
- 147 -

EDIGER - AN EDITOR FOR DIGITIZERS 

J.P. Curley 

computation Centre 
National Research Council of Canada 

ABSTRACT 

An interactive editor which records both 
graphical data and text is described. 

From a keyboard and tablet, the user 
enters points, lines, and text: to any of 
these he may attach text labels. in subsequent 
editing, he forms subsets of these components 
based on spatial (nearness, containment), 
temporal (sequence) and textual criteria, and 
uses set operations (union, etc.) to create new 
sets from old. Finally, he can apply basic 
editing operations such as delete, move, and 
splice to sets as easily as to individual 
components. 

The editor is independent of application: 
the file it creates has a simple format, 
suitable for subsequent application-specific 
processing. 

Two quite different applications are 
discussed: in the first, the accurate recording 
of spatial data is important in itself; in the 
second,the spatial is more a convenience for 
expressing topological relationships among 
components in a modeling study. 

Un appareil de mise en forme interactif 
qui enregistre des donnees graphiques et des 
textes est decrit. 

Au moyen d'un clavier et d'une tablette, 
l'usager entre des points, des lignes et du 
texte; a chacun, il peut assigner des labels de 
texte. Durant une mise en forme subsequente, il 
forme des sous-ensembles avec ces elements, 
selon des criteres spatiaux (proximite, fron­
tieres) des criteres temporels (sequence) et 
des criteres se rapportant au texte, et utilise 
des operations sur les ensemhles (union, etc.) 
pour former de nouveaux ensemhles. FinRlement, 
il peut appliquer les operations fondamentales 
de mise en forme comme l'effacement, le deplace­
ment et le raccordement aussi bien aux ensem­
bles qu'aux elements individuels. 

L'appareil de.mise en forme est indepen­
dant de l'application: le fichier cree est de 
format simple et convient a un traitement 
subsequent specifique a l'application. 

Deux applications tres differentes sont 
decrites: dans le premier cas, l'enregistrement 
exact des donnees spatiales est important en 
soi, tandis que dans le second, les donnees 
spatiales sont plutot une fa~on pratique 
d'exprimer des relations topologiques entre les 
elements dans une etude de modelisation. 

CMCCS '81 I ACCHO '81 

- 147 -

EDIGER - AN EDITOR FOR DIGITIZERS 

J.P. Curley 

computation Centre 
National Research Council of Canada 

ABSTRACT 

An interactive editor which records both 
graphical data and text is described. 

From a keyboard and tablet, the user 
enters points, lines, and text: to any of 
these he may attach text labels. in subsequent 
editing, he forms subsets of these components 
based on spatial (nearness, containment), 
temporal (sequence) and textual criteria, and 
uses set operations (union, etc.) to create new 
sets from old. Finally, he can apply basic 
editing operations such as delete, move, and 
splice to sets as easily as to individual 
components. 

The editor is independent of application: 
the file it creates has a simple format, 
suitable for subsequent application-specific 
processing. 

Two quite different applications are 
discussed: in the first, the accurate recording 
of spatial data is important in itself; in the 
second,the spatial is more a convenience for 
expressing topological relationships among 
components in a modeling study. 

Un appareil de mise en forme interactif 
qui enregistre des donnees graphiques et des 
textes est decrit. 

Au moyen d'un clavier et d'une tablette, 
l'usager entre des points, des lignes et du 
texte; a chacun, il peut assigner des labels de 
texte. Durant une mise en forme subsequente, il 
forme des sous-ensembles avec ces elements, 
selon des criteres spatiaux (proximite, fron­
tieres) des criteres temporels (sequence) et 
des criteres se rapportant au texte, et utilise 
des operations sur les ensemhles (union, etc.) 
pour former de nouveaux ensemhles. FinRlement, 
il peut appliquer les operations fondamentales 
de mise en forme comme l'effacement, le deplace­
ment et le raccordement aussi bien aux ensem­
bles qu'aux elements individuels. 

L'appareil de.mise en forme est indepen­
dant de l'application: le fichier cree est de 
format simple et convient a un traitement 
subsequent specifique a l'application. 

Deux applications tres differentes sont 
decrites: dans le premier cas, l'enregistrement 
exact des donnees spatiales est important en 
soi, tandis que dans le second, les donnees 
spatiales sont plutot une fa~on pratique 
d'exprimer des relations topologiques entre les 
elements dans une etude de modelisation. 

CMCCS '81 I ACCHO '81 



- 148 -

Introduction 

A user of our central computer facility 
drops in and spreads a blueprint of a printed 
circuit board(PCB) on my desk. He needs to 
digitize the locations of hundreds of points 
in drawings such as this for subsequent 
drilling using a numerically controlled (NC) 
machine •. 

researcher in the field 
asks for details on a 

He describes what he 

A second user, a 
of solar energy, 
simulation package. 
wants to simulate by 
diagram on a scrap of 
about parameter values 

drawing a component 
paper while he talks 

for the components. 

A third user, an APT programmer, arrives 
with a computer printout containing several 
pages of APT statements for a part he wishes 
to have machined. In a matter of minutes, he 
explains with a sketch what the statements 
"say"_ 

This paper describes an interactive 
editor, "EDIGER", with potential application 
to areas like these, areas in which it seems 
natural to supplement the verbal description 
of an object or process with a non-verbal 
counterpart - a drawing. This editor records 
both textual and graphic data entered by the 
user from keyboard and digitizing tablet, and 
provides him with convenient facilities for 
modifying this information based on its 
spatial (proximity, containment), temporal 
(sequence), and textual content. 

Using a computer file as the medium, 
EDIGER forms a machine-readable rendering of 
user words and actions, in the same way that 
a text editor renders his words alone. Like 
a text editor, EDIGER is independant of any 
specific application, but its output file 
format is simple enough for convenient 
application-specific processing. 

Two applications are discussed, and 
related work compared. 

EDIGER 

EDIGER is implemented on an IBM 370/3032 
under the TSS time sharing system. From a 
keyboard and tablet connected on a serial 
line to this machine, the user enters setup 
information - what devices he is using, menu 
positions, reference coordinates. He then 

to initiate issues the insert command 
recording of his subsequent actions. 
input types are recognized: 

points 
- entered from the tablet. 

text strings 
- entered from the keyboard. 

L5 - line start symbol. 
LE - line end symbol. 
LB <text> 

- text label to be attached to 

Five 

the previous point, text string. 
L5 or LE. 

The line-start, line-end, and label 
indicators are entered through menu or the 
keyboard as text strings commencing with a 
period; e.g., ".15" indicates line start, 
".lb pin22" attaches the text label "pin22" 
to the current record. More than one label 
may be attached. 

Here is a short annotated input sample: 

. insert •• user issues insert command 

component 
.ls 
.lb "A" 
<pt> 
<pt> 
<pt> 
<pt> 
.le 

"a" •• he keys in some text 
•• a line start symbol, 
•• and a label for it 
•• a point from tablet 
•• second point of line 
•• and third 

.lb 

•• and fourth 
•• line-end symbol 

capacity=1.2, spheat=.5 
•• and specify some parameters 

This could be some input data 
simulation; a component is drawn as a 
with an identifier attached to its L5 
and parameters attached to LE. 
conventions are samples only.) 

Editing operations 

for a 
polygon 
symbol, 

(These 

Except for the coordinate transformations 
and menu assists described later, this 
recording process and its supporting program 
structures are similar to those of a text 
editor. and this similarity extends to the 
editing operations as well. The main 
differences concern the addition of spatial 
positioning and grouping criteria, and 
spatial operations for the file elements. 

We will use the term record to mean a 
point, text string, line-start symbol, or 

CMCCS '81 / ACCHO '81 

- 148 -

Introduction 

A user of our central computer facility 
drops in and spreads a blueprint of a printed 
circuit board(PCB) on my desk. He needs to 
digitize the locations of hundreds of points 
in drawings such as this for subsequent 
drilling using a numerically controlled (NC) 
machine •. 

researcher in the field 
asks for details on a 

He describes what he 

A second user, a 
of solar energy, 
simulation package. 
wants to simulate by 
diagram on a scrap of 
about parameter values 

drawing a component 
paper while he talks 

for the components. 

A third user, an APT programmer, arrives 
with a computer printout containing several 
pages of APT statements for a part he wishes 
to have machined. In a matter of minutes, he 
explains with a sketch what the statements 
"say"_ 

This paper describes an interactive 
editor, "EDIGER", with potential application 
to areas like these, areas in which it seems 
natural to supplement the verbal description 
of an object or process with a non-verbal 
counterpart - a drawing. This editor records 
both textual and graphic data entered by the 
user from keyboard and digitizing tablet, and 
provides him with convenient facilities for 
modifying this information based on its 
spatial (proximity, containment), temporal 
(sequence), and textual content. 

Using a computer file as the medium, 
EDIGER forms a machine-readable rendering of 
user words and actions, in the same way that 
a text editor renders his words alone. Like 
a text editor, EDIGER is independant of any 
specific application, but its output file 
format is simple enough for convenient 
application-specific processing. 

Two applications are discussed, and 
related work compared. 

EDIGER 

EDIGER is implemented on an IBM 370/3032 
under the TSS time sharing system. From a 
keyboard and tablet connected on a serial 
line to this machine, the user enters setup 
information - what devices he is using, menu 
positions, reference coordinates. He then 

to initiate issues the insert command 
recording of his subsequent actions. 
input types are recognized: 

points 
- entered from the tablet. 

text strings 
- entered from the keyboard. 

L5 - line start symbol. 
LE - line end symbol. 
LB <text> 

- text label to be attached to 

Five 

the previous point, text string. 
L5 or LE. 

The line-start, line-end, and label 
indicators are entered through menu or the 
keyboard as text strings commencing with a 
period; e.g., ".15" indicates line start, 
".lb pin22" attaches the text label "pin22" 
to the current record. More than one label 
may be attached. 

Here is a short annotated input sample: 

. insert •• user issues insert command 

component 
.ls 
.lb "A" 
<pt> 
<pt> 
<pt> 
<pt> 
.le 

"a" •• he keys in some text 
•• a line start symbol, 
•• and a label for it 
•• a point from tablet 
•• second point of line 
•• and third 

.lb 

•• and fourth 
•• line-end symbol 

capacity=1.2, spheat=.5 
•• and specify some parameters 

This could be some input data 
simulation; a component is drawn as a 
with an identifier attached to its L5 
and parameters attached to LE. 
conventions are samples only.) 

Editing operations 

for a 
polygon 
symbol, 

(These 

Except for the coordinate transformations 
and menu assists described later, this 
recording process and its supporting program 
structures are similar to those of a text 
editor. and this similarity extends to the 
editing operations as well. The main 
differences concern the addition of spatial 
positioning and grouping criteria, and 
spatial operations for the file elements. 

We will use the term record to mean a 
point, text string, line-start symbol, or 

CMCCS '81 / ACCHO '81 



- 149 -

line-end symbol. together with its labels. 
that the user has entered into his file. A 
line is a sequence of records. usually 
points. between and including a line-start 
record and the next line-end. (Graphically 
it is represented as a polygonal line 
connecting points in the sequence.) Thus. of 
the seven records in the example above. the 
line has six of them. 

(There are conflicts between graphics and 
text editing terms - a line of text versus a 
line drawn. current (file) position vs. 
current (spatial) position. "move" records in 
the file vs. "move" obj~cts on a screen. Our 
approach draws on information-processing 
terms (files and records). common 
mathematical terms (sets and sequences). and 
terms from other media - "splice" is temporal 
while "move" is spatial. Other terms are 
defined as they arise.) 

In the descriptions below. <text> 
indicates some text string. <pt> represents 
some point entered from the tablet. <pts> is 
a sequence of such points. and <record> 
indicates some record in the file. 

A current record position. named 
maintained by EDIGER. which can be 
commands like the foilowing: 

C. is 
set by 

top 

bottom 

- position at file header. 
(just above first record) 

- position at last record. 

find <pt> 
- pOSition at the record with 

point closest to this point. 

find /pin22/ 
- pOSition at the next record which 

has subs tring "pin22". 

find C+20 
- pOSition at the record twenty 

records down from current position. 

For displaying file 
issues: 

show 

contents. the user 

- displays the file on an on-line 
graphics device. and/or printer. as 
appropriate. 

The file represents textual and spatial data 

entered in a time sequence. and this is 
reflected in the modification commands. The 
usual insert and delete operations which add 
or delete records at the current location are 
augmented by. for example: 

reword /pin22/pin20/ 
- change substring "pin22" to "pin20" 

in the current record. 

move <pt> 
- replace the point in the 

current record by the 
point entered. 

splice /drill 65 header! 
- reposition current record after 

the next record in the file with 
substring "drill 65 header" 

Other commands are similar: £QEY is a splice 
with no delete of the original record. 
Rotate and scale are spatial operations which 
can be applied to individual records. but are 
more often applied to groups of records. 

Grouping Records 

Grouping is a facility for indicating 
subsets of records in the file on the basis 
of various criteria: each of the 
modification commands can be prefixed by a 
subset former with an easily anticipated 
result. For example. commands are given below 
which say things like "translate everything 
inside this polygon this amount". or "delete 
all reco'rds which have substring 'pin20'''. or 
"attach to each point near this point the 
label 'drilI65'. and splice them at this 
location in the file". 

The current grouping criteria are: 

substring /pin20! 
- the set of records with the 

substring "pin20" (we will use the 
term "match the substring"). 

between <pt> <pt> 
- those records between the 

records containing the points 
indicated. 

line <pt> 
- the line containing this point. 

CMCCS '81 I ACCHO '81 

- 149 -

line-end symbol. together with its labels. 
that the user has entered into his file. A 
line is a sequence of records. usually 
points. between and including a line-start 
record and the next line-end. (Graphically 
it is represented as a polygonal line 
connecting points in the sequence.) Thus. of 
the seven records in the example above. the 
line has six of them. 

(There are conflicts between graphics and 
text editing terms - a line of text versus a 
line drawn. current (file) position vs. 
current (spatial) position. "move" records in 
the file vs. "move" obj~cts on a screen. Our 
approach draws on information-processing 
terms (files and records). common 
mathematical terms (sets and sequences). and 
terms from other media - "splice" is temporal 
while "move" is spatial. Other terms are 
defined as they arise.) 

In the descriptions below. <text> 
indicates some text string. <pt> represents 
some point entered from the tablet. <pts> is 
a sequence of such points. and <record> 
indicates some record in the file. 

A current record position. named 
maintained by EDIGER. which can be 
commands like the foilowing: 

C. is 
set by 

top 

bottom 

- position at file header. 
(just above first record) 

- position at last record. 

find <pt> 
- pOSition at the record with 

point closest to this point. 

find /pin22/ 
- pOSition at the next record which 

has subs tring "pin22". 

find C+20 
- pOSition at the record twenty 

records down from current position. 

For displaying file 
issues: 

show 

contents. the user 

- displays the file on an on-line 
graphics device. and/or printer. as 
appropriate. 

The file represents textual and spatial data 

entered in a time sequence. and this is 
reflected in the modification commands. The 
usual insert and delete operations which add 
or delete records at the current location are 
augmented by. for example: 

reword /pin22/pin20/ 
- change substring "pin22" to "pin20" 

in the current record. 

move <pt> 
- replace the point in the 

current record by the 
point entered. 

splice /drill 65 header! 
- reposition current record after 

the next record in the file with 
substring "drill 65 header" 

Other commands are similar: £QEY is a splice 
with no delete of the original record. 
Rotate and scale are spatial operations which 
can be applied to individual records. but are 
more often applied to groups of records. 

Grouping Records 

Grouping is a facility for indicating 
subsets of records in the file on the basis 
of various criteria: each of the 
modification commands can be prefixed by a 
subset former with an easily anticipated 
result. For example. commands are given below 
which say things like "translate everything 
inside this polygon this amount". or "delete 
all reco'rds which have substring 'pin20'''. or 
"attach to each point near this point the 
label 'drilI65'. and splice them at this 
location in the file". 

The current grouping criteria are: 

substring /pin20! 
- the set of records with the 

substring "pin20" (we will use the 
term "match the substring"). 

between <pt> <pt> 
- those records between the 

records containing the points 
indicated. 

line <pt> 
- the line containing this point. 

CMCCS '81 I ACCHO '81 



inside <pts> 
- those records whose points are 

inside the polygon formed by 
<pts> • 

near <pt> 
- those records with points within a 

preset distance of this point. 

Some examples of use: 

inside<pts> move <pt> <pt> 
- all points which fall inside 

the polygon defined by <pts> 
are spatially translated. 

substring/pin20/ delete 
- delete all records which match 

"pin20" (i.e. contain this string) 

near <pt> insert/.lb drill 65/ 
- attach label "drill 65" to records 

with points near the point. 

CS splice /drill 65 header/ 
- splice the "current set" to a new 

location (see below). 

Current Set 

- 150-

Each operation on a single record leaves C 
in a well defined location; for example, 
after "delete", C is at the record above the 
record deleted; after "insert", at the record 
most recently inserted. After a group 
command, the "current set", or CS, is the set 
of those records at which C would have been 
left had the command operated individually on 
each record; CS is thus a natural extension 
of C. 

The command in the last example splices 
the current set, those which in the previous 
line have had the label "drill 65" attached, 
after the next record in the file which 
matches "drill 65 header". 

Set Operations 

Sets formed using grouping criteria can be 
named for subsequent set building. operations 
for those occasions - perhaps rare - in which 
some combination of criteria must be used to 
specify a group. Intersection, union, and 
difference (symbols *, +, -) operations are 
supported on up to nine sets. 

For example: 

Then 

substring/pin22/ set 
inside <pts> set 2 
substring/red/ set 3 

sl*s2 set 4 
- set "s4" is the intersection 

of sets sI and s2. 

s3*s4 reword. • • 
- modify records inside the polygon 

which match both strings "pin20" 
and "red". 

Menu hits are macro invocations: a point 
entered which falls inside a menu area is 
subjected to a proximity test against those 
points in a corresponding menu file which 
have the label "macro". Subsequent records 
from the menu file, until a record labelled 
"macro end", are transmitted to the command 
interpreter. 

Thus, even though most commands have one­
character abbreviations for keyboard entry, 
menu entry is more convenient. Menu files 
are created like other EDIGER files, being 
treated as menus only after the user so 
designates via an appropriate command. 

The Environment 

The user divides the tablet into one or 
more rectangular sub-areas, and specifies 
coordinate reference information and 
associated file for each. Several sub-areas 
can map to the same file, and several files 
can be defined, though only one, the "subject 
file", can be open' for modification at any 
one time; the others are menu files 
supporting the description and modification 
of the subject file. Transformations from 
device to reference coordinates, and 
expansions of menu hits, are performed before 
command interpretation. 

There are commands for loading and saving 
files on disk, and for storing environment 
information for later use in another task. 

CMCCS '81 / ACCHO '81 

inside <pts> 
- those records whose points are 

inside the polygon formed by 
<pts> • 

near <pt> 
- those records with points within a 

preset distance of this point. 

Some examples of use: 

inside<pts> move <pt> <pt> 
- all points which fall inside 

the polygon defined by <pts> 
are spatially translated. 

substring/pin20/ delete 
- delete all records which match 

"pin20" (i.e. contain this string) 

near <pt> insert/.lb drill 65/ 
- attach label "drill 65" to records 

with points near the point. 

CS splice /drill 65 header/ 
- splice the "current set" to a new 

location (see below). 

Current Set 

- 150-

Each operation on a single record leaves C 
in a well defined location; for example, 
after "delete", C is at the record above the 
record deleted; after "insert", at the record 
most recently inserted. After a group 
command, the "current set", or CS, is the set 
of those records at which C would have been 
left had the command operated individually on 
each record; CS is thus a natural extension 
of C. 

The command in the last example splices 
the current set, those which in the previous 
line have had the label "drill 65" attached, 
after the next record in the file which 
matches "drill 65 header". 

Set Operations 

Sets formed using grouping criteria can be 
named for subsequent set building. operations 
for those occasions - perhaps rare - in which 
some combination of criteria must be used to 
specify a group. Intersection, union, and 
difference (symbols *, +, -) operations are 
supported on up to nine sets. 

For example: 

Then 

substring/pin22/ set 
inside <pts> set 2 
substring/red/ set 3 

sl*s2 set 4 
- set "s4" is the intersection 

of sets sI and s2. 

s3*s4 reword. • • 
- modify records inside the polygon 

which match both strings "pin20" 
and "red". 

Menu hits are macro invocations: a point 
entered which falls inside a menu area is 
subjected to a proximity test against those 
points in a corresponding menu file which 
have the label "macro". Subsequent records 
from the menu file, until a record labelled 
"macro end", are transmitted to the command 
interpreter. 

Thus, even though most commands have one­
character abbreviations for keyboard entry, 
menu entry is more convenient. Menu files 
are created like other EDIGER files, being 
treated as menus only after the user so 
designates via an appropriate command. 

The Environment 

The user divides the tablet into one or 
more rectangular sub-areas, and specifies 
coordinate reference information and 
associated file for each. Several sub-areas 
can map to the same file, and several files 
can be defined, though only one, the "subject 
file", can be open' for modification at any 
one time; the others are menu files 
supporting the description and modification 
of the subject file. Transformations from 
device to reference coordinates, and 
expansions of menu hits, are performed before 
command interpretation. 

There are commands for loading and saving 
files on disk, and for storing environment 
information for later use in another task. 

CMCCS '81 / ACCHO '81 



-15,1 -

Implementation 

EDIGER is device-independant; the "tablet" 
above could be the screen of a graphics 
terminal, for example; only very basic device 
driver for each is required. The system is 
written in Fortran, with several Assembly 
programs for interrupt handling and dynamic 
file definition. The editor holds the file 
"in-core", using for list and text storage 
very large arrays (several megabytes) which 
fortunately incurs little overhead on our 
demand-paging operating system (TSS). 

One of the many useful lessons of Software 
Tools [1] concerns the concept of filters, 
which (p.64) encourage "a standard 
representation for text to be passed between 
programs or to be stored on files for later 
use". Ideally, the input language of a 
program should be flexible and its output 
readable by subsequent processors. The files 
produced by EDIGER are very simple, primarily 
due to the minimal set of primitives it 
supports. 

Applications 

The user with the PC artwork needed to 
enter coordinate data, together with some 
additional text information to indicate drill 
changes and a shorthand entry of some typical 
point patterns double rows of equally 
spaced points, eight or ten or more per row 
("DIPs"), and long strings of equally spaced 
points. Two menus were defined, one for 
editor commands, a second for generating 
insertion text representing: 

1. a drill-size change, 
2. a DIP pattern, or 
3. an equidistant point sequence. 

The user records points in the sequence which 
they are to be drilled, choosing drill 
changes from the menu as necessary. DIPs are 
indicated by attaching labels (via the menu 
item) to two determining points on the DIP 
pattern, i.e., the minimal information 
necessary to identify the pattern. General 
sequences of equidistant points are indicated 
by an appropriate label on three points of 
the sequence (first, second, and last). It 
is important to note that these patterns are 
not expanded by EDIGER, but by a subsequently 
invoked PL/I program which also generates the 
NC drill tape from the EDIGER output file. 

The second ap'plication is the solar-energy 
simulation problem. The user draws system 
components as closed lines on the tablet, 
with LS labelled with a component identifier. 
("closed" 'implies spatially identical 
endpoints.) Then he enters its parameters 
(e.g., heat storage tank capacity, fluid 
specific heat and initial temperature) as 
free text. He now indicates information flow 
by connecting with lines the outputs of each 
component to the inputs of other components, 
distinguishing among multiple outputs or 
inputs by attaching labels to LS and LE 
indicators., After saving the file, he runs a 
Fortran program which scans the file and 
"verbalizes" its topology for the simulation 
package (TRNSYS) as follows: first, closed 
and nearly closed lines are found and 
interpreted as components, and open lines as 
connectors. A containment test (connector 
endpoints in component polygons see [2]), 
serves to identify the source of each input 
for each component (we assume the user drew 
connectors in the flow direction). Finally, 
a file is written in which each component 
identifier is followed by its parameters and 
its sources of input, as required by TRNSYS. 
This approach is similar to that of 
Fraser[3] , who describes a circuit design 
application on Unix. 

Verbalization filters 

The human brain is divided into two 
hemispheres, one adept verbally, the other 
spatially. The communication path between 
the two is a structure called the corpus 
callosum, which is in a sense a bridge 
between the spatial and verbal. 

The verbalization process described in the 
TRNSYS application illustrates a similar 
bridge, from words and drawings to words 
alone. Extensions to express things like 
components within components, labelled-point 
containment and connectivity, unlabelled 
points as references to previous components, 
etc., would result in a more general 
translator from action to description, 
possibly powerful enough to produce APT input 
from an EDIGER file. 

The inspiring ACTION package[4], which 
runs on a PDP-ll/55, represents an approach 
at a different level to the verbal-nonverbal 
transformation. An ACTION user is "wired" 
directly to a running application across a 

CMCCS '81 / ACCHO '81 

-15,1 -

Implementation 

EDIGER is device-independant; the "tablet" 
above could be the screen of a graphics 
terminal, for example; only very basic device 
driver for each is required. The system is 
written in Fortran, with several Assembly 
programs for interrupt handling and dynamic 
file definition. The editor holds the file 
"in-core", using for list and text storage 
very large arrays (several megabytes) which 
fortunately incurs little overhead on our 
demand-paging operating system (TSS). 

One of the many useful lessons of Software 
Tools [1] concerns the concept of filters, 
which (p.64) encourage "a standard 
representation for text to be passed between 
programs or to be stored on files for later 
use". Ideally, the input language of a 
program should be flexible and its output 
readable by subsequent processors. The files 
produced by EDIGER are very simple, primarily 
due to the minimal set of primitives it 
supports. 

Applications 

The user with the PC artwork needed to 
enter coordinate data, together with some 
additional text information to indicate drill 
changes and a shorthand entry of some typical 
point patterns double rows of equally 
spaced points, eight or ten or more per row 
("DIPs"), and long strings of equally spaced 
points. Two menus were defined, one for 
editor commands, a second for generating 
insertion text representing: 

1. a drill-size change, 
2. a DIP pattern, or 
3. an equidistant point sequence. 

The user records points in the sequence which 
they are to be drilled, choosing drill 
changes from the menu as necessary. DIPs are 
indicated by attaching labels (via the menu 
item) to two determining points on the DIP 
pattern, i.e., the minimal information 
necessary to identify the pattern. General 
sequences of equidistant points are indicated 
by an appropriate label on three points of 
the sequence (first, second, and last). It 
is important to note that these patterns are 
not expanded by EDIGER, but by a subsequently 
invoked PL/I program which also generates the 
NC drill tape from the EDIGER output file. 

The second ap'plication is the solar-energy 
simulation problem. The user draws system 
components as closed lines on the tablet, 
with LS labelled with a component identifier. 
("closed" 'implies spatially identical 
endpoints.) Then he enters its parameters 
(e.g., heat storage tank capacity, fluid 
specific heat and initial temperature) as 
free text. He now indicates information flow 
by connecting with lines the outputs of each 
component to the inputs of other components, 
distinguishing among multiple outputs or 
inputs by attaching labels to LS and LE 
indicators., After saving the file, he runs a 
Fortran program which scans the file and 
"verbalizes" its topology for the simulation 
package (TRNSYS) as follows: first, closed 
and nearly closed lines are found and 
interpreted as components, and open lines as 
connectors. A containment test (connector 
endpoints in component polygons see [2]), 
serves to identify the source of each input 
for each component (we assume the user drew 
connectors in the flow direction). Finally, 
a file is written in which each component 
identifier is followed by its parameters and 
its sources of input, as required by TRNSYS. 
This approach is similar to that of 
Fraser[3] , who describes a circuit design 
application on Unix. 

Verbalization filters 

The human brain is divided into two 
hemispheres, one adept verbally, the other 
spatially. The communication path between 
the two is a structure called the corpus 
callosum, which is in a sense a bridge 
between the spatial and verbal. 

The verbalization process described in the 
TRNSYS application illustrates a similar 
bridge, from words and drawings to words 
alone. Extensions to express things like 
components within components, labelled-point 
containment and connectivity, unlabelled 
points as references to previous components, 
etc., would result in a more general 
translator from action to description, 
possibly powerful enough to produce APT input 
from an EDIGER file. 

The inspiring ACTION package[4], which 
runs on a PDP-ll/55, represents an approach 
at a different level to the verbal-nonverbal 
transformation. An ACTION user is "wired" 
directly to a running application across a 

CMCCS '81 / ACCHO '81 



- 152 -

dynamic two-way graphics interface which can 
be defined virtually independantly from the 
application. Via shared memory with the 
application, ACTION links the spatial senses 
of the user with the verbal senses of the 
application designer. 

Application-independant efforts like these 
might comfort the application designer, who 
is loath to accept a "picture" as program 
input if he can get its thousand-word 
description. It is interesting, however, 
that his reaction to interaction and data 
preparation is again different: he tries to 
eliminate them, as much as possible, via 
powerful languages and data bases. He wants, 
for example, to allow an engineer to say 
"subject to these structural and aerodynamic 
constraints find mea variation of this stock 
airfoil which performs best over this 
weighted set of airspeeds." For the 
engineering disciplines especially, the big 
bottleneck for goal expression seems to be 
processing power. 

Related Work 

EDIGER was designed, basically, to capture 
the words and sketches of a user as he 
describes some process, problem, object, etc. 
It uses and extends ideas found in four 
existing editors - two graphics, two text -
of which none allows free mixture of text and 
graphics. 

The command syntax is from "edit" in D], 
which is itself rooted in QED[5]. Ideas on 
file handling and structures were borrowed 
from our TSS Editor. The basic framework for 
graphic input - points, lines, labels - were 
incorporated in TABEDIT, an editor written by 
a student, Rosanna Lee, at the Computation 
Centre during the summer of 1980. 

EDIGER (and TABEDIT) are probably closest 
in approach to the graphics editor described 
by Fraser[3] running under Unix for aiding 
circuit design, and could be considered a 
generalization allowing free text and more 
powerful editing capability. 

The addition of sets and set operations 
was suggested. by their use in "NRC 
Information System", currently being 
developed by R.A. Green, based on his earlier 
CAN/OLE design. 

Enhancements 

Both the EDIGER operations and its file 
formats are simple, which leads to the 
speculation that EDIGER could be micro-based, 
with a file transfer capability to the deeper 
software and centralized peripherals of a 
mainframe. 

Grouping criteria might be extended. 
While their current orthogonality has the 
benefit of clarity, and while set operations 
provide one way to mix criteria. there are 
natural groups which cannot be specified 
using this approach. Two candidates for 
inclusion are "brackets", and "Chains", both 
indicating unbroken sequences of records: 

bracket /begin/,/end/ delete 

would delete the sequence of records 
con taining the current record, the firs t 
matching "begin", the last matching "end", 
with no interior record matching either. 

chain <pt> move <pt> <pt> 

would move that sequence of points in the 
file containing an indicated point which 
satisfy the condition that the maximum 
distance between adjacent pOints in the 
sequence is no more than a pre-set tolerance. 
Among other things, this pattern might be 
used to indicate dashed lines and sequences 
of lines which draw text. 

Naturalness 

"Every program defines an input language, 
albeit a primitive one" [6]. If we accept 
for the moment the primitive nature of this 
language, one compelling measure of its 
naturalness lies in comparing communication 
using it against human-human communication of 
the same information. 

This paper began with a description of 
everyday man-to-man communications involving 
graphics as a starting point for developing a 
more natural man-computer interface. One 
should note that processors like APT and 
TRNSYS, are natural in the sense that the 
sequence and content of problem expression 
are close to the way people might communicate 
similar information over a telephone. 

CMCCS '81 / ACCHO '81 

- 152 -

dynamic two-way graphics interface which can 
be defined virtually independantly from the 
application. Via shared memory with the 
application, ACTION links the spatial senses 
of the user with the verbal senses of the 
application designer. 

Application-independant efforts like these 
might comfort the application designer, who 
is loath to accept a "picture" as program 
input if he can get its thousand-word 
description. It is interesting, however, 
that his reaction to interaction and data 
preparation is again different: he tries to 
eliminate them, as much as possible, via 
powerful languages and data bases. He wants, 
for example, to allow an engineer to say 
"subject to these structural and aerodynamic 
constraints find mea variation of this stock 
airfoil which performs best over this 
weighted set of airspeeds." For the 
engineering disciplines especially, the big 
bottleneck for goal expression seems to be 
processing power. 

Related Work 

EDIGER was designed, basically, to capture 
the words and sketches of a user as he 
describes some process, problem, object, etc. 
It uses and extends ideas found in four 
existing editors - two graphics, two text -
of which none allows free mixture of text and 
graphics. 

The command syntax is from "edit" in D], 
which is itself rooted in QED[5]. Ideas on 
file handling and structures were borrowed 
from our TSS Editor. The basic framework for 
graphic input - points, lines, labels - were 
incorporated in TABEDIT, an editor written by 
a student, Rosanna Lee, at the Computation 
Centre during the summer of 1980. 

EDIGER (and TABEDIT) are probably closest 
in approach to the graphics editor described 
by Fraser[3] running under Unix for aiding 
circuit design, and could be considered a 
generalization allowing free text and more 
powerful editing capability. 

The addition of sets and set operations 
was suggested. by their use in "NRC 
Information System", currently being 
developed by R.A. Green, based on his earlier 
CAN/OLE design. 

Enhancements 

Both the EDIGER operations and its file 
formats are simple, which leads to the 
speculation that EDIGER could be micro-based, 
with a file transfer capability to the deeper 
software and centralized peripherals of a 
mainframe. 

Grouping criteria might be extended. 
While their current orthogonality has the 
benefit of clarity, and while set operations 
provide one way to mix criteria. there are 
natural groups which cannot be specified 
using this approach. Two candidates for 
inclusion are "brackets", and "Chains", both 
indicating unbroken sequences of records: 

bracket /begin/,/end/ delete 

would delete the sequence of records 
con taining the current record, the firs t 
matching "begin", the last matching "end", 
with no interior record matching either. 

chain <pt> move <pt> <pt> 

would move that sequence of points in the 
file containing an indicated point which 
satisfy the condition that the maximum 
distance between adjacent pOints in the 
sequence is no more than a pre-set tolerance. 
Among other things, this pattern might be 
used to indicate dashed lines and sequences 
of lines which draw text. 

Naturalness 

"Every program defines an input language, 
albeit a primitive one" [6]. If we accept 
for the moment the primitive nature of this 
language, one compelling measure of its 
naturalness lies in comparing communication 
using it against human-human communication of 
the same information. 

This paper began with a description of 
everyday man-to-man communications involving 
graphics as a starting point for developing a 
more natural man-computer interface. One 
should note that processors like APT and 
TRNSYS, are natural in the sense that the 
sequence and content of problem expression 
are close to the way people might communicate 
similar information over a telephone. 

CMCCS '81 / ACCHO '81 



- 153 -

EDIGER however permits the user to draw as 
he talks, gives him a blackboard as it were, 
and "watches" and "listens" as the user 
describes his problem. Anywhere a user hunts 
for a scrap of paper to describe his problem 
- flow diagrams, circuits, graphs, etc. 
seems a potential candidate for its 
applica tion. 

Conclusion 

The "man-computer" interface is often a 
variation of the "man-man" interface: the 
user "talks" to the application designer in a 
language chosen by the latter. The computer, 
however, constrains this language to be 
primitive, and its interpretation literal: 
hence the need for a tool, an editor, which 
allows the user to create and revise his 
descriptions if they are complex. 

EDIGER is a tool for recording and editing 
these descriptions when a mixture of text and 
graphics is required. 

Acknowledgements 

My thanks to Rosanna Lee for her TABEDIT 
work, to my colleagues Andy Haycock and Art 
Green for their help; and to Marceli Wein and 
Ken Steele of the NRC Graphics section for 

their encouragement. The last thr'ee people 
read a draft of this paper, and made valuable 
suggestions for improvement. 

Bibliography 

[1] B.W.Kernighan and P.J.Plauger, Software 
Tools, Addison-Wesley, Reading, Mass., 
1976. 

[2] B .K.Aldred, "Points in Polygon 
Algorithms", IBM(UK) Scientific Centre 
Report UKSC-002S, April 1972. 

[3] A.G.Fraser, "Unix Time Sharing System: 
Circuit Design Aids", Bell System 
Technical J •• Vol.S7. No.6, July-August 
1978. ppo2233-49. 

[4] P.P.Tanner and K.B.Evans, "ACTION - A 
Graphics Aid to Interacting with Models 
and Simulations". Proc. Sixth Man­
Computer Communications Conference, 1979, 
pp.49-61. 

[5] L.P.Deutsch and B.W.Lampson. "An Online 
Editor", Comm. ACM. Vol.lO. No.12. 
Dec.1967. pp.793-799. 

[6] S .C.Johnson. "Language Development Tools 
on the Unix System", Computer. Vol.13. 
No.8. August 1980. pp.16-24. 

CMCCS 'S1 I ACCHO 'S1 

- 153 -

EDIGER however permits the user to draw as 
he talks, gives him a blackboard as it were, 
and "watches" and "listens" as the user 
describes his problem. Anywhere a user hunts 
for a scrap of paper to describe his problem 
- flow diagrams, circuits, graphs, etc. 
seems a potential candidate for its 
applica tion. 

Conclusion 

The "man-computer" interface is often a 
variation of the "man-man" interface: the 
user "talks" to the application designer in a 
language chosen by the latter. The computer, 
however, constrains this language to be 
primitive, and its interpretation literal: 
hence the need for a tool, an editor, which 
allows the user to create and revise his 
descriptions if they are complex. 

EDIGER is a tool for recording and editing 
these descriptions when a mixture of text and 
graphics is required. 

Acknowledgements 

My thanks to Rosanna Lee for her TABEDIT 
work, to my colleagues Andy Haycock and Art 
Green for their help; and to Marceli Wein and 
Ken Steele of the NRC Graphics section for 

their encouragement. The last thr'ee people 
read a draft of this paper, and made valuable 
suggestions for improvement. 

Bibliography 

[1] B.W.Kernighan and P.J.Plauger, Software 
Tools, Addison-Wesley, Reading, Mass., 
1976. 

[2] B .K.Aldred, "Points in Polygon 
Algorithms", IBM(UK) Scientific Centre 
Report UKSC-002S, April 1972. 

[3] A.G.Fraser, "Unix Time Sharing System: 
Circuit Design Aids", Bell System 
Technical J •• Vol.S7. No.6, July-August 
1978. ppo2233-49. 

[4] P.P.Tanner and K.B.Evans, "ACTION - A 
Graphics Aid to Interacting with Models 
and Simulations". Proc. Sixth Man­
Computer Communications Conference, 1979, 
pp.49-61. 

[5] L.P.Deutsch and B.W.Lampson. "An Online 
Editor", Comm. ACM. Vol.lO. No.12. 
Dec.1967. pp.793-799. 

[6] S .C.Johnson. "Language Development Tools 
on the Unix System", Computer. Vol.13. 
No.8. August 1980. pp.16-24. 

CMCCS 'S1 I ACCHO 'S1 


