- 163 -

DIGITAL CONVEX HULLS FROM HIERARCHICAL DATA STRUCTURES

M.-M. Yau and S.N. Srihari

Department of Computer Science
State University of New York at Buffalo, Amherst, N.Y.

ABSTRACT

The convex hull is a useful tool in
describing the shape of objects in two- and
three-dimensional images. Since digital -images
can often be efficiently represented in high
resolution by hierarchical data structures, it
is useful to compute convex hulls directly from
these data structures. In general, there is no
unique minimal convex digital pattern that
contains a given digital object, and for
certain applications in shape analysis, an
approximate image convex hull within the
accuracy of discretization is sufficient. The
algorithm presented in this paper computes such
convex hulls by taking advantage of the implied
sorting in a quadtree or octree representation.
It reduces the problem to. that of finding the
convex and concave envelopes of the depth
values of unobscured points along two opposite
directions. The digital convex hull is compu-
ted by the intersection of the convex epigraph
of the convex envelope and the convex hypograph
of the concave envelope. Experimental results
in the computation of convex hulls will be
described.

RESUME

L'enveloppe convexe est un outil utile
pour décrire la forme des objets bi- et tri-
dimensionnels. FEtant donné que les images
numériques peuvent souvent &tre représentées de
fagon efficace en résolution &levée par des
structures hi@rarchiques de données, il est
utile de calculer les enveloppes convexes
directement 3 partir de ces structures de
donnges. En général, il y a plus d'un diagramme
numérique convexe minimal qui contient un objet
numérique donné et, pour certaines applications
sur le plan de 1'analyse des formes, une
enveloppe convexe approximative dans les
limites de la précision de discrétisation est
suffisante. L'algorithme présent& dans le
présent document calcule ce type d'enveloppe
convexe en profitant du triage implicite dans
une tétraarborescence ou une octoarborescence.
Le probléme se résume 3 trouver les enveloppes
convexes et concaves des valeurs de profondeur
des points non obscurcis le long de deux
directions oppos@es. L'enveloppe convexe
numérique est calcul@e par l'intersection de
1'8@pigraphe convexe de 1'enveloppe convexe et
de l'hypographe convexe de 1'enveloppe concave.
Une description sera faite des résultats
expérimentaux du calcul des enveloppes
convexes.

CcMCCs ‘81 / ACCHO ‘81

- 164

1. INTRODUCTION

In the analysis and recog‘nition of the
shape of a solid, the convex hull is a useful
commutational tool. The convex hull of a solid
provides not only an approximation of its three-
dimensional (3D) shape, but also allows exact
shape description in terms of the convex
deficiency (which is the set difference between
the convex hull and the solid).

Solids in 3D images, such as those produced
by computed tomography [SRIHARI 80] are
usually represented as points in discrete
space. Present 3D convex hull algorithms
either vertain to points in continuous space’
or have been adapted from continuous space
algorithms without taking advantage of the
discreteness of data. In this paper we propose
an aporoach to 3D convex hull camputation that
is based on a practical characterization of
diqital convex hulls and that makes use of
sorting usually present in image data
structures.

Although convexity is a well-understood
concept in classical analysis and geometry,
there are many definitions of digital convexity.
In Sections 2 and 3 we review convexity and
existing convex hull algorithms for continuous
and discrete 3D spaces respectively. Section
4 mresents the theoretical background of the
algorithm. Imnlementation with tree data
structures is discussed in Section 5.

2. (QONTINUOUS SPACE

A set S of points in Euclidean space is
convex if and only if the line segment joining
every pair of its points consists entirely of
ooints of S. The convex hull of S, denoted
ii(3), is the smallest convex vex set containing S,
i.e., H(S) is the intersection of all convex
sets containing S. Several algorithms for
obtaining H(S) from a set S of n points are
known. In the 2D case, the time camplexity of
determining H(S) is O(nlogn) for an arbitrary
set of points [SHAMOS 75] and 0(n) for the
ver:ices of a polygon [SKLANSKY 72].

Algorithms for the 3D case are considered in
[APPEL, 76], [DIJKSTRA 76) and [PREPARATA 77].

The algorithm of [APPEL 76] camputes the
convex hull of a polvhedron given a set S of
its n vertices. For each pair of points of S,
the line segment e joining them is determined.
By projecting S onto a plane perpendicular to
e and testing if the projection of e is
enclosed within the 2D convex hull of the
remaining (n-2) projected voints of S, it is
determined whether or not e should be included

in a list of edges of H(S). Elements of the
list are examined for loops which are then
assembled into polygonal faces. Since there
are n(n-1)/2 possible line segments e and the
test for containment in a 2D convex hull is

0(nlogn), the algorithm cormlexity is O(nBIOgn) .

The 3D convex hull algorithm of
[DIJKSTRA 76] pertains to a set of points such
that no four points lie on a plane. H(S) is
initialized to the two oriented triancular
faces definedby three arbitrary points in S.
For each additional point p, a face in the
current H(S) is either a light face or a dark
face depending on whether imaginary light ravs
emanating from p illuminates the face from
outside or inside of H(S). If every face in
the current H(S) is dark with respect to p
then p lies in the current H(S). If not,

certain faces (i.e., their edges) are deleted

from H(S) and certain others are included in
H(S), as determined by the boundary between
the set union of light faces (the light cap)
and the set union of dark faces (the dark
cap)-which forms a closed circuit. Faces in
the light cap are removed from H(S), and new
faces comnecting p to edges on the boundary
are added to H(S). Since for each point in S,
at most 0(n) number of edges need to be
examined, the complexity of the algorithm is

0(nd).

An algorithm based on "divide-and-conquer”
can reduce the camplexity of 3D convex hull
computation to 0(nlogn) [PREPARATA 77]. First
we sort S into a list according to a coordinate
and partition the list into two nearly equal
subsets. The convex hulls A and B of the
subsets are recursively camputed. The sorting
guarantees nonoverlapplng A and B, which can
then be merged in linear time--by constructing
a cylindrical triangulation T which is
tangential to A and B along two circuits and
by removing portions of A and B that are
dbscured by T.

3. DISCRETE SPACE
3.1 Digitization

A method of sampling a 3D volume is to
use an array of points, called digital points,
whose coordinates are integers. With each
digital point V= (V1,V2,V3) of this lattice,
we associate the set of points (x1,x2,x3) of
continuous space satisfying xi-1 /2<V:.<x1+ 1/2
and refer to the resulting volume element as
voxel V (analogous to pixel for a 2D picture
element) .

CMCCS '81 / ACCHO ‘81

- 165 -

If Q is a set of points representing an
object in continuous space then we say that a
set of voxels S is the digital image of 0,
denoted S=I(Q), if S={V|V is a voxel and
VnQ#é}.

2 set of voxels S is referred to as a
digital region. If the voxels of S are
connected (see [SRIHARI 80] for 3D digital
connectivity) then S is said to be a digital
solid.

3.2 Digital Convexity

A muber of different definitions of
digital convexity are given in the literature.

3.2.1 Convex Preimage

A digital region S is convex if there
exists at least one convex object Q such that
S=I(Q). This intuitively appealing defini-
tion does not lead to a finite procedure for
testing convexity.

3.2.2 Midpoint Convexity

A digital region S is convex if whenever
voxels X,YeS, at least one of the midgint
cover voxels is in S. A midpoint cover of
X and Y is the smallest set of midpoint voxels

such that for every segment between a point of
X and a point of Y there is a midpoint voxel
included. Z is a midpoint voxel of X and Y if
and only if Z contains the midpoint of a seg-
ment between a point in X and a point in Y
[HODES 70].

3.2.3 Convex Solid

A digital region S can be reqularized by
half-cell exnansion and the convexity of S
determined by the convexity of its half-cell
expansion E(S) [SKIANSKY 72]. E(S) is the
discrete image of S in a new lattice obtained
by displacing the current lattice by half cell
in the three directions.

The half-cell expansion can be used to
define a digital convex solid [KIM 80]. A
digital solid S is convex if it is simple
and there is a convex solid Q such that
I(Q)=E(S). A simple solid S is a finite
6~connected set of voxels having no vair of
voxels X,YeS such that the line segment
joining the centers of X and Y is parallel to
an axis and lies outside the voxels of S. The
simple solid requirement is introduced to
eliminate edge effects due to single voxel
gavs and ensure simple connectedness.

It can be shown that this definition of
convexity leads to a finite procedure for
testing convexity--one that utilizes concepts
of semidigital moints and nearness of points.
A point X = (x1,x2,x3) is said to be a
semidigital point if at least one of the xi
is an integer, and two noints X and Y are said
to near each other if max {|xi-vi|}<1. A

1
simple digital solid S is digital convex if
and only if the Fuclidean convex hull of the
digital points of S, H(S), is such that every
semidigital point on the faces of H(S) is near
a digital point of S [KIM 80]. Thus a
procedure to test the convexity of a digital
region S is to first test for simplicity of S,
then compute H(S) from the digital points of
S and finally test for nearness of the semi-
digital points on H(S) to the digital points
of S.

3.3 Digital Convex Hull

In terms of the last characterization of
digital convexity, the digital convex hull
H(S) of a digital region S is the smallest
(in terms of set inclusion) simple digital
solid that contains S and each point of H(S)
is near a point of H(S). Let K(S) be the set
of all digital points in H(S). The following
result is shown in [YAU 81al: if S is
6-connected then H(S)=K(S). An example of
S, H(S) and A(S) is shown in Fig. 1.

_ ‘1 (b)
(a) S

(c)

Fig. 1. A digital solid (a), the Euclidean
convex hull of its digital points (b) and
its digital convex hull (c).

CMCCS ‘81 / ACCHO '81

- 166 -

4. THEORETICAL BACKGROUND

In this section we will demonstrate that
the problem of camuting A(S) of a digital
solid S is eruivalent to

(i)' determining two functions of two
variables called the ceiling and floor
functions (which give the maximum and
minimum extent of S along opposite
directions),

(ii) determining the concave and convex
enveloves of the ceiling and floor
functions respectively, and

(iii) determining the digital points in the

set intersection of the convex enigraph.

and concave hyoograph of the respective
envelones.

4.1 Ceiling and Floor

let S be a finite, 6-connected 3D digital

solid. ILet S'={(x1,x2)]|(x1,x2,x3)eS}. We
define the floor and ceiling of S to be the
functions defined on damain S' as

a (x1,x2) =min{z| (x1,x2,2)eS} and

Bg (x1,x2) = max{z| (x1,%x2,2)eS} respectively,

4.2 Convex Set

If S={Si} is a set of points in

d~dimensional Euclidean smnace]Rd then it is
known that [MANGASARIAN 69] H(S) = {X|X =
Im.Si where Zmi=1 and m, >0 }. Each point of
i i .

of H(S) is said to be a convex cambination of
the noints of S. If S=H(S) then S is a
convex set.

4.3 Convex and Concave Functions

Let £(X), X=(x1,x2) be a real-valued
function of two variables defined on a domain

D€1R2. The gravh of f is defined as the set
G6(f) = {{X,£(X)7 [XeD}.

" If D is a convex set then f is said to be
convex if and only if for X,YeD, O<ms1,
(1-m) £(X) +mf(Y) 2 £((1-m)X+my) . If f is
convex then the straight line segment joining
points [X,f(S)] and [Y,f(Y)] lies above:G(f)
between X and Y.

If D is a convex set then f is said to be
concave if and only if for X,YeD, Os<m<1,
(-m) £{X) +mf (Y) < £((1-m)X+mY). If f is
concave then the straight line segment joining

voints [X,£f(X)] and [Y,f(Y)] is below G(f)
between X and Y. ‘

Thus if f is convex then -f is concave
and vice versa.

4.4 Convex and Concave Envelopes

Let H(D) denote the Euclidean convex hull
of D, the domain of f. The convex envelope
f~ of f 1is defined by the graph

G(f~) = {[X,e] |XeH(D), esmin {Zm, £ (Xi)]Zmi=1,
i i

m.,20 and X=Im,Xi, XieD}]}.
1 1 1

The concave envelope ft of f is given by the
graph G(f¥) which is defined similar to

G(f7) with max in place of min.

4.5 Epigraph and Hypograph

The epigraph and hvpograph of f are
defined to be G (f) = {[X,e] |[XeD, £(X)<e and

ecR} and 7 (f) ={[X,e]|XcD, £(X)>e amd
ecR } respectively. Thus the epigraph and
hypograph of f are the two infinite regions
above and below the graph G(f).

It is shown in [MANGASARIAN 69] that if
f is defined on a convex set D, then f is

convex i¥ and only if Gt (f) is a convex set
and f is concave if and only if g is a
convex set. i

Theorem 1: G*'(oc;) nG'(B;') =H(S).

Tt immediately follows that the digital
oconvex hull of S is given by the digital
points cammon to G‘f(oc;) and G'(B;) .

The following algorithm for commuting #(S)

of a 6-connected digital solid can now be
stated.

Algorithm Digital Convex Hull

Step 1 Determine the ceiling and floor
functions og and BS from S.

Step 2 Apnly Algorithm Convex Envelore to
o to find o .
S S

Step 3 Apply Algorithm Convex Envelone to
-8, to find B; .

CMCCS ‘81 / ACCHO ‘81

- 167 -

Step 4 Determine the digital points in the
intersection of G' (og) and G (Bg) .

4. € Comouting the Convex Envelone

Since the convex combination is a linear
combination, G(a;) is a piecewise linear con-

vex surface. It has the property that for
each of its points v, there exists at least
one »lane P which contains v such that
all of G(ag) is contained in one closed

half-space produced by P. P is called a
supporting nlane £ Glag) at v.

The intersection of any supporting
plane with G(a‘s‘) contains at least one extreme

point of G(a;) . A point v in G(a;) is said to
be an extreme point of G(o:.') if there do not
exist two d_lfferent points v1, v2 in G(ag)

such that v=myv '+ (1-mv?, O<m<l. Tt follows
from the definition of as that all the

extreme noints of G(oc;) are points in G(as).

The line joining two distinct extreme
points of G(on;) is called an edge of G(a;) if
it is the intersection of G(oz;T with a support-
ing plane.

The triangular face defined by three
distinct extreme points of G(a;) is called a
face of G(a7) if it is the intersection of

£ G(a';) with a supporting plane. We

shall assume all faces are oriented and use
the convention that if a polygonal face is

defined by v1 .. .vm, where v.I reee ,vm are its
vertices, then an ocbserver is on the outside

of the face if v1,...,vm appear in counter-
clockwise order. Otherwise the cbserver is
on the inside of the face. The inside of a
face of G(oz;; is the side on which G(oa;) lies.

We shall define the normal n(p) = (n,(®),

n, (o), n3(p)) of a face » to be the outward

normal and the angle Y (p,q) between two faces

p and g to be the angle between n(p) and n(q).
Since the construction of the convex

envelope og is equivalent to determining all

the faces of G(a;) , we would like to derive a

criterion for the next face, assuming that we
can alwayvs determine at least one face of G(oc;).

Theorem; :let p= v1v2v be a face of G(a).

Then g= v3v2v is a face of G(a7) if and only

if Vv{p,a)= max {'J)(p,v3v2v)[n3(v3v2v)<0}.
veG(as)

The proof follows from the observation
that q is a face of G(a;) <=> the nlane
containing q is a supporting nlane <=>
there does not exist v" G (cxs) such that v1
and v" lie on opposite sides of q.

Theorem 2 suggests a procedure for deter-
mining the faces of G(a;) , given a set of

starting faces. Usually it is expensive to
compute the angle between two faces; we would
like to reduce, as much as possible, the
number of times this operation is performed.
This is done by first preprocessing the
prints in G(as) to remove from further con-

sideration points that are not extreme points
on two mutually orthogonal planes and secondly
adopting an efficient search strateqy for the

face q=v3v2v1 of G(a;) , given p=v1v2v3 is a

face of G(a;) .

4.6.1 Preprocessing
1
Let x1<...<xls1|, y1<...<y be the
elements in Si ={x1]| (x1,x2)eS" for some x2},
S5 = {x2| (x1,%2)eS" for some x1} respectively.

let o (yi) be the induced floor

B

s, (x)’ % S5
functlons of a_ on S (x y ={x2] (x ,%2)€S' 3,

s (yi) = {x1] (x1,y)eS' } respectively,

i=1,...085l, 3=1,....1s5l. If we order

the points in G(a 1)) or G(OL52 (yl)) by
their first coordinates, we can regard them
as the ordered vertices in a weakly externally
visible polygon [TOUSSAINT 80] and apply the
linear convex hull algorithm in [SKLANSKY 72]
to find the extreme points in their convex
envelopes. Since extreme points in G(a-) are

necessarily extreme points in both G(oZ ,_i,)

sS4 (x

s(x

and G(a~ 1)) for same i £{1,...,|s!!],

S5 (v 11!

j e {1,...,|Sé|} , we anply the above pro-

cedure to generate fram S' the reduced set
A over which the convex envelope is to be

computed.

CMCCS '81 / ACCHO ‘81

- 168 -

4.6.2 Search Strategy

Given a face p=v1v2v3on G(a;) , our

strategy is to use divide-and-conguer to find
q=v3v2v1, a face of G(ocg) that stands on the
edge v3v2. Initialize S, to be the square

that contains A. Either its contents are
simple enough to process with same decision
procedure or we recursively subdivide S, into

1
123

its four quadrants. 'Let u u"u be the projec-

tion of v1v2v3on S1. Initialize w to 0. ILet

§,(2) = min {y(p,r) |r=v3v2 (x1,%x2,2) },
(x1,x2) S.I

8,(2) = max {Y(o,r) [r=vvi(x1,x2,2)).
(x1,x2)es1

where z=max { x3| (x1,x2,x3) eG(a), (x1,x2)e:S1 1
S1 is simple enough if one of the follow-
ing conditions hold:

1. S.' lieson the same side of u3u2 as u1, in

which case n3(r)20, a is not in S1.

2. 8;n A= or 62(2) <w, g is not in 5,

3. Thereisonly one point v" projected onto S,

In case of condition (3), v" is returned
as a candidate for an extreme point. Among
the values returned fram the subquadrants of
S,, the one that gives rise to the largest

value of ‘U)(n,v3v2v“) is used to form q.

In case of S1 not simple, w is updated to

be the largest §,(z) camputed over the four
quadrants of S.I. The computation of 61 (z)
and 62(2) is made simple bv noticing that the

extrema alwavs occur at two different corners
of the square S1.

We shall discuss in the next section the
implementation details of obtaining the set of
starting faces and the data structure for the
various parts of the algorithm.

5. IMPLEMENTATION WITH HIERARCHICAL, DATA
STRUCTURES

The enormous amount of data in 3D digital
images calls for efficient data and control
structures for image analysis. Freguently
serial section (or slice-by-slice) nrocessing

is employed to alleviate oroblems of storage
and thrashing between main and secondarv
memory. The hierarchical cuadtree data
structure is useful for compactly representing
slice data, and its generalization known as
the octree representation ([JACKINS 80],
[SRIHART 80]) is suitable for gravhics display
and search overations. The octree is based
on recursively subdividing a cubical volume
into octants until each octant has uniform
proverties, e.g., every voxel of the octant

is full (or has value 1). In this section

we discuss an implementation of the digital
convex hull algorithm for a digital solid

that is renresented in such a data structure.

Generation of Floor and Ceiling

et T(S) be the octree representation of
a S-connected digital solid S. The quadtrees
T(G(as)) and T(G(Bs)) reoresenting the floor

and ceiling of S can be computed bv recur-
sively visiting the 0,...,7 subtrees in

© order, associating the (2i)-th and (2i+1)-th

sons at a given level of T(S) to the i-th son
at the same level of T(G(o,)) and T(G(Bs)) '

for 1=0,1,2,3. The values of octree leaves
are written onto the corresmonding quadtree
leaves in the following manner: The value
of a leaf in T(G(as)) stays the same, once it

has been assigned a value, while the value of
a leaf in T(G(BS)) is always overwritten by

the value of the current octree leave associ-
ated with it. Values of nonterminal nodes in
T(G(OLS)) and T(G(Bs)) are the minimum and

maximum respectively of their son values.
As an examwle, consider the 6-connected

digital solid S amd its octree representation
in Figure 2(a) and (c). G(as) and its cquadtree

representation T1 =T(G (as)) are shown in

Figure 3. Non-existing branches are indicated |
bv dotted lines. We shall describe only the
processing of T, to find the convex envelooe,

since the computation of the concave envelope
from T2=T(G(Bs)) is similar.
Prenrocessing

To construct the induced convex envelope
i, and o i,, the binary subtrees of
s, (v

T.' are traversed in a manner similar to the

OLs1 (x

reversed nrocess of the construction of
quadtrees fram binary trees [YAU 81b]l. The

CMCCS ‘81 / ACCHO ‘81

- 169 -

order in which the binarv tree leaf nodes are
visited corresvonds to the sorted order of —x
the vertices on a polygon. First the extreme 01
roints of G(a;1 (xi)) are determined for

o
s
»
W

i=1,...,|S%|. Nodes that do not correspond

to an extreme moint are removed and values of 21 2 1 (a)
their ancestors are updated if necessary.

(Fig. t(a), (b)). Secondly, the extreme voints]
of G(a;p(vi)) are determined for j=1,...,|Sél, (b)
using only the nodes remaining on T, after the

first reduction step, rawoving further nodes
that do not correspond to an extreme point in
the current step (Fig. 4(c), (d)). The
projection A on S' of extreme points common
to the two steps are represented by the shaded
squares in Fig. 5a.

Determination of the Starting Faces Fig. 3. (a) G(OLS) , (b) quadrant indices,

The extreme points w1, . ,wk of H(A), (c) J.n.ltlal‘T1 T(G(ots)) R ﬁmd(.aflned branches
sorted in counterclockwise order, can be are indicated by dotted lines),
determined by apnlying the procedure for
camuting o~ i) , described in Section 4.6,

s1(x 0 1 7
x3 0 1
3
a i 2
(a)
1] 1
0
y 5 3 o2 2
o 1 A /5 —x1 /
01 0f—3 > n [
X2 (a)

[¥S
|
»
o
[}
-,
ok o]

—>x1
—
3] 5—1
1 \ R
x2 . l J
{ 2 3 N\~ — 4 1 ‘ ‘
- : A - 2 M 34 2 7
/ ‘ V?—J i
i | S
B/NINGINNGZ/1)\ VR @
(c)
Fig. 2.(a) 6-connected digital solid s,

(b) Octant indices, (c) Octree representation
T(S) of (a).

Fig. 4.(a) & (b) T1 after construction of
first face, (c) § (d) T1 after construction
of second face.

CMCCS ‘81 / ACCHO '81

- 170 -

o 1 2 ‘ to the floorand ceiling of A, and suitably

adjusting the sign of the ceiling. For each
1,2),(0,3,0)),(-1,0,0) consecutive w* and wl+1 (addition is modulo
»3,0),(2,3,2)),(0,1,0) i i i
.3,2),01,2,1),0,-1,0) k), we construct v= (wy,w,,w;3+c) for same
.2))

:1,00,1,2)),01,-1,0) . positive integer c. Then p=vl+1vlv is a

starting face for the construction of the
convex envelope. The normal to p can be

expressed as an integer-valued order-triple,
/%

(@) since its vertices are digital points

x2) (vlvl+1,n(p)) is added to a queue Q. The
7 , initial value of Q for the particular
NSRS, | example we are considering is given in
Fig. 5a.

o
=N

Construction of Oonirex Envelope Faces

The top entry (u1u2,n(p)) is removed from
Q and the urmarked nodes on T1 are searched

according to the decision rules described in
Section 4.6 to return Uy, the extreme point

-~ on G(o7) that maximizes the angle w(p,u1u2u3).

y 13%5 123 32 123
0)Y.(-1.0.00 . ®) (uu’,n(uu 7)) and (uWu", n(uu™u’)) are

2)),(0,1,0) entered onto Q if uted and oiu? are not

;;), (1,-1,0) present in the first field of an existing

0)

), (1,-1,0) - element of Q. Otherwise the matching entries
), (0,-1,-1) are removed fram Q. The truncated value of

q= 1.11u2u3 at each digital point over the

projection of g on S' are entered as marked

values on T1‘ Value of nonterminal nodes on

0 1 3 T, are updated so that the minimum is taken

x1 only over unmarked nodes. The process is
reneated until Q is empty.

Ty and Q at the two iterations of the
process is illustrated in Figure 5(b) and (c).

Construction of Convex Epigraph

' vovade The. octree representation T(G"(oc;)) is
R oonstructed by recursively visiting T.I
%2 ‘] subtrees, creating at each ith son the
. corresponding (2i) and (2i+1)-th sons of the
+((013r0)r(21312))1(01110) octree,'for i=0,1,2,3. Values of the octree
x((2,3,2),(1,2,1)),(1,-1,0) node is set to full if its third coordinate in
x((1,2,1,(0,3,0)),(0,-1,-1) () 3D cartesian space is not smaller than the
value of its corresponding T, node, and empty
Fig. 5.(a) Boundary of H(A) ard initial otherwise. The octree representation of the
entries on Q, (b) & (c) T, in 2 steps of digital convex hull is obtained by camputing
construction of convex envelope the intersection of the octrees of the
(+: current top entry on Q, x: entry to be correspording epigraph and hyp ¢ graph. This
removed from Q, *: extreme voint for the is done by traversing the two trees in parallel,
construction of new face, +: entrv to be setting a node to full only if it is full in
added to Q, ; |: marked entry), both trees (Fig. 6).

CMCCSs ‘81 / ACCHO '81

- 171 -

(@)

3] wfeliniefafa L) Ly L] - 1 M

Figure 6. a) Digital convex hull H(S),
(b) Octree representation T(H(S)).

6. SUMMARY AND CONCLUSIONS

Computation of the convex hull of a solid
is useful in 3D analysis. Several algorithms
have been proposed for points in 3D continuous
space. Methods for computing the digital
convex hull fraom data structures that are
suited tohigh resolution 3D digital images
are needed. We have proposed a new approach
to 3D digital convex hull computation that
appears to be suitable for data structures in
the form of serial sections or hierarchies.

ACKNOWLEDGEMENT

This work was surported in part by the
National Science Foundation Grant IST-80-10830
and in part by SUNY/Buffalo BRSG funds. The
authors wish to thank Ms. Gloria Calato who
prepared the manuscript.

REFERENCES

[APPEL 76] A. Appel and P.M. Will, Determining
the three-dimensional convex hull of a poly-
hedron, IEM J. Res. Develop., 20, 590-601,

Nov. 1976.

[DITKSTRA 76] E.W. Dijkstra, The nroblem of
the convex hull in three dimensions, Ch. 24
in A discipline of programming, Prentice-Hall,
N.Y., 1976.

[HODES 70] L. Hodes, Discrete approximation of
continuous convex blobs, Siam J. Aopl. Math.
19, U77-485.

[JACKINS 80] C.L. Jackins and S.L. Tanimoto,
Oct-trees and their use in representing 3D
objects, Comp. Graph. and Image Proc., 14,
249-270, 1980. —

[KIM 80] C.E. Kim and A. Rosenfeld, Convex
digital solids, TR-929, U. of Marvland,
Computer Science Center, 1980.

[MANGASARIAN 69] O.L. Mangasarian, Nonlinear
Programming, McGraw-Hill, N.Y., 1969,

[PREPARATA 77] F.P. Preparata and S.J. Hong,
Convex hulls of finite sets of points in two
and three dimensions, Corm. ACM, 20, 87-93,
1977.

[SHAMDS 75] M.I. Shamos and D. Hoey, Closest-
point problems, Proc. 16th Ann. IEEE Symp.
on Foundations of Computing, 151-162, 1975.

[SKLANSKY 72] J. Sklansky, Measuring concavity
on a rectangular mosaic, IEEE Trans. on Comput.
C-21, 1355-1364, 1972.

[SRIHARI 80] S.N. Srihari, Representation of
three-dimensional digital images, TR-162,
Dept. of Computer Science, SUNY/Buffalo,
July 1980.

[TOUSSAINT 80] G.T. Toussaint, Pattern recogni-
tion and geometrical camplexitv, Proc. 5th Int.
Conf. Pattern Recog., 1324-1347, T980.

[YAU 81a] M-M. Yau, Hierarchical representa-
tion of three-dimensional digital solids,
forthcoming Ph.D. dissert., Dept. of Computer
Science, SUNY/Buffalo.

[YAU 81b] M-M. Yau and S.N. Srihari, Recursive
generation of hierarchical data structures for
multidimensional digital images, TR-170, Dept.
of Computer Science, SUNY/Buffalo, Feb. 81.
Also to appear in Proc. PRIP-81, Dallas, TX.

CMCCS ‘81 / ACCHO '81

