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ABSTRACT 

In this paper we present a new packing 
algorithm. It fills a 3-D space with tangent 
spheres of different radii. The spheres and 
the tangency relation form a graph representing 
the volume; from this graph we can extract 
volume properties as: elongated parts, flat 
parts, part-whole, etc •••• The computation 
performed in three steps: computerization of 
the euclidean map of the objects using the 
adaptation of Danielson's algorithm to 3-D 
space, extraction of the tangent spheres, 
computation of the volumes properties. 

RESUME 

Cet article presente un algorithme de 
representation spherique. 11 remplit un objet 
tridimensionnel avec des spheres tangentes de 
differents rayons. Les spheres et la relation 
de tangence forment un graphe correspond ant au 
volume initial; on peut en extraire des 
proprietes du volume telles que: parties 
allongees, parties plates, connectivite, .... 
L'algorithme se deroule en trois etapes: 
calcul de la carte euclidienne de l'objet par 
une adaptation au cas tridimensionnel de 
l'algorithme de Danielson, extraction des 
spheres tangentes, calcul des proprietes du 
volume. 
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Spherical representations have been 
used successfully for the display of moving 
3-D objects [1]. Spheres have nice 
prcperties: they can be represented by only 
four numbers, they are convex, rotationnaly 
invariant and always viewed with the same 
shape. These prcperties were of utmost 
irrportance for such applications. In order to 
have the smoothest display the sphere were 
overlapping. This paper is. involved with 
machine analysis of three dimensional objects 
with the goal of generating a useful symbolic 
description and recognizing the objects. For 
this new goal a representation with non 
overlapping spheres is JI'Ore adequate: each 
point belorl;Js to only one sphere and this make 
the interpretation easier. 

The classical pattern recognition 
techniques are usually inadequate for 3-D 
scene analysis. The features to be extracted 
need to be invariant under the six degrees of 
freedom of a solid object. The moments of 
inertia are such mesure but provide poor 
indications of the objects~ on the other hand 
they fail oampletely if we have articulated 
objects. The generalized cones introduced by 
Binford [2] were the first attempt to deal 
wi th such a gohl.. They have a large 
descriptive power and they have been 
succesfully used for recognition of real 
objects [8]. 

The work described here differs in 
three significant ways from previous work : 

- first the input data is supplied in a 
voxel representation. Such a oamplete 3-D 
data can be provided by a tactile sensor or by 
several views with depth information. 

- instead of extracting directly high level 
primitives - i.e. the generalized cones - we 
construct first a spherical 
representation : filling the objects with 
spheres of different radii we obtain a 
tangency graph representing a oampact 
approximation of the volume. 

- using this graph the algorithm then 
extracts the description of the objects: 
elongated parts, flat parts, types of cross 
section. 

The secorrl section of the paper explain 
how we oampute the Euclidean map of a 3-D 
object. Then we explain the construction of 
the tangency graph. Section 4 shows how the 
tangency graph can be used for extracting 
information from the initial object and point 

out some of the difficulties. Finally, 
section 5 discusses the advantages and 
drawbacks of this approach. 

2. ca-tPUTATICN OF THE ElO.IOFAN DISTAOCE MAP 

Given a 2-D object, that is a picture 
and its background, the Eucl idean map 
indicates for each point its distance to the 
closest background point. Rosenfeld and 
Pfaltz [10] have proposed a sequential 
algorithm which is able to canpute such a 
distance by scanning the image twice. But the 
chosen metric was the city block distance 
defined as 

d«i,j),(k,l» = li-kl + lj-ll 

Recently Danielsson [5] has prcposed a 
sequential algorithm which is able to oampute 
an approximation of the Euclidean distance 
with the same basic technique. This method· 
also scan the image twice and produces results 
very close to the exact distance. The error 
present is less than the error introduced by 
the discreet representation used (0.9 for the 
algor i thm 8SED) • 

We extend the 8SED algorithm to the 3-D 
case and following the Oanielsson denomination 
we call it 26SED. For each point of the space 
we compute the relative position of its 
closest neigboor backgroud point by using the 
computation done for its 26 neighbors. 
Therefore we need for each point three 
integers for saving these coordinates. 

In what follows, d is defined by 
d(i,i') : if i=i' then 0 else 1 

and min( (a,b,c) , (e,f,g» by 

if la2+b2+CZ> le 2+f 2+g 2 then (e, f ,g) 
- --else (a,b,c) 
( of course the square rcot can be omitted for 
saving oamputation). 
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Fig.l - The worst case error. 
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26SEWD : initialisation: 
L(i,j,k)=(O,O,O) if (i,j,k) 

the background 
L(i,j,k)=(M,M,M) if (i,j,k) 

the volume 

belongs to 

belongs to 

( M is a maximum value 
apply 8SED to L(.,.,O); 

first scan : 
for k=1,2, •.• ,n 

for all i and j 

{ 

L(i,j,k) 
L(i,j,k)=min L(x,y,k+l)+(d(i,x),d(j,y),l) 
. x=i-l,i,i+l y=j-l,j,j+l 

apply 8SED to L(.,.,k) 

second scan : 
for k=n-l, .•• l,O 

for all i and j 

{ 

L(i,j,k) 
L(i,j,k)=min L(x,y,k+l)+(d(i,x),d(j,y),l) 

x=i-l,i,i+l y=j-l,j,j+l 

apply 8SED to L(.,.,k) 

If L(i,j,k)=(a,b,c) then the result for the 
point (i,j) is 

" a
2
+b2+d-. 

As for the 2-D case sane errors can 
occur; I but the same reasoning of [5] shows 
that there is no propagation of these errors. 
Following Danielsson"s technique, we can then 
prove that errors can occur in the case shown 
by the fig.1. The distance for P is cxmputed 
using PI (the discussion is similar for 
P2,P3,P4) which is at the· distance r fran the 
closest backgroundpoint B; the real distance 
between P and the background is \PE\ = d ; 
then the error is 

r+l - COS(a) - r-l+cos(a) 
If r is large enough the worst case is 
obtained for a = 31.172... and then the error 
will be bounded by 0.15. 

As shown for the 2-D case, the number 
of errors in the real computation is very 
small. Our experiment (not a extensive 
search) allows us to conclude that less than 
2% of the distances are in error all the 
errors found are of the type 

dasSigned =~ dexact 2 + 1 
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We did not find an error 
Danielsson found in his 
the 2-D case: 0.027. 
would probably give us a 

3. CH<xs:m:; THE SPHERES 

larger than the error 
extensive search in 
An extensive search 

larger one. 

The goal is to fill "in the best way" 
the volume with tangent spheres of radii 
greater than a minimum radius Rmin. A measure 
of performance could be the number of 
remaining points after this packing. But to 
write a non combinatorial algorithm computing 
an optimum packing seems very hard if not 
Umpossible. Therefore the heuristic approach 
for finding the spheres was choosen. After 
sane attempts the selection was made using the 
following three criterions : 

- maximum value of the radius, 
- maximum number of already tangent spheres, 
- minimum distance to the center of gravity. 

The second criterion insure the 
construction of a highly connected graph. The 
last criterion is only helpful for choosing 
the starting sphere in order to insure the 
same starting point. Fig.2 and fig.3 show 
such filling. 

The result of this packing is a 
tangency graph where each node is a sphere, 
each link a tangency relation. In order to 
take in account the errors introduced by the 
discretisation exact tangency is not required. 
Fig.4 displays one resulting graph. The solid 
lines connects the center of the biggest 
spheres, dotted lines display the other 
tangent relation. The smallest spheres which 
fill the spaces between the big ones are very 
sensitive to perturbation. Small changes can 
affect campletly their positions but they 
still continue to be placed in the same shape 
of repartition, for instance in an anulus 
between two spheres. 

Thevoxel representation is used as an 
approximation of the real continuous object. 
Such an approximation will be troublesane if 
is too large with res~t to the thickness. 
Experiments lead to the conclusion that at 
least a thickness of 6 is necessary for having 
results not affected by discretisation. 
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.... ~ .• :.;~ .. :.:. . ..-... ... ... .... .. . ~ .. , . - •. ... 

Fig.2 - Sphere packing for an elongated ( 

Fig.3 - Packing for a flat object 

4. EXI'RACTIOO PRJPERI'IES AND MA'ICHIOO 'ID A 
REPRESENl'ATlOO 

The biggest spheres -radius greater 
than the half of the radius of its neighboors­
give compact and ~ncise information about the 
rough shape. Fig.4 and fig.5 display 
respectively a typical elongated shape and a 
typical flat shape, both are bented. 
Specialized programs are written for finding 
each of the prc.perties we want to extr act. 
For extracting flat parts of a volume for 
exanple, the algorithm constructs first all 
the triangles as shc::Mn in fig. 6; the 
connections between these triangles permit the 
extraction of the flat parts: if an edge is 
camon to only two triangle the two triangle 
belongs to the same flat part, if an edge is 

Fig.4 - Tangency graph for an other packing 
for the same shape as fig.2 

Fig.5 - Tangency graph for fig.3 

camon to nore than two triangles then it is 
at an intersection of flat parts. is the end 
of a flat part. 

Looking for nore details is possible 
too. The disposition of the small spheres 
provides us with information of the section of 
the elongated parts; looking at the end of an 
elongated part allows us to conclude what kind 
of end it has : sharp, flat, •••• For the 
3-D lambda shc::Mn at fig.6 the result is: 3 
elongated parts, each cylindrical with radius 
5, one flat part that connects the 3 elongated 
ones. Here the intersection has been 
assimlated to a flat part. 

In sane sinple cases, the matching to a 
higher level representation would only be a 
matching to a graph representing the object. 
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Fig.6 - The tangent big spheres of fig.4 

The human body can 
where H will be 
elongated objects, 
flat object. 

be represented by fig. 7 
a spherelike object, M 
B an elongated slightly 

For other objects such information is 
not sufficient : we need information about the 
size, the relative position of the parts and 
so on, but they are present in the graph too. 
However if we need information about the 
surface it is harder (but not impossible) to 
extract it. But it would be better to extract 
such information , if needed , fram a surface 
oriented model (see for instance [4] and [6]). 

5. DISCUSSICN 

The medial axis transform (or BlLun 
transform) of a two dimensionnal shape allows 
one to extract shape information like the 
elongated parts. In the 3-D case, this axis 
may become a surface and the amount of 
information it contains makes it harder to 
find the same informations. This work is 
concerned with reducing the quantity of 
information. Notice that almost all the 
biggest spheres are centered on the medial 
axis. 

Computing the Blum transform with the 
Euclidean metr ic can be done in a time 
proportionnal to the size of space by using 
the 26SED algorithm. So it becanes comparable 
to the Pfalz and Rosenfeld algorithm [10] for 
the ci ty block distance even if it makes 9 
times more comparisons. O'Rourke and Badler's 
algor i thm compute the medial axis fram the 
object boundary [9]: using the refinement 
suggested in [7] it works in a time o (m2-) 
where m is the number of points of the 
botmdtry. In the 3-D case we can assume that 
m=O(n ) where n . is the size of the space and 
therefore this algorithm works in a time equal 

4~. N. ---------'--- r --.s .. '-- tl 
) ----

H ~--. 

Fig.7 - High level representation 
of a human body 

to O(nlt ) instead O(n3
). But in the 2-D case 

we can assume that m=O (n) and then all these· 
algorithms work in O(n2

). 

The generalized cone representation 
differs in conception fram ours. Generalized 
cones are high level primitives which may be 
directly matched to a high level description. 
However the computation is very hard if the 
object is an overlapping union and difference 
of sever al cones. On the other hand the 
spherical representation can be computed 
directly but we need more sophisticated tools 
for extracting higher level information fram 
it. It works fairly well for big Objects but 
is inadequate for objects whoses properties 
lie more in the surface, like thin volumes. 

Nevatia and Binford [8] are computing 
the generalized cones fram a single view with 
depth information. For the hidden surface, 
they assume implicitly a shape symetrical to 
the viewed one. OUr approach needs to know 
all the 3-D information about the object and 
therefore the voxel representation is used. 
Making the same. regularity assumption, 
O'Rourke's spherical representation can be 
computed fram a single view surface. From it 
the voxel representation can be extracted 
easily and then this approach can be used 
again. 

As it was outlined in ACRCNYM [3], 
feature extraction is more efficient if it is 
guided by a higher level representation asking 
for specific information. For instance having 
found .the fuselage of an airplane the system 
can ask for the wings specifying their shape 
and orientations. These paper has 
demonstrated the feasability of the property 
extraction mechanism. Now it should be 
reprogrammed as an interaction between 
different levels of representation making use 
of this perspective. 

CMCCS '81 / ACCHO '81 

- 301-

Fig.6 - The tangent big spheres of fig.4 

The human body can 
where H will be 
elongated objects, 
flat object. 

be represented by fig. 7 
a spherelike object, M 
B an elongated slightly 

For other objects such information is 
not sufficient : we need information about the 
size, the relative position of the parts and 
so on, but they are present in the graph too. 
However if we need information about the 
surface it is harder (but not impossible) to 
extract it. But it would be better to extract 
such information , if needed , fram a surface 
oriented model (see for instance [4] and [6]). 

5. DISCUSSICN 

The medial axis transform (or BlLun 
transform) of a two dimensionnal shape allows 
one to extract shape information like the 
elongated parts. In the 3-D case, this axis 
may become a surface and the amount of 
information it contains makes it harder to 
find the same informations. This work is 
concerned with reducing the quantity of 
information. Notice that almost all the 
biggest spheres are centered on the medial 
axis. 

Computing the Blum transform with the 
Euclidean metr ic can be done in a time 
proportionnal to the size of space by using 
the 26SED algorithm. So it becanes comparable 
to the Pfalz and Rosenfeld algorithm [10] for 
the ci ty block distance even if it makes 9 
times more comparisons. O'Rourke and Badler's 
algor i thm compute the medial axis fram the 
object boundary [9]: using the refinement 
suggested in [7] it works in a time o (m2-) 
where m is the number of points of the 
botmdtry. In the 3-D case we can assume that 
m=O(n ) where n . is the size of the space and 
therefore this algorithm works in a time equal 

4~. N. ---------'--- r --.s .. '-- tl 
) ----

H ~--. 

Fig.7 - High level representation 
of a human body 

to O(nlt ) instead O(n3
). But in the 2-D case 

we can assume that m=O (n) and then all these· 
algorithms work in O(n2

). 

The generalized cone representation 
differs in conception fram ours. Generalized 
cones are high level primitives which may be 
directly matched to a high level description. 
However the computation is very hard if the 
object is an overlapping union and difference 
of sever al cones. On the other hand the 
spherical representation can be computed 
directly but we need more sophisticated tools 
for extracting higher level information fram 
it. It works fairly well for big Objects but 
is inadequate for objects whoses properties 
lie more in the surface, like thin volumes. 

Nevatia and Binford [8] are computing 
the generalized cones fram a single view with 
depth information. For the hidden surface, 
they assume implicitly a shape symetrical to 
the viewed one. OUr approach needs to know 
all the 3-D information about the object and 
therefore the voxel representation is used. 
Making the same. regularity assumption, 
O'Rourke's spherical representation can be 
computed fram a single view surface. From it 
the voxel representation can be extracted 
easily and then this approach can be used 
again. 

As it was outlined in ACRCNYM [3], 
feature extraction is more efficient if it is 
guided by a higher level representation asking 
for specific information. For instance having 
found .the fuselage of an airplane the system 
can ask for the wings specifying their shape 
and orientations. These paper has 
demonstrated the feasability of the property 
extraction mechanism. Now it should be 
reprogrammed as an interaction between 
different levels of representation making use 
of this perspective. 
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