
- 377 -

A SYSTEM FOR DESIGNING AND ANIMATING OBJECTS WITH CURVED SURFACES

M. Green

McMaster University
Hamilton, Ontario

ABSTRACT

A large amount of work has been devoted to
developing algorithms for producing realistic
displays of objects with curved surfaces, but
very little has been published on systems which
use these algorithms. One such system, called
PATCHES, will be presented here.

The PATCHES system provides facilities for
the creation, editing, and display of objects
with curved surfaces. These operations can be
performed both interactively and under program
control. This system also has the ability to
produce line drawing and colour shaded
animation.

An overview of the PATCHES system is
presented. The basic components of the system
are described along with the underlying data
structures. A discussion of the design
philosophy is also included.

Un travail volumineux a ete effectue dans
le domaine des algorithmes, en vue de produire
des affichages realistes des objets a surface
courbe; mais tres peu a ete publie au sujet des
systemes utilisant ces algorithmes. Un de ces
systemes, appele PATCHES, sera ici presentee

Le systeme PATCHES procure des moyens pour
la creation, l'edition et l'affichage des
objets a surface courbe. Ces operations peuvent
etre effectuees a la fois de maniere interac­
tive et sous le contr5le d'un programme. Ce
systeme a de plus l'habilete ou la capacite de
dessiner une ligne et de produire une animation
au moyen de la nuance des couleurs.

Nous presentons une vue d'ensemble du
systeme PATCHES. Les composantes de base du
systeme sont decrites de concours avec les
structures informationelles qui les sous­
tendent. Vous trouverez aussi, ci-incluse, une
discussion sur les principes generaux, ou
philosophie du "design".

CMCCS '81 / ACCHO '81

-~

- 377 -

A SYSTEM FOR DESIGNING AND ANIMATING OBJECTS WITH CURVED SURFACES

M. Green

McMaster University
Hamilton, Ontario

ABSTRACT

A large amount of work has been devoted to
developing algorithms for producing realistic
displays of objects with curved surfaces, but
very little has been published on systems which
use these algorithms. One such system, called
PATCHES, will be presented here.

The PATCHES system provides facilities for
the creation, editing, and display of objects
with curved surfaces. These operations can be
performed both interactively and under program
control. This system also has the ability to
produce line drawing and colour shaded
animation.

An overview of the PATCHES system is
presented. The basic components of the system
are described along with the underlying data
structures. A discussion of the design
philosophy is also included.

Un travail volumineux a ete effectue dans
le domaine des algorithmes, en vue de produire
des affichages realistes des objets a surface
courbe; mais tres peu a ete publie au sujet des
systemes utilisant ces algorithmes. Un de ces
systemes, appele PATCHES, sera ici presentee

Le systeme PATCHES procure des moyens pour
la creation, l'edition et l'affichage des
objets a surface courbe. Ces operations peuvent
etre effectuees a la fois de maniere interac­
tive et sous le contr5le d'un programme. Ce
systeme a de plus l'habilete ou la capacite de
dessiner une ligne et de produire une animation
au moyen de la nuance des couleurs.

Nous presentons une vue d'ensemble du
systeme PATCHES. Les composantes de base du
systeme sont decrites de concours avec les
structures informationelles qui les sous­
tendent. Vous trouverez aussi, ci-incluse, une
discussion sur les principes generaux, ou
philosophie du "design".

CMCCS '81 / ACCHO '81

-~

1. Introduction

PATCHES is a system for both the
modeling and display of objects with curved
surfaces. The basis of this system is a data
structure for representing objects with
curved surfaces and a library of routines for
manipulating them. A number of programs have
been built on top of this data structure.
These programs can be used to design,
animate, manipulate, and display objects.
Since a common data structure and library of
manipulation routines have been used
throughout these programs they can easily be
combined to perform more complex functions.
The two main aims of the PATCHES system are
to show how one data structure can be used as
the basis for a modeling and display system,
and to determine what software components
should be included in such a system.

The PATCHES system as currently
implemented resides on a PDP 11/45 computer
running the UNIX operating system [Ritchie
and Thompson 74]. The graphics devices used
by this system are a Three Rivers Computer
Corporation GDP vector display, a 256x256x8
raster display, and a digitizing tablet. The
PATCHES system has been designed to be
relatively independent of the display devices
used. To fully support PATCHES a vector
display, a raster display, and a pointing
device are required. The characteristics of
these devices are largely unimportant. At
the present time PATCHES is being adapted to
run on an LSI 11/23 computer.

PATCHES is mainly a modeling system.
Its main purpose is to provide facilities for
modeling objects with curved surfaces. Where
an object may be a simple geometrical object
like a sphere or torus, a more complex object
such as a space craft or an automobile, or a
surface generated by a scientific experiment
or model. Some of the operations which can
be performed on these objects are animation,
display, and transformation. PATCHES has
been used in a number of different
applications. One of these applications is
data display. The usual format of the data
to be displayed is a collection of three
dimensional points. PATCHES routines are
used to fit surfaces to these data points.
The investigator can now use the PATCHES
display programs to view his data. In order
to view the surfaces from different angles
they can either be transformed or animated.
Even more important, several surfaces can be
superimposed to see where they intersect. By
making several of the surfaces transparent
and displaying them together it is easy to

- 378 -

see how they are interrelated.

Another application of the PATCHES
system is computer animation. In particular
the animation of three dimensional objects.
The approach used here is to first develop a
library of objects to be used in the
animation. The techniques used to construct
these objects are outlined in Section 3. The
objects are animated by applying
transformations to them in each frame of the
film. These transformations are specified by
a script supplied by the animator. The
PATCHES program used for animation is
described in Section 5.

A third application of the PATCHES
system is the production of colour images.
The PATCHES structure used in the creation of
these images is called a scene. A scene
consists of a number of objects. These
objects are constructed in the same way as
the objects used in animation. The display
program used to produce these images uses a
scene structure and a background image as
input. The output is a raster image to be
displayed on a colour raster display or
plotted on a microfilm recorder.

2. Overview of PATCHES

The data structure used in PATCHES is
outlined in fig. 1. The top level' of this
data structure is called the scene level.
This level represents a still scene made up
of one or more objects. Each scene structure
has an object table listing all the objects
in the scene. The location of the viewer and
the direction of the illuminating light
sources are also stored in the scene
structure.

The next level in the data structure is
the object level. Each object structure
corresponds to one object. This structure
contains a table of the surface patches which
define the shape of the object. The object
structure also contains texturing information
and the light model parameters for the
object.

CMCCS '81 / ACCHO '81

1. Introduction

PATCHES is a system for both the
modeling and display of objects with curved
surfaces. The basis of this system is a data
structure for representing objects with
curved surfaces and a library of routines for
manipulating them. A number of programs have
been built on top of this data structure.
These programs can be used to design,
animate, manipulate, and display objects.
Since a common data structure and library of
manipulation routines have been used
throughout these programs they can easily be
combined to perform more complex functions.
The two main aims of the PATCHES system are
to show how one data structure can be used as
the basis for a modeling and display system,
and to determine what software components
should be included in such a system.

The PATCHES system as currently
implemented resides on a PDP 11/45 computer
running the UNIX operating system [Ritchie
and Thompson 74]. The graphics devices used
by this system are a Three Rivers Computer
Corporation GDP vector display, a 256x256x8
raster display, and a digitizing tablet. The
PATCHES system has been designed to be
relatively independent of the display devices
used. To fully support PATCHES a vector
display, a raster display, and a pointing
device are required. The characteristics of
these devices are largely unimportant. At
the present time PATCHES is being adapted to
run on an LSI 11/23 computer.

PATCHES is mainly a modeling system.
Its main purpose is to provide facilities for
modeling objects with curved surfaces. Where
an object may be a simple geometrical object
like a sphere or torus, a more complex object
such as a space craft or an automobile, or a
surface generated by a scientific experiment
or model. Some of the operations which can
be performed on these objects are animation,
display, and transformation. PATCHES has
been used in a number of different
applications. One of these applications is
data display. The usual format of the data
to be displayed is a collection of three
dimensional points. PATCHES routines are
used to fit surfaces to these data points.
The investigator can now use the PATCHES
display programs to view his data. In order
to view the surfaces from different angles
they can either be transformed or animated.
Even more important, several surfaces can be
superimposed to see where they intersect. By
making several of the surfaces transparent
and displaying them together it is easy to

- 378 -

see how they are interrelated.

Another application of the PATCHES
system is computer animation. In particular
the animation of three dimensional objects.
The approach used here is to first develop a
library of objects to be used in the
animation. The techniques used to construct
these objects are outlined in Section 3. The
objects are animated by applying
transformations to them in each frame of the
film. These transformations are specified by
a script supplied by the animator. The
PATCHES program used for animation is
described in Section 5.

A third application of the PATCHES
system is the production of colour images.
The PATCHES structure used in the creation of
these images is called a scene. A scene
consists of a number of objects. These
objects are constructed in the same way as
the objects used in animation. The display
program used to produce these images uses a
scene structure and a background image as
input. The output is a raster image to be
displayed on a colour raster display or
plotted on a microfilm recorder.

2. Overview of PATCHES

The data structure used in PATCHES is
outlined in fig. 1. The top level' of this
data structure is called the scene level.
This level represents a still scene made up
of one or more objects. Each scene structure
has an object table listing all the objects
in the scene. The location of the viewer and
the direction of the illuminating light
sources are also stored in the scene
structure.

The next level in the data structure is
the object level. Each object structure
corresponds to one object. This structure
contains a table of the surface patches which
define the shape of the object. The object
structure also contains texturing information
and the light model parameters for the
object.

CMCCS '81 / ACCHO '81

- 379 -

SCENE

Object
Table

\. 'I

OBJECTl OBJECT2 OBJECTn

• • •
Patch Patch Patch
Table Table Table

...... 1/ ,,/ " I
PATCH PATCH PATCH
FILE FILE , • , FILE

Fig. 1 Outline of PATCHES Data Structure

The lowest level in the data structure
is the bicubic surface patch. All the
patches for an object are stored on one file.
There is a table in the object structure
which contains the colour and transparency of
each patch. A patch is identified by a patch
number. The first patch in an object is
assigned the number zero and subsequent
patches are assigned the next available
integer. The patch number is used to index
the patch table in the object structure and
to retrieve a given patch from the patch
file. A large number of patches are required
to define the shape of some objects. Because
of this patches are normally stored on disk
and transferred one at a time to main memory
when they are required.

structure used in PATCHES is
hierarchical in nature. At the top of the
hierarchy is the scene structure. ·This
structure points to the object structures
representing the objects in the scene. Each
of these object structures points to the file
where its patches are stored and contains a
table describing each of these patches. Each
scene and object structure is stored on a
separate file. The pointers to these
structures are the names of the files they
are stored on.

The two major features of this data
structure are separate structures for scenes,
objects, and patches and storing these

CMCCS '81 I ACCHO '81

- 379 -

SCENE

Object
Table

\. 'I

OBJECTl OBJECT2 OBJECTn

• • •
Patch Patch Patch
Table Table Table

...... 1/ ,,/ " I
PATCH PATCH PATCH
FILE FILE , • , FILE

Fig. 1 Outline of PATCHES Data Structure

The lowest level in the data structure
is the bicubic surface patch. All the
patches for an object are stored on one file.
There is a table in the object structure
which contains the colour and transparency of
each patch. A patch is identified by a patch
number. The first patch in an object is
assigned the number zero and subsequent
patches are assigned the next available
integer. The patch number is used to index
the patch table in the object structure and
to retrieve a given patch from the patch
file. A large number of patches are required
to define the shape of some objects. Because
of this patches are normally stored on disk
and transferred one at a time to main memory
when they are required.

structure used in PATCHES is
hierarchical in nature. At the top of the
hierarchy is the scene structure. ·This
structure points to the object structures
representing the objects in the scene. Each
of these object structures points to the file
where its patches are stored and contains a
table describing each of these patches. Each
scene and object structure is stored on a
separate file. The pointers to these
structures are the names of the files they
are stored on.

The two major features of this data
structure are separate structures for scenes,
objects, and patches and storing these

CMCCS '81 I ACCHO '81

- 380 -

structures on separate files. This has
several advantages over storing the same
information in one structure. The first
advantage is that it divides the information
into logical units. In animation we want to
deal with objects and object instances. By
storing object information in a separate
structure this information can be easily
accessed. In data display and image
production applications the scene structure
is also important since it governs the
contents of an image. Since all the scene
information is grouped together the structure
of a scene can be changed without effecting
the objects in it.

The second advantage of this structure
is that it allows scenes and objects to share
information. An object can appear in more
than one scene and a patch file can be used
by more than one object. This sharing of
data saves on disk space. It also adds to
the consistency of the stored information.
Two identical objects can be represented by
the same object structure. Any operations
performed on one object will automatically be
reflected in the other.

Another advantage of this structure is
that it accomodates different views of the
same data. For example, the same patch file
can be used by several object structures.
Each of these objects can have different
colour, light model, and texturing
information. These objects will appear
different even though they have the same
basic shape.

The PATCHES data structure can be
manipulated either interactiveiy through the
use of editing programa or under program.
control by calling routines in the PATCHES
library. The user written programs are used
mainly for modeling individual objects. The
modeling facilities provided by PATCHES are
outlined in Section 3.

The interactive programs are used
mainly to manipulate existing objects and
combine them into scenes. These program are
divided into two groups. The first group
consists of a number of small programs which
perform a single editing or manipulation
function. These utility programs can be used
to quickly make small changes in the data
structure. They can also be combined by the
user to perform more major changes. By using
UNIX shell files these collections of
commands can be saved and called up at any
time. The second group of programs consists
of interactive graphical editors capable of

CMCCS '81

changing most of the components of the data
structure. These programs can display wire
frame representations of the objects in a
scene along with the other values in the data
structure. The shape of an object can be
changed by the use of geometrical
transformations. The effect of these
transformations can be seen on the display.
The values of most of the components of the
data structure are displayed on a menu and
can easily be changed by the user. More
details on these programs will be presented
in Section 4.

The PATCHES system has programs for
object display and animation. These programs
can produced either wire frame displays to be
used with vector displays or full colour
shaded images to be used on raster displays.
These programs will be discussed in Section
5.

3. Object Modeling

Bicubic surface patches are used to
represent the shape of objects in the PATCHES
system. There are three reasons for choosing
this representation:

1) A large number of objects can be
modeled using bicubic surface patches,
including those with curved surfaces.

2) Algorithms exist for producing very
realistic images of objects represented
by surface patches.

3) The manipulation of objects made up of
surface patches is relatively straight
forward.

A bicubic surface patch is made up of
three bicubic polynomials, one for each of
the x, y, and z coordinates. These
polynomials have the following form.

3 3 3 2
x(u,v) a u v + a u v + .•• + a

33 32 00

3 3 3 2
y(u,v) b u v + b u v + •.• + b

33 32 00

3 3 3 2
z(u,v) c u v + c u v + ••• + c

33 32 00

u and v, are
As the patch

1 the values of
(x,y,z) coordinate
on the surface of

The independent variables,
called patch parameters.
parameters vary from 0 to
these polynomials give the
of the corresponding point

/ ACCHO '81

- 380 -

structures on separate files. This has
several advantages over storing the same
information in one structure. The first
advantage is that it divides the information
into logical units. In animation we want to
deal with objects and object instances. By
storing object information in a separate
structure this information can be easily
accessed. In data display and image
production applications the scene structure
is also important since it governs the
contents of an image. Since all the scene
information is grouped together the structure
of a scene can be changed without effecting
the objects in it.

The second advantage of this structure
is that it allows scenes and objects to share
information. An object can appear in more
than one scene and a patch file can be used
by more than one object. This sharing of
data saves on disk space. It also adds to
the consistency of the stored information.
Two identical objects can be represented by
the same object structure. Any operations
performed on one object will automatically be
reflected in the other.

Another advantage of this structure is
that it accomodates different views of the
same data. For example, the same patch file
can be used by several object structures.
Each of these objects can have different
colour, light model, and texturing
information. These objects will appear
different even though they have the same
basic shape.

The PATCHES data structure can be
manipulated either interactiveiy through the
use of editing programa or under program.
control by calling routines in the PATCHES
library. The user written programs are used
mainly for modeling individual objects. The
modeling facilities provided by PATCHES are
outlined in Section 3.

The interactive programs are used
mainly to manipulate existing objects and
combine them into scenes. These program are
divided into two groups. The first group
consists of a number of small programs which
perform a single editing or manipulation
function. These utility programs can be used
to quickly make small changes in the data
structure. They can also be combined by the
user to perform more major changes. By using
UNIX shell files these collections of
commands can be saved and called up at any
time. The second group of programs consists
of interactive graphical editors capable of

CMCCS '81

changing most of the components of the data
structure. These programs can display wire
frame representations of the objects in a
scene along with the other values in the data
structure. The shape of an object can be
changed by the use of geometrical
transformations. The effect of these
transformations can be seen on the display.
The values of most of the components of the
data structure are displayed on a menu and
can easily be changed by the user. More
details on these programs will be presented
in Section 4.

The PATCHES system has programs for
object display and animation. These programs
can produced either wire frame displays to be
used with vector displays or full colour
shaded images to be used on raster displays.
These programs will be discussed in Section
5.

3. Object Modeling

Bicubic surface patches are used to
represent the shape of objects in the PATCHES
system. There are three reasons for choosing
this representation:

1) A large number of objects can be
modeled using bicubic surface patches,
including those with curved surfaces.

2) Algorithms exist for producing very
realistic images of objects represented
by surface patches.

3) The manipulation of objects made up of
surface patches is relatively straight
forward.

A bicubic surface patch is made up of
three bicubic polynomials, one for each of
the x, y, and z coordinates. These
polynomials have the following form.

3 3 3 2
x(u,v) a u v + a u v + .•• + a

33 32 00

3 3 3 2
y(u,v) b u v + b u v + •.• + b

33 32 00

3 3 3 2
z(u,v) c u v + c u v + ••• + c

33 32 00

u and v, are
As the patch

1 the values of
(x,y,z) coordinate
on the surface of

The independent variables,
called patch parameters.
parameters vary from 0 to
these polynomials give the
of the corresponding point

/ ACCHO '81

the object The surface of the object will
typically be divided into a number of patches
each represented by a bicubic surface patch.
The surface patches for an object will
normally not overlap, but adjacent patches
will meet at their common boundary. Sixteen
parameters are required to define the shape
of a bicubic surface patch. These shape
parameters are typically points on or near
the surface of the object, or derivatives of
the surface. The exact nature of the shape
parameters and how they are used in
determining the coefficients of the bivariate
polynomials depends upon the fitting
technique used. The PATCHES system provides
fitting routines for most of the common patch
fitting techniques.

Regardless of the patch fitting
technique used the result will always be a
bivariate polynomial. Because of this
PATCHES uses the coefficients of the
bivariate polynomial to represent the patch
instead of the shape parameters used to
define it. This means that once a patch has
been fitted it can be manipulated in a
standard way. A patch is stored as three 4x4
arrays of coefficients.

One approach to object modeling in the
PATCHES system is to write a program using
the modeling routines in the PATCHES library.
The best way of describing this technique is
to outline the structure of a typical
modeling program. This structure is shown
below.

create scene structure.
create objectl structure.
add objectl to scene.
loop

calculate shape parameters for patch
fit patch
add patch to objectl

until all objectl patches generated.
create object2 structure.
add object2 to scene.
loop

calculate shape parameter for patch.
fit patch.
add patch to object2.

until all object2 patches generated.

create objectn structure.
add objectn to scene.
loop

calculate shape parameters for patch.
fit patch.
add patch to objectn.

until all objectn patches generated.
write complete scene structure to disk.

- 381 -

The first thing an object modeling program
does is create the scene structure the
objects are to be placed in. This is done by
calling the routine "crscene". Next the
object structure for the first object is
created and added to the scene structure.
This is accomplished by calling the routines
"crobject" and "addobject". The modeling
program then computes the patch shape
parameters for each of the patches in the
first object. After the shape parameters for
a patch have been computed a patch fitting
routine is called. The patch fitting routine
used will depend upon the shape parameters
and the patch properties desired. These
routines return a bicubic surface patch which
is added to the object structure. The
routine "addpatch" can be used for this
purpose. This routine writes the patch onto
the patch file associated with the object and
initializes its patch table entry. These
operations are repeated for each object in
the scene. At the end of the program the
routine "putscene" is called to write the
entire data structure to disk.

There is a transformation mechanism
associated with the patch fitting routines.
The routines "scale", "rotate", and
"translate" can be used to build up a
transformation matrix. This transformation
matrix is applied to the bicubic surface
patch before it is returned to the usec.
PATCHES maintains a stack of transformation
matrices to enable the user to save a
transformation matrix for later use.

The transformation matix used in
PATCHES is a 4x4 matrix with the same format
as the transformation matrices used in vector
graphics packages. Bicubic surface patches
do not transform the same way as points do.
A matrix multiplication can be used to scale
and rotate a patch but it cannot be used to
translate it. In PATCHES the transformation
is performed in two steps. In the first step
the upper 3x3 sub-matrix of the
transformation matrix is extracted and .each
coefficient in the patch is multiplied by it
(recall that each coefficient has three
components). In the second step the first
three entries in the last row of the matrix
are extracted and added to the constant
coefficent in the patch. These three entries
correspond to the translation component of
the transformation.

The user can define a three dimensional
window through the use of the "window"

CMCCS '81 I ACCHO '81

the object The surface of the object will
typically be divided into a number of patches
each represented by a bicubic surface patch.
The surface patches for an object will
normally not overlap, but adjacent patches
will meet at their common boundary. Sixteen
parameters are required to define the shape
of a bicubic surface patch. These shape
parameters are typically points on or near
the surface of the object, or derivatives of
the surface. The exact nature of the shape
parameters and how they are used in
determining the coefficients of the bivariate
polynomials depends upon the fitting
technique used. The PATCHES system provides
fitting routines for most of the common patch
fitting techniques.

Regardless of the patch fitting
technique used the result will always be a
bivariate polynomial. Because of this
PATCHES uses the coefficients of the
bivariate polynomial to represent the patch
instead of the shape parameters used to
define it. This means that once a patch has
been fitted it can be manipulated in a
standard way. A patch is stored as three 4x4
arrays of coefficients.

One approach to object modeling in the
PATCHES system is to write a program using
the modeling routines in the PATCHES library.
The best way of describing this technique is
to outline the structure of a typical
modeling program. This structure is shown
below.

create scene structure.
create objectl structure.
add objectl to scene.
loop

calculate shape parameters for patch
fit patch
add patch to objectl

until all objectl patches generated.
create object2 structure.
add object2 to scene.
loop

calculate shape parameter for patch.
fit patch.
add patch to object2.

until all object2 patches generated.

create objectn structure.
add objectn to scene.
loop

calculate shape parameters for patch.
fit patch.
add patch to objectn.

until all objectn patches generated.
write complete scene structure to disk.

- 381 -

The first thing an object modeling program
does is create the scene structure the
objects are to be placed in. This is done by
calling the routine "crscene". Next the
object structure for the first object is
created and added to the scene structure.
This is accomplished by calling the routines
"crobject" and "addobject". The modeling
program then computes the patch shape
parameters for each of the patches in the
first object. After the shape parameters for
a patch have been computed a patch fitting
routine is called. The patch fitting routine
used will depend upon the shape parameters
and the patch properties desired. These
routines return a bicubic surface patch which
is added to the object structure. The
routine "addpatch" can be used for this
purpose. This routine writes the patch onto
the patch file associated with the object and
initializes its patch table entry. These
operations are repeated for each object in
the scene. At the end of the program the
routine "putscene" is called to write the
entire data structure to disk.

There is a transformation mechanism
associated with the patch fitting routines.
The routines "scale", "rotate", and
"translate" can be used to build up a
transformation matrix. This transformation
matrix is applied to the bicubic surface
patch before it is returned to the usec.
PATCHES maintains a stack of transformation
matrices to enable the user to save a
transformation matrix for later use.

The transformation matix used in
PATCHES is a 4x4 matrix with the same format
as the transformation matrices used in vector
graphics packages. Bicubic surface patches
do not transform the same way as points do.
A matrix multiplication can be used to scale
and rotate a patch but it cannot be used to
translate it. In PATCHES the transformation
is performed in two steps. In the first step
the upper 3x3 sub-matrix of the
transformation matrix is extracted and .each
coefficient in the patch is multiplied by it
(recall that each coefficient has three
components). In the second step the first
three entries in the last row of the matrix
are extracted and added to the constant
coefficent in the patch. These three entries
correspond to the translation component of
the transformation.

The user can define a three dimensional
window through the use of the "window"

CMCCS '81 I ACCHO '81

- 382 -

routine. All objects created in the program
must lie within this window. When a patch is
written to disk it is transformed to a
standard space. This space is the unit cube.
When a patch is read from a patch file it is
transformed to the current window. The user
is unaware of these transformations. Thus,
the stored representation of a patch is
independent of the coordinate system in use
when it was created.

4. Object Manipulation

The programs described in this section
are used to edit existing scenes and objects.
Unlike the approach taken in object modeling
these operations are usually performed
interactively by editing programs. Two types
of editing program are used in the PATCHES
system. The first type are special purpose
editing programs used for changing a small
number of parameters. The second type are
general purpose editing programs capable of
changing most of the parameters in the data
structure.

Each of the special purpose editing
programs performs a well defined atomic
editing function. Examples of these programs
are "colour" which sets the colour of an
object, "texture" which sets the texturing
parameters for an object, and "trans" which
can be used to transform an object. These
programs prompt the user for the new values
of the data structure components they change.
The main purpose of these programs is to
facilitate making smsll changes to the data
structure. They are easy to invoke and
perform their operations very quickly. By
using UNIX shell files these editing programs
can be combined, named, and saved. Shell
files can have parameters. These parameters
are available to the programs within the
shell file. The shell file mechanism can be
used to construct special purpose editing
programs out of the atomic editing programs.
This is one of the benefits of the common
data structure and atomic editing programs.

The PATCHES general purpose editing
programs have been evolving over the past
three years. The most recent of these
programs is called "edit" [Griffin 80]. The
main purpose of the general purpose editing
programs is to provide a mechanism for
editing the complete PATCHES data structure.
These programs are used for more extensive
editing operations than the previous set ·of
programs.

There are two basic categories of

editing operations performed by the general
purpose editing programs. The first category
involves changing scalar values in the data
structure. These values include the light
model parameters, position of the viewer, and
the transparency of patches. The second
category of operations involves major changes
to the data structure. These operations
include creating new scenes and objects,
adding and removing objects from scenes, and
transforming objects. The operations in these
two categories are performed by different
mechanisms •

A menu is used in the first category of
editing operations. This menu contains the
values of all the components of the data
structure. To change a value displayed on a
menu the user points at it and enters the
new value. This menu is divided into a
number of panels. There is one panel for
each scene and object the user is working
with. The editor has commands for specifying
the current scene and object. Only the menu
panels for the current scene and object are
displayed. All other scene and object panels
are not.

The second category of editing
operations makes use of a wire frame display
of one or more objects. This display can be
used to visualize how the objects will appear
in a movie or on a raster display. The
operations in this category are at a higher
level than the operations in the previous
one. This part of the editor can be used to
create new scenes. The "create scene"
command is used to create a new scene
structure. This scene structure will have
default values for its components and will
have no objects. Existing objects can be
added to this scene by the use of the "add
object" command. The object to be added to
the scene is selected from a menu of all
objects known to the editor. The other
values in the scene structure can be set by
the USing the first. category of editing
operations. Objects can also be added and
removed from existing scene structures.

Similarly, new objects can also be
created by this editor. The "create object"
command is used to create an empty object
structure. The "addpatch" command is used to
add patches to the new object. These patches
are taken from the patch file of an existing
object. Patches can also be added to an
eXisting object. This editor cannot be used
to create new patches.

This editor maintains a stack of

CMCCS '81 / ACCHO '81

- 382 -

routine. All objects created in the program
must lie within this window. When a patch is
written to disk it is transformed to a
standard space. This space is the unit cube.
When a patch is read from a patch file it is
transformed to the current window. The user
is unaware of these transformations. Thus,
the stored representation of a patch is
independent of the coordinate system in use
when it was created.

4. Object Manipulation

The programs described in this section
are used to edit existing scenes and objects.
Unlike the approach taken in object modeling
these operations are usually performed
interactively by editing programs. Two types
of editing program are used in the PATCHES
system. The first type are special purpose
editing programs used for changing a small
number of parameters. The second type are
general purpose editing programs capable of
changing most of the parameters in the data
structure.

Each of the special purpose editing
programs performs a well defined atomic
editing function. Examples of these programs
are "colour" which sets the colour of an
object, "texture" which sets the texturing
parameters for an object, and "trans" which
can be used to transform an object. These
programs prompt the user for the new values
of the data structure components they change.
The main purpose of these programs is to
facilitate making smsll changes to the data
structure. They are easy to invoke and
perform their operations very quickly. By
using UNIX shell files these editing programs
can be combined, named, and saved. Shell
files can have parameters. These parameters
are available to the programs within the
shell file. The shell file mechanism can be
used to construct special purpose editing
programs out of the atomic editing programs.
This is one of the benefits of the common
data structure and atomic editing programs.

The PATCHES general purpose editing
programs have been evolving over the past
three years. The most recent of these
programs is called "edit" [Griffin 80]. The
main purpose of the general purpose editing
programs is to provide a mechanism for
editing the complete PATCHES data structure.
These programs are used for more extensive
editing operations than the previous set ·of
programs.

There are two basic categories of

editing operations performed by the general
purpose editing programs. The first category
involves changing scalar values in the data
structure. These values include the light
model parameters, position of the viewer, and
the transparency of patches. The second
category of operations involves major changes
to the data structure. These operations
include creating new scenes and objects,
adding and removing objects from scenes, and
transforming objects. The operations in these
two categories are performed by different
mechanisms •

A menu is used in the first category of
editing operations. This menu contains the
values of all the components of the data
structure. To change a value displayed on a
menu the user points at it and enters the
new value. This menu is divided into a
number of panels. There is one panel for
each scene and object the user is working
with. The editor has commands for specifying
the current scene and object. Only the menu
panels for the current scene and object are
displayed. All other scene and object panels
are not.

The second category of editing
operations makes use of a wire frame display
of one or more objects. This display can be
used to visualize how the objects will appear
in a movie or on a raster display. The
operations in this category are at a higher
level than the operations in the previous
one. This part of the editor can be used to
create new scenes. The "create scene"
command is used to create a new scene
structure. This scene structure will have
default values for its components and will
have no objects. Existing objects can be
added to this scene by the use of the "add
object" command. The object to be added to
the scene is selected from a menu of all
objects known to the editor. The other
values in the scene structure can be set by
the USing the first. category of editing
operations. Objects can also be added and
removed from existing scene structures.

Similarly, new objects can also be
created by this editor. The "create object"
command is used to create an empty object
structure. The "addpatch" command is used to
add patches to the new object. These patches
are taken from the patch file of an existing
object. Patches can also be added to an
eXisting object. This editor cannot be used
to create new patches.

This editor maintains a stack of

CMCCS '81 / ACCHO '81

transformation matrices. A transformation
matrix is constructed by a series of "scale",
"rotate", and "translate" couunands. Any of
these transformation matrices can be applied
to an object. There are two modes of object
transformation. In the first mode the
transformation is only temporary. The
transformed object is displayed for the user.
This mode is used for exploring different
transformations. The second mode of
transformation permanently changes the
object. This mode is used once the user has
decided upon the transformation he wants.

There are several utility commands in
the editor. One of these commands is used to
indicate the scenes that will be used in the
editing session. There are other commands
for controlling the display. They can be
used for setting the position of the viewer's
eye and the number of grid lines to be drawn
for each patch.

5. Display and Animation

There are two display programs in the
PATCHES system. One is used for producing
colour raster images and the other one is
used for animation.

- 383 -

on most systems. Instead of
buffer we simulate one using
display program only keeps a
Z-buffer and image raster in
one time. Segments of these
swapped in and out of memory
required.

using a frame
disk files. The
portion of the

memory at any
two arrays are
when they are

Display uses a standard light model in
its intensity and colour calculations [Newman
and Sproull 79). It can also perform
standar~ texturing and transparency
calculations. There is a dithering algorithm
built into this program to be used when
producing images for raster displays with a
limited colour range.

The PATCHES animation program is based
on the use of scripts. A script specifies
the objects involved in the movie, how they
change over time, the frames they appear in,
and control information for the animation
process. The script is prepared by the user
using a standard text editor.

Three types of statements can appear in
a script. The object definition statement is
used to name the objects used in the
animation. This statement creates an
instance of an object previously created by a
modeling program. The format of this
statement is

object object-instance is scene-name I object-name

The program "display" is used for
producing colour raster images. The input to
this program is a scene structure and
background image. The output is a raster
image containing a display of the objects in
the scene superimposed on the background
image. This output raster can be of any size
and can have up to 30 bits of colour. The
display program has been designed so that the
size of the raster image it produces is a
compile time parameter. This allows the same
program to produce images for both raster
displays and microfilm plotters.

The keywords in this statement are "object"
and "is". The name of the object instance
created is "object-instance". This object
instance is a copy of the object
"object-name" in the scene "scene-name".
There may be several instances of the same
object in a film.

The draw statement is used to indicate
the frames an object instance is to appear in
and the transformations to be applied to it.
The format of the draw statement is

draw object for transforml to transform2 in integerl, integer2

The basic algorithm used by display is
the Cat mull patch subdivision algorithm
[Catmull 75). A Z-buffer is used for hidden
surface removal. The display program uses
two large arrays, one for the Z-buffer and
the other for the raster image. Ideally
these arrays would be stored in a frame
buffer. This approach has not been taken
here since large frame buffers do not exist

The keywords in this statement are "draw",
"for", "to", and "in". The object instance
"object" is drawn in frames integerl to
integer2. In the first frame of this
sequence the transformation named transforml
is applied to the object instance, and in the
last frame of the sequence transform2 is
applied. In the frames between integerl and
integer2 a linear interpolation of the two

CMCCS '81 / ACCHO ·'81

transformation matrices. A transformation
matrix is constructed by a series of "scale",
"rotate", and "translate" couunands. Any of
these transformation matrices can be applied
to an object. There are two modes of object
transformation. In the first mode the
transformation is only temporary. The
transformed object is displayed for the user.
This mode is used for exploring different
transformations. The second mode of
transformation permanently changes the
object. This mode is used once the user has
decided upon the transformation he wants.

There are several utility commands in
the editor. One of these commands is used to
indicate the scenes that will be used in the
editing session. There are other commands
for controlling the display. They can be
used for setting the position of the viewer's
eye and the number of grid lines to be drawn
for each patch.

5. Display and Animation

There are two display programs in the
PATCHES system. One is used for producing
colour raster images and the other one is
used for animation.

- 383 -

on most systems. Instead of
buffer we simulate one using
display program only keeps a
Z-buffer and image raster in
one time. Segments of these
swapped in and out of memory
required.

using a frame
disk files. The
portion of the

memory at any
two arrays are
when they are

Display uses a standard light model in
its intensity and colour calculations [Newman
and Sproull 79). It can also perform
standar~ texturing and transparency
calculations. There is a dithering algorithm
built into this program to be used when
producing images for raster displays with a
limited colour range.

The PATCHES animation program is based
on the use of scripts. A script specifies
the objects involved in the movie, how they
change over time, the frames they appear in,
and control information for the animation
process. The script is prepared by the user
using a standard text editor.

Three types of statements can appear in
a script. The object definition statement is
used to name the objects used in the
animation. This statement creates an
instance of an object previously created by a
modeling program. The format of this
statement is

object object-instance is scene-name I object-name

The program "display" is used for
producing colour raster images. The input to
this program is a scene structure and
background image. The output is a raster
image containing a display of the objects in
the scene superimposed on the background
image. This output raster can be of any size
and can have up to 30 bits of colour. The
display program has been designed so that the
size of the raster image it produces is a
compile time parameter. This allows the same
program to produce images for both raster
displays and microfilm plotters.

The keywords in this statement are "object"
and "is". The name of the object instance
created is "object-instance". This object
instance is a copy of the object
"object-name" in the scene "scene-name".
There may be several instances of the same
object in a film.

The draw statement is used to indicate
the frames an object instance is to appear in
and the transformations to be applied to it.
The format of the draw statement is

draw object for transforml to transform2 in integerl, integer2

The basic algorithm used by display is
the Cat mull patch subdivision algorithm
[Catmull 75). A Z-buffer is used for hidden
surface removal. The display program uses
two large arrays, one for the Z-buffer and
the other for the raster image. Ideally
these arrays would be stored in a frame
buffer. This approach has not been taken
here since large frame buffers do not exist

The keywords in this statement are "draw",
"for", "to", and "in". The object instance
"object" is drawn in frames integerl to
integer2. In the first frame of this
sequence the transformation named transforml
is applied to the object instance, and in the
last frame of the sequence transform2 is
applied. In the frames between integerl and
integer2 a linear interpolation of the two

CMCCS '81 / ACCHO ·'81

- 384 -

transformations is applied.

The transformation statement is used to
define transformations. The format of this
statement is

transform transformation-name is (exp exp exp exp exp exp exp exp exp)

The keywords in this statment are "transform"
and "is". This statement defines the
transformation "transformation-name" to be
the nine expressions within parenthesis.
These nine expressions give the translation,
rotation, and scale components of the
transformation matrix. The expressions can
contain constants, arithmetic operators, and
the corresponding components of other
transformations. By using the components of
another transformation one transformation can
be defined in terma of another.

The animation program can produce films
in two different formats. In the first
format wire frame drawings are used to
represent the objects. A vector device is
used to view a movie in this format. This
format is used when a script is being
debugged since it can be generated relatively
quickly. Once the script has been debugged a
movie in the second format is produced. In
this movie format full clour shaded
representation of objects are produced. The
individual frames in this format are raster
images which can be plotted on a microfilm
recorder. The "display" program is used to
produce these raster images. The generation
of this movie format requires much more
computer time than the other format. For
this reason it is not used in debugging
scripts.

6. Conclusions

The major components of the PATCHES
system have been presented along with the
data structure used in this system. A number
of applications of this system have also been
discussed. The data structure presented in
Section 2 has been used in all programs in
the PATCHES system. There are two major
advantages to using this common data
structure. First, all the program in the
system can be used together. No conversion
programs are needed to convert the output of
one program to the input format required by
another program. Second, since all the
programs use the same data structure they can
share the routines which manipulate it. This
has saved a considerable amount of
programming time.

Acknowledgements

Most of the PATCHES system was
developed at the Computer Systems Research
Group of the University of Toronto. The
Dynamic Graphics Project within this group
provided the ideal environment for developing
this system. I would like to acknowledge the
support and assistence of Dr. R. Baecker,
Bill Buxton, David Galloway, Sanand Patel,
and Bill Reeves.

References

"Computer Display
Proceedings of the
Computer Graphics,

and Data Structure,

[Catmull 75] Catmull E.,
of Curved Surfaces",
IEEE Conference on
Pattern Recognition,
May, 1975.

[Griffin 80] Griffin S., An Interactive
Patch Manipulator and Editor, BASc Thesis,
Division of Electrical Engineerin ng,
University of Toronto, 1980.

[Newman and Sproull 79] Newman W., and R.
Sproull, Principles of Interactive

Computer Graphics, McGraw-Hill, 1979.

[Ritchie and Thompson 75] Ritchie D., and K.
Thompson, "The UNIX Time-Sharing System",
CACM, vol.17, no.7, 1974.

CMCCS '81 I ACCHO '81

- 384 -

transformations is applied.

The transformation statement is used to
define transformations. The format of this
statement is

transform transformation-name is (exp exp exp exp exp exp exp exp exp)

The keywords in this statment are "transform"
and "is". This statement defines the
transformation "transformation-name" to be
the nine expressions within parenthesis.
These nine expressions give the translation,
rotation, and scale components of the
transformation matrix. The expressions can
contain constants, arithmetic operators, and
the corresponding components of other
transformations. By using the components of
another transformation one transformation can
be defined in terma of another.

The animation program can produce films
in two different formats. In the first
format wire frame drawings are used to
represent the objects. A vector device is
used to view a movie in this format. This
format is used when a script is being
debugged since it can be generated relatively
quickly. Once the script has been debugged a
movie in the second format is produced. In
this movie format full clour shaded
representation of objects are produced. The
individual frames in this format are raster
images which can be plotted on a microfilm
recorder. The "display" program is used to
produce these raster images. The generation
of this movie format requires much more
computer time than the other format. For
this reason it is not used in debugging
scripts.

6. Conclusions

The major components of the PATCHES
system have been presented along with the
data structure used in this system. A number
of applications of this system have also been
discussed. The data structure presented in
Section 2 has been used in all programs in
the PATCHES system. There are two major
advantages to using this common data
structure. First, all the program in the
system can be used together. No conversion
programs are needed to convert the output of
one program to the input format required by
another program. Second, since all the
programs use the same data structure they can
share the routines which manipulate it. This
has saved a considerable amount of
programming time.

Acknowledgements

Most of the PATCHES system was
developed at the Computer Systems Research
Group of the University of Toronto. The
Dynamic Graphics Project within this group
provided the ideal environment for developing
this system. I would like to acknowledge the
support and assistence of Dr. R. Baecker,
Bill Buxton, David Galloway, Sanand Patel,
and Bill Reeves.

References

"Computer Display
Proceedings of the
Computer Graphics,

and Data Structure,

[Catmull 75] Catmull E.,
of Curved Surfaces",
IEEE Conference on
Pattern Recognition,
May, 1975.

[Griffin 80] Griffin S., An Interactive
Patch Manipulator and Editor, BASc Thesis,
Division of Electrical Engineerin ng,
University of Toronto, 1980.

[Newman and Sproull 79] Newman W., and R.
Sproull, Principles of Interactive

Computer Graphics, McGraw-Hill, 1979.

[Ritchie and Thompson 75] Ritchie D., and K.
Thompson, "The UNIX Time-Sharing System",
CACM, vol.17, no.7, 1974.

CMCCS '81 I ACCHO '81

