed. Even in a mixed sequence, 
~ver 75% of the dialogue elements were pre­
dicted, with an error rate between 0.5% and 
1.5%. However, casual users have not yet been 
exposed to the scheme. 

11 est possible de permettre aux usagers 
occasionnels de faire appel a une partie de la 
puissance de traitement d'un ordinateur sans 
avoir a etudier les methodes de programmation 
standard si l'on definit les taches complexes 
de maniere "extensive", au moyen d'un exemple, 
plut5t que de fa~on "intensive", ~ l'aide d'une 
procedure de traitement. La presente communica­
tion evalue dans quelle mesure on peut obtenir 
des calculs iteratifs par voie interactive, sur 
une calculatrice electronique, ~ partir d'une 
portion initiale de la sequence des pressions 
sur les boutons en faisant appel a des methodes 
d'identification structurale non deterministe 
des sequences de comportement. 11 s'agit de 
creer un organe interactif qui soit partiel­
lement autoprogrammable. 

En depit du fait que cet organe ne soit 
prealablement dote d'aucune connaissance 
syntaxique ou semantique. il don ne d'excellents 
resultats: plusieurs courts problemes de calcul 
repetitifs ont ete analyses avec succes. Meme 
dans le cas d'une sequence mixte, plus de 75% 
des elements de dialogue ont ete predits, avec 
un taux d'erreur variant entre 0.5% et 1.5%. 
Toutefois, les utilisateurs occasionnels n'ont 
pas encore mis ces methodes a l'essai. 
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Introduction 

The casual user, who can be characterized 
as one who uses computers relatively 
infrequently as an information processing tool 
for his other professional or recreational 
activities, has been the subject of some 
controversy in the literature. Anderson 
(1980), discussing the role of programming in 
the home of the future, bases his work on the 
premise that programming will be a widespread 
activity, and declares that 

"this must be so for effective use of 
resources." 

Cuff (1980) argues against the view that 
programming ability will in the future be as 
common in civilized society as numeracy or 
literacy is today. For him, casual users may 
or may not have some programming ability; but 
even if they have, such skills 

"are unlikely to be sharply honed through 
working with the system." 

It may be that such skills need not be 
"sharply honed", at least not in any formal 
sense. Anderson sees programming in the 
future 

"as gardening is today - a subject about 
which many people have knowledge at 
different levels, where knowledge 
resources are many and varied, and 
accessed in different ways." 

Perhaps the view one takes depends upon how 
far ahead one is looking. At any rate, it 
seems clear that lack of programming ability 
is likely to remain a stumbling-block to 
casual use of computers for a long time to 
come. 

One way of giving casual users access to 
some of the power of a computer without the 
need to learn formal programming methods, is 
to allow complex tasks to be defined 
extensively by example, rather than 
intensively by a procedural specification. 
This paper stUdies the extent to which 
iterative computations on an electronic 
calculator can be inferred interactively from 
an initial part of the sequence of key­
presses, using simple techniques of non­
deterministic structural identification of 
behaviour sequences. The aim is to construct 
an interactive device which is partially 
self-programming. Even this rather modest 
goal presents some interesting problems of 

the technique may have application to a far 
wider range of tasks involving simple command 
languages - interactive editing, operating 
system control languages like the Unix 
"shell", and the like - where the user 
occasionally has to choose between writing a 
program for a short repetitive sequence of 
operations and executing them manually. 

Related work 

Extensive rather than intensive problem 
specification was studied by Zloof (1977) in 
the context of data-base retrieval. The 
Query-by-Example system, which is intended for 
a user with no programming and little 
mathematical experience, allows him to specify 
the information to be retrieved by presenting 
an example of the kind of item which should be 
included. Although the system can be 
criticized - one quickly gets bogged down in 
built-in functions, condition boxes, and 
metalinguistic symbols like single and double 
underlining - it illustrates that useful 
interactive systems can be built which allow 
users to define complex tasks extensively 
instead of intensively. One of its great 
advantages is that it frees the user from 
thinking of his retrieval problem in an 
artificially sequential form: instead he can 
specify the links, conditions, and constraints 
as they occur to him. In contrast, the 
present paper explores how strictly sequential 
information may be inferred by a machine from 
an initial subsequence. 

Automatic inference of programs from 
examples is another domain in which the 
problem is specified extensively. Given a set 
of input-output correspondences, the goal is 
to construct automatically a program that 
implements them. Amarel (1971), during the 
course of a long investigation of this topiC, 
distinguished derivation problems from 
formulation problems. In the former, one is 
given parts of a solution and asked to 
complete it by using given rules for 
construction. A classic example is automatic 
theorem proving in elementary logic, for which 
several successful systems have been built (eg 
Wang, 1960 for propositional calculus; 
Robinson, 1965 for predicate calculus). 
"Formation" problems are more complex: 
construction rules do not exist and one must 
proceed to the goal by hypothesizing solutions 
and testing them against the given input­
output correspondences. Little real progress 
seems to have been made in automatic inference 
of programs for these problems. 

man-machine engineering. If it is successful, When a detailed trace of an example 
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Figure 1. Trace of a sorting process (after Gaines, 1976b) 

execution of a program is available, however, 
program inference can be easy. Biermann 
( 1972) discusses the inference of Turing 
machines from traces of sample computations. 
For example, the trace of a sort of the 
three-element tape "baa" into "aab" can be 
expressed as 

b bR a bL b bL # -R b aR b bR a bL b bL a 
aR b aR b bR 

where single a's and b's represent the current 
symbol read from the tape, and aL means "wri te 
an A in the current place and move the 
scanning head to the l.eft". The "(1" input 
signifies that the end-marker has been read; 
nothing should be written over it so a null 
writing action ,,_It is specified. Given that 
the model should be deterministic, with the 
single a's, b's, and #'s as inputs and the 
composite symbols as outputs, Biermann showed 
that a data-driven, simplest-first search with 
recursive back-tracking finds it very quickly. 

While. interesting, this method is not of 
any great practical significance because it 
requires the trace to be error-free. Consider 
the example of a sort program considered by 
Gaines (1976b) and reproduced as Figure 1. It 
is unlikely that such a trace would be entered 
without error, and even if it were, it is not 
obvious that it is any easier for a casual 
user to generate than a structural description 
-- a program -- for the sorting process. 

Non-deterministic modelling Qf behaviour 
seauences 

Recently-developed techniques of non­
deterministic modelling seem to offer a way 
out. Whilst non-deterministic input will 

while if an exact fit is sought the model 
becomes unreasonably complex. Models which 
cannot be improved in simplicity without 
sacrificing goodness-of-fit, and cannot be 
improved in goodness-of-fit without 
sacrificing simplicity, are called admissible, 
and in general there is a set of such models 
for a given behaviour, each with a different 
complexity. 

Another advantage of non-deterministic 
modelling is that it can automatically 
separate (unpredictable) inputs to the system 
from its (predictable) outputs. Thus the user 
need not specify which symbols are predictable 
and which are not, nor remember the necessary 
metalinguistic conventions. for such 
specification. For example, the conditional 
statements in Figure 1 are inputs, and this 
fact is inferred by non-deterministic 
modellers (Gaines, 1976b; Witten, 1979). 

A recent paper (Witten, 1981) identifies 
three primary techniques which have been used 
to form non-deterministic models of behaviour 
sequences, together with some variants of each 
method. The present application calls for 
incremental modelling, where new elements of 
the incoming sequence are integrated into the 
existing model as they are seen. Most non­
deterministic modelling methods require the 
complete input sequence to be stored, and re­
model it from scratch when new information 
shows the current model to be inadequate. The 
only exceptions are "limited-context" 
modelling methods, which assume that the 
structure of the sequence can be characterized 
by the set of overlapping k-tuples of symbols 
that occur in the sequence, for some limited 
"context" length k. 

cause havoC in a deterministic modeller Witten (1979) has investigated how k-
(Gaines, 1976a), sensible results can be tuples can be recorded economically by 
obtained if the modeller does not assume massaging them into the form of an automaton 
determinism in the first place. There is a model. First the "ingenuous" model of k-
trade-off between model simplicity and tuples is constructed, with one state for each 
goodness Qf ~ to the behaviour sequence. tuple and transitions which reflect the 
Structurally simple models cannot provide a succession ·of tuples in the behaviour 
good fit to non-deterministic behaviours, sequence. Only the last element of a tuple is 
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.. r~corded as the output of the state. The 
~odel is then subjected to a reduction process 
wh:i.ch. coalesces states in a way that does not 
destroy information about the k-tuples which 
occurred in the behaviour. For example, in an 
extreme case when modelling a random sequence 
whose elements are drawn from an alphabet of q 
symbols; qOOk different k-tuples will occur, 
but this will become a mere q states (for a 
Moore model) after reduction. Thus although 
an. increased value of k normally provides a 
larger, more accurate, model; it does not 
necessarily do so if structure does not exist 
in 'the behaviour sequence - as in our 
example. 

With this method, which we call length-k 
modelling, each new element of the behaviour 
sequence can be incorporated into an already 
reduced model to form an updated version of 
it. This crucial advantage offsets the 
inherent weakness of limited context 
modellers, namely that they can only cope with 
"non-counting" events (McNaughton and Papert, 
1971). In fact, this weakness has not proven 
to be a disadvantage in the present study. 

Programming A calculator Ql example 

People who use interactive computers 
regularly know that there are many situations 
in which it is difficult to decide whether to 
do a minor, but repetitive, task by hand or to 
write a program to accomplish it. Interactive 
editing provides many good examples. It is 
often necessary to change each occurrence of a 
particular token in a file to another token, 
and many of those who have used small 
computers for years will recall their joy when 
first encountering an editor with a "global 
change" facility. However, some tasks are not 
quite so simple: hence the notion of 
regular-expression-searching .. together with a 
special character which designates the matched 
expression, was introduced. More flexibility 
is provided by making the editor programmable, 
either from within via a macro facility or 
from without via editing command files. As a 
consequence, using the editor has become a 
more highly skilled task. 

Simple, repetitive arithmetic operations 
are a second problem domain which. often 
presents a quandary as to whether a task 
should be done by hand or by program. For 
example, one may wish to plot y = x exp(l-x) 
for a dozen or so values of x: should one do 
it on a hand calculator or write a BASIC 
prvgram? The first is easier and more 
certain; it will not take more than 10 
minutes. The second may be quicker, but could 

involve a session with the manual to refresh 
one's memory with the vagaries of BASIC 
syntax. This seems to be an ideal domain to 
investigate the application of non­
deterministic modelling techniques to 
automatic program formation. 

Consider the possibility of an invisible 
non-deterministic modeller "looking over the 
shoulder" of the user; and prepared to perform 
actions automatically for him if it has 
sufficient confidence that it knows what to 
do. The user must pay a price for this 
serVice, for the modeller cannot help but be 
wrong occasionally. Extra keys must be 
provided to enable him to accept or reject the 
entry. 

~ dialogues. Figures 3, 4, and 5 show 
some results obtained from a simulation of 
length-k modelling applied to a calculator. 
The device chosen was the Casio fx-20, an 
infix machine whose relevant keys are 
summarized in Figure 2. These illustrations 
were produced under somewhat idealized 
conditions - we will discuss later the 
detrimental effects of operator error and 
negative transfer of learning between tasks. 
However, they are remarkably successful. 

Figures 3 and 4 are each divided into 
two, showing the keys pressed by the operator 
and those suggested by the model. Time 
proceeds from left to right and top to bottom, 
and for conciseness the symbols are run on to 
the same line wherever possible. Figure 3 
evaluates x exp(l-x) for a range of values 
of x, and the task has been learned by halfway 

0 4 8 
1 5 9 numeric keys 
2 6 
3 7 

+ 11 infix operators 
I 

+1- (negate) 
exp post fix operators 
log 
cos 

= (evaluate) 
mc (clear memory) 
mr (retrieve operand from memory) 
m+= (evaluate and add to memory) 

Figure 2. Relevant keys on the calculator 
which was used for the examples 
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People who use interactive computers 
regularly know that there are many situations 
in which it is difficult to decide whether to 
do a minor, but repetitive, task by hand or to 
write a program to accomplish it. Interactive 
editing provides many good examples. It is 
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~ dialogues. Figures 3, 4, and 5 show 
some results obtained from a simulation of 
length-k modelling applied to a calculator. 
The device chosen was the Casio fx-20, an 
infix machine whose relevant keys are 
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conditions - we will discuss later the 
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Figures 3 and 4 are each divided into 
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the same line wherever possible. Figure 3 
evaluates x exp(l-x) for a range of values 
of x, and the task has been learned by halfway 

0 4 8 
1 5 9 numeric keys 
2 6 
3 7 

+ 11 infix operators 
I 

+1- (negate) 
exp post fix operators 
log 
cos 

= (evaluate) 
mc (clear memory) 
mr (retrieve operand from memory) 
m+= (evaluate and add to memory) 

Figure 2. Relevant keys on the calculator 
which was used for the examples 
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Querator presses 

. ,1 mc m+= +1- + = exp x mr = 

.2 mc m+= 

.3 

.4 

- 109 -

Calculator 

+1- + 

mc m+= +1- + 
mc m+= +1- + 

indicates 

[answer] 

= exp x mr = [answer] 
= exp x mr = [answer] 
= exp x mr = [answer] 

[from here on the device behaves as though it had been explicitly 
programmed for the calculation] 

Figure 3. Evaluation of x exp(1-x) 

Operator presses Calculator indicates 

2 log m+= 
.0018 log 1 mr 1 8 = + 1 = 
.0156 log 1 

.025 

.03125 

8 

log 
log 

mr / 

/ mr 1 8 
/ mr 1 8 

[answer] 

= + 
= [answer] 

= + 1 = [answer] 
= + 1 = [answer] 

[from here on the device behaves as though it had been explicitly 
programmed for the calculation] 

Figure 4. Evaluation of 1 + (log x)/(8 log 2) 

45 cos x 2 x .9 mc m+= .9 x x = + 1 - mr = log x 10 = [answer; -2.69858] 
100 1 4000 x 180 ~ <DEL) 
= cos x 2 X .9 mc m+= .9 X X =- ± 1 ::..!!!r. =- .lQg X 10 =- <DEL) 
+ 20 + 2.69858 ± <DEL) 
= [answer] 
500 L 4000 X 180 =- QQ1! X 2 X ~ m+= .Q....2. X X =- ± ~::. mr =-.lQg X 1Q + 20 ± 2.69858 =- [answer] 
1000 L .!!QQQ. X 180 =- QQ1! X g X ~ .!!!±.:. .!L..9. X X =- ± .1 ::. !!!.!: =- .lQg X 1Q + 20 ± 2.69858 _ [~] 
1500 L 4000 X lM. =- cos X g X ~ m+= .lW! X X =- ±.1::. mr =- log X 1Q + 20 ± 2.69858 _ [answer] 
2000 L .!:!QQQ. X lM. =- QQ1! X g X ~ m+= .lW! X X =- ± .1 ::. mr =- .lQg X 1Q + 20 ± 2.69858 _ [answer] 
2500 L .!:!QQQ. X lM. =- QQ1! X g X ~ m+= M X X =- ± .1 ::. mr =- .!Qg X 1Q + 20 ± 2.69858 _ [answer] 
3000 L .!!QQ.Q. X lM. =- QQ1! X g X ~ .!!!±.:. Q...9. X X =- ± .1 ::. mr =- .!2.& X 1Q + 20 ± 2.69858 =- [answer] 
3500 L .!:!QQQ. X 180 =- cos X g X ....9......!!!. .!!!±.:. .Q...2. X X =- ± .1 ::. mr =- .!Qg X 1Q ± 20 ± 2.69858 _ [answer] 
4000 L .!!QQ.Q. X lM. =- QQ1! X g X ~ m+= .lW! X X =- ± .1 ::. .!!!r. =- ].Qg X 1Q ± 20 ± 2.69858.:. [answer] 

Figure 5. A more complicated calculation (suggestions from the model are underlined) 
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through the second iteration. From this point 
onwards the calculator behaves as a special­
purpose device tailored for the problem: it 
executes all necessary instructions, pausing 
only for input. The evaluation of 
1 + (log x)/(8 log 2) in Figure 4 shows 
similar behaviour. 

The rather more complicated calculation 
of 

20 + 10 10g[1 + a**2 - 2a cos(180x/4000)] 
- 10 10g[1 + a**2 - 2a cos 45] 

(for a=0.9) is depicted in Figure 5. For 
conciseness, the interaction is shown in a 
different form from that of the previous 
figures. Suggestions from the model are 
underlined. There is no special significance 
in the placing of the line breaks. Since the 
calculator possesses only one "memory" 
location, it was expedient to compute the last 
sub-expression first and jot down the result. 
Some interference occurred between this 
initial task and the main one: three 
suggestions had to be rejected by the operator 
(the <DEL> key rejects the previous 
suggestion). On the positive side, note that 
the result of the preliminary calculation, 
2.69858, had to be keyed only twice before the 
system picked up the fact that it could be 
predicted. However, only towards the end of 
the interaction does the device become fully 
programmed, for the penultimate "+" in most of 
the lines has to be inserted by the user. 

Method. These illustrations use the length-k 
modelling technique outlined above, with k set 
to 4. However, the technique was tailored 
somewhat to the problem at hand. It is clear 
from a cursory analysis of calculator 
sequences that numbers and operators should be 
treated rather differently, for a typical 
sequence comprises different numbers embedded 
in a fixed template of operators. This rule 
is not universal, because fixed constants 
appear in the stream as well as variable input 
data. Notice how the constants 1 in Figure 3, 
8 and 1 in Figure 4, and 4000, 180, 2, .9, 1, 
10, 20, and 2.69858 in Figure 5 are all 
quickly picked out as predictable by the 
system. 

In order to prevent differences in data 
values from rendering the length-k sequences 
inoperative, two length-k models were formed 
side by side. One used the raw behaviour 
sequence as observed, and the other mapped all 
numbers into the same token <NUM>. 

prediction. Furthermore, the system was 
constructed to be more conservative about 
predicting a number than an operator. No 
prediction was made unless it would have been 
correct the previous n times it occurred, and 
n was set differently for operators (n= 1) and 
numbers (n=2). 

For example, consider the state of the 
model after the second line of Figure 3 has 
been generated, that is, after 

has 
have 

. 1 
mc 

m+= 
+/-

+ 

= 
exp 

x 
mr 
= 
.2 

.1 mc m+= +/- + 1 = exp x mr = 

.2 mc m+= +/- + 

been seen. With k=4, the tuples which 
accumulated are 

mc m+= +1- (2) <NUM> mc m+= +/-
m+= +/- + (2) m+= +1- + <NUM> 
+/- + (1) +/- + <NUM> = 

+ = (1) + <NUM> = exp 
1 = exp (1) <NUM> = exp x 
= exp x (1) x mr = <NUM> 

exp x mr (1) mr = <NUM> mc 
x mr = (1) = <NUM> mc m+= 
mr = .2 (1) 
= .2 mc (1) 
.2 mc m+= (1) 
mc m+= +1- (1) 

(3) 
(1) 
( 1 ) 
(1) 
(1) 
(1) 
(1) 
(1) 

The numbers in parentheses count how many 
times each tuple has been encountered. Hence, 
although the current context "m+= +/- +" 
predicts a "1", it has only been confirmed 
once and this falls short of the threshold for 
predicting numbers (namely 2). Once the "1" 
has been entered, the new context "+/- + 1" 
predicts an "=", again with a single previous 
confirmation. This is used because the 
threshold for predicting operators is only 1. 

If an erroneous suggestion is made, the 
modeller is very cautious about making a 
prediction from that tuple in the future. 
However, as time passes and its belief in the 
model is continually confirmed, it will 
.eventually venture a suggestion. This is the 
reason why the penultimate "+"s on most of the 
lines in Figure 5 are only suggested at the 
end of the interaction. Both of the tuples 

log x 10 = 
log x 10 + 

have occurred in the interaction, but a long 
run of the second is enough to cause it to be 
used eventually. 

Predictions from the latter model were only Possible enhancements. There are several 
used when the former one failed to yield a fairly obvious modifications which could be 
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through the second iteration. From this point 
onwards the calculator behaves as a special­
purpose device tailored for the problem: it 
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programmed, for the penultimate "+" in most of 
the lines has to be inserted by the user. 

Method. These illustrations use the length-k 
modelling technique outlined above, with k set 
to 4. However, the technique was tailored 
somewhat to the problem at hand. It is clear 
from a cursory analysis of calculator 
sequences that numbers and operators should be 
treated rather differently, for a typical 
sequence comprises different numbers embedded 
in a fixed template of operators. This rule 
is not universal, because fixed constants 
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data. Notice how the constants 1 in Figure 3, 
8 and 1 in Figure 4, and 4000, 180, 2, .9, 1, 
10, 20, and 2.69858 in Figure 5 are all 
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system. 

In order to prevent differences in data 
values from rendering the length-k sequences 
inoperative, two length-k models were formed 
side by side. One used the raw behaviour 
sequence as observed, and the other mapped all 
numbers into the same token <NUM>. 

prediction. Furthermore, the system was 
constructed to be more conservative about 
predicting a number than an operator. No 
prediction was made unless it would have been 
correct the previous n times it occurred, and 
n was set differently for operators (n= 1) and 
numbers (n=2). 

For example, consider the state of the 
model after the second line of Figure 3 has 
been generated, that is, after 
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been seen. With k=4, the tuples which 
accumulated are 
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The numbers in parentheses count how many 
times each tuple has been encountered. Hence, 
although the current context "m+= +/- +" 
predicts a "1", it has only been confirmed 
once and this falls short of the threshold for 
predicting numbers (namely 2). Once the "1" 
has been entered, the new context "+/- + 1" 
predicts an "=", again with a single previous 
confirmation. This is used because the 
threshold for predicting operators is only 1. 

If an erroneous suggestion is made, the 
modeller is very cautious about making a 
prediction from that tuple in the future. 
However, as time passes and its belief in the 
model is continually confirmed, it will 
.eventually venture a suggestion. This is the 
reason why the penultimate "+"s on most of the 
lines in Figure 5 are only suggested at the 
end of the interaction. Both of the tuples 

log x 10 = 
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have occurred in the interaction, but a long 
run of the second is enough to cause it to be 
used eventually. 

Predictions from the latter model were only Possible enhancements. There are several 
used when the former one failed to yield a fairly obvious modifications which could be 
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made to the algorithm to improve its 
performance. Firstly, it does not notice 
multiple occurrences of the same input data. 
For example, if x exp(l-x) were evaluated on 
a calculator without a memory element, x would 
have to be entered twice. The modelling 
procedure we have outlined is incapable of 
spotting this redundancy. It would clearly be 
easy to incorporate a special-purpose "demon" 
which noticed such repetition. On the whole, 
however, we prefer more generally-applicable 
techniques. (It may, for example, be possible 
to solve this problem using a recursive model; 
see Witten, 1981.) Furthermore, calculator 
manufacturers very sensibly try to design 
their machines to minimize such redundancy! 

Secondly, the procedure is entirely 
lexical and does not recognize the properties 
of numbers. For example, in the sequence 0.1, 
0.2, 0.3, ... (which occurs in Figure 3), it 
is evident what probably comes next; however, 
the system as presently implemented does not 
spot the pattern. Again, a special-purpose 
"demon" could easily be introduced. 

Finally, calculator interactions have a 
definite syntax which is not exploited at all. 
For example, the system will learn nonsense 
sequences like "1 1 + + 1 1 + +" and 
regurgitate them just as readily as it will 
syntactically meaningful sequences. (The 
sequence "x x" which occurs in Figure 5 may 
seem anomalous too: in fact this is Casio's 
way of squaring a number.) This, we feel, is 
an advantage rather than a disadvantage of the 
scheme. It is obedient, uncritical, and -­
above all -- general. 

Effects Q(~. Now let us examine the 
effects of free variation in the behaviour 
sequence. As noted above, non-deterministic 
modelling methods do not produce absurd models 
in the presence of noise as do deterministic 
ones. 

One source of variation in calculator 
control sequences is the discovery of an 
easier way to do the task. For example, 
half-way through Figure 5 one may decide to 
enter 1.81 directly instead of ".9 x x = + 1", 
for it is the same quantity. However, this 
will surely not be a temptation in the 
interactive system we propose, for no penalty 
is associated with the latter sequence once it 
has been assimilated. 

x exp(l-x) by two different methods. One 
evaluates l-x using the calculator and the 
other evaluates it mentally. Three 
suggestions had to be rejected in this 
dialogue. The last error was rather unlucky, 
being caused by the coincidence of the .8 in 
".8 exp(.2)" and ".8 exp(1-.8)". This 
illustrates how difficult it is to predict the 
behaviour of the modeller in advance: it is 
only of use in truly interactive applications. 

All three errors are caused by incorrect 
predictions across the boundaries between 
individual "calculations", that is to say, 
between separate evaluations of the function 
x exp(l-x). If the modeller were informed of 
the points in the sequence where an "answer" 
is obtained, this could be used to delimit the 
individual calculations and the erroneous 
suggestions would be avoided. However, since 
the calculator produces a display after every 
entry it is not possible to discern these 
points automatically: a separate "delimiter" 
key would be required. 

These errors are examples of negative 
transfer of learning from one task to another, 
for the two ways of doing the calculation are 
really two separate tasks from the pOint of 
view of the non-deterministic modeller. For a 
larger example, the calculations of Figures 3, 
4, and 5 were concatenated together and run 
through the modeller with the same parameters 
as before. The results were much worse than 
for the problems considered separately. There 
were 484 good predictions and 9 bad 
(incorrect) ones out of a total of 643 lexical 
items. Note that less than 2% of predictions 
are incorrect. 

This figure can be reduced even further 
by changing the parameters of the modeller. 
For example, using a length-5, -6, or -7 model 
instead of the length-4 one increases the 
number of correct suggestions slightly to 510, 
and decreases the number of incorrect ones to 
3 (0.6%). A single error occurs at the 
transition between each problem; one between 
the calculation shown in Figure 3 and that of 
Figure 4, one between those of Figures 4 and 
5, and one between the two parts of Figure 5 
(which as noted above are really separate 
tasks). No suggestions were made for the 
remaining 130 lexical items. Over the three 
problems treated individually (as shown in 
Figures 3-5), a total of 119 items are not 
predicted, and thus the penalty paid for 

If the simplifying discovery is made very combining the problems into one behaviour 
early on in the interaction, however, it may sequence is quite small. 
cause some incorrect predictions. For 
example, Figure 6 shows the evaluation of 
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remaining 130 lexical items. Over the three 
problems treated individually (as shown in 
Figures 3-5), a total of 119 items are not 
predicted, and thus the penalty paid for 

If the simplifying discovery is made very combining the problems into one behaviour 
early on in the interaction, however, it may sequence is quite small. 
cause some incorrect predictions. For 
example, Figure 6 shows the evaluation of 

CMCCS '81 I ACCHO '81 



- 112 -

Operator presses Calculator indicates 

. 1 mc m+=+/- + 1 = exp x mr = [answer] 

.8 exp x 0.2 = [answer] 

.3 mc m+= +/- + 
= exp x mr = [answer] 

.4 exp 
(DEL) mc m+= +/- + 1 = exp x mr = [answer] 
.5 exp x 
.5 = [answer] 
.4 mc 
(DEL) exp x 
.6 = [answer] 
.7 mc m+= +/- + = exp x mr = [answer] 
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Figure 6. Evaluation of x exp(l-x) using two different methods 

The user interface 

As was noted above, there are severe 
problems in engineering such an interface so 
that it can help the user in an unobtrusive 
way. Nothing is more infuriating than an 
assistant who keeps giving wrong hints! 

When the system we have described makes 
mistakes, it makes them in a way that seems to 
the user to be erratic and capricious; thus 
breaking one of the cardinal rules of 
interactive programming -- that the user 
should see the system as predictable and 
reliable (Gaines and Facey, 1975). Thus we 
have aimed for a ~ small number of errors, 
and a substantial amount of help from the 
modeller -- even over a short interactive 
sequence. 

It is possible to moderate the operation 
of the non-deterministic modeller in two 
different ways, and these could be provided to 
the user in the form of 

(i) an under-confident/over-confident control 
(ii) a complex-model/simple-model control. 

The first is provided by altering the number 
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of times a tuple is seen before the modeller 
ventures a suggestion; while for the second, 
the parameter k of the model is adjusted. 
Whether such controls should be provided is an 
open question at present. It is interesting 
to note that they are a form of "phatic" 
communication (Jacobson, 1960), which is a 
mode that heretofore has played little part in 
man-machine dialogue (Witten, 1980). A 
different communication modality, such as a 
limited word recognizer, could be an ideal 
medium for these controls. 

Conclusions 

This paper has shown how systematic 
processing of a "history list" of previous 
interactions can be used to predict future 
entries. Some time ago, artificial 
intelligence researchers discovered the 
potency of a history list of subgoals 
attempted during the solution of a problem. 
(Recall the "Why did you pick up the green 
pyramid?" type of question in Winograd's 
(1972) famous dialogue.) Explicit reference 
to the history list is permitted in some 
recent command language interpreters (eg Joy, 
1979). However, we propose here implicit use 
of the history list for providing assistance 
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to the casual user. 

Despite the fact that the modeller has no 
prior knowledge of the syntax or semantics of 
the dialogue, it is remarkably successful. 
Three short repetitive problems for an 
electronic calculator were examined. Although 
the problems are quite different, they were 
concatenated into a single input sequence. 
Even with the default settings for the 
modeller (which were intended for isolated 
problems), over 15% of the sequence elements 
were predicted; and less than 1.5% of 
incorrect predictions were made. There is 
always a temptation to adjust the parameters 
of the modeller in retrospect to give good 
performance. When this was done, nearly 80% 
correct predictions were achieved with an 
error rate of under 0.5%. However, the 
reaction of casual users to the scheme has not 
been obtained: clearly this is a next step. 

Like much research, this project raises 
many more questions than it answers. For 
example, 

should the complex/simple-model parameter 
for the raw behaviour sequence be different 
from that of the model where numeric tokens 
are mapped into <NUM>? 
should the under/over-confident parameter 
be different for the two models? 
if the modeller made several models with 
different values of k, could it choose 
between them on an adaptive basis to 
improve its predictions? 

These are system-theoretic questions, which we 
hope to resolve using arguments based on the 
distribution of real-world data for calculator 
interactions. 

Finally, it is crucial that if such a 
modeller is employed, it works instantly. It 
would be extremely irritating to have 
suggestions for a token made after it had 
actually been typed, due to non-realtime 
response! The technique is suited to 
powerful, personal computers; to the home or 
office environment; to the microcomputer age, 
where casual users must employ sophisticated 
information-processing tools. 
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