57

Computational Techniques for Parametric Curves and
Surfaces

Brian A Borsky

Computer Science Division
Electrical Engineering and Computer Sciences Department
University of California L/
Berkeley, California 94720

Alain Fournier

Computer Systems Research Group
University of Toronto
Toronto, Ontario
M5S 1A1

RESUME

Les courbes et les surfaces paramétriques sont connues
depuis longtemps, et leur utilisation pour représenter les objets en
infographie {par opposition au design en CAO) est encore en pleine
croissance. Il y a cependant quelquefois des hésitations 4 les
utiliser, car il semble que le gain en puissance ne compense pas
pour les difficultés de formulation et de calcul.

Le but de cet article et de rendre plus clair la signification et
l'utilisation de ces objets, et de montrer qu’ils ont beaucoup en
commun en dépit de I'apparente diversité de leurs formules.

Nous donnons les raisons d'e tre, les propriétés et les
références des courbes ou surfaces d’Hermite, de Coons, de
Bézier, des "B-splines" et des "B-splines. Les méthodes de calcul et
d’affichage communément, utilisées dans les systémes graphigues
sont discutées (calculs de points, transformations géomeétriques,
algorithmes pour l'affichage).

Les exemples et les illustrations sont donndes pour les
courbes et les surfaces cubiques.

ABSTRACT

Parametric curves and surfaces have been with us for a long
time, and their use for object modeling in Computer Graphics {(as
opposed to designing in CAD applications) is still growing. There is
sometimes, however, a reluctance to use them because it seems
that the added power they give is more than offset by the complex-
ity of their formulations and their computations.

The purpose of this paper is to make clearer their meanings
and uses, and show how much they have in common behind the
diversity of their formulations. The motivations, properties and
references for the Hermite, Coons, Bézier, B-spline and @-spline
curves or surfaces are given. The computation and display
methods common in a standard graphics system are discussed
(computations of points, geometlric transformations, display algo-
rithms).

The examples and illustrations are given for the curves and
surfaces in their cubic form.

Graphics Interface '82

1. Introduction

Parametric curves and surfaces have been defined
for a long time in mathematics, and used extensively
in engineering and more recently in Computer Aided
Geometric Design. In Computer Graphics outside of
CAD, they have been used to model from simple
objects with a few patches to 3-D animation models
with several hundred patches. Numerous papers have
been published on various algorithms to manipulate,
compute and display them.

In spite of all this activity, they still look some-
what forbidding to most people in Computer Graphics.
One proof of the dearth of new objects designed with
Parametric curves and surfaces in Computer Graphics
is the ubiquity of the famous teapot, made of 26 (or is
it 28) patches, which appeared in a standard textbook
[Newman?79], twice on the cover of the CACM [Blinn78,
Lane80b], and even in a computer animated film [Car-
penter80].

We will review the main formulations, the proper-
ties, the computational methods and the display tech-
niques associaled with the mosl common types of
parametric curves and surfaces. Jt is hardly necessary
anymore to justify the choice of parametric represen-
tations. It allows multiple valued curves or surfaces
and it gives independence from the coordinate system.
Some of the drawbacks will be mentioned in the rest of
this paper, and they have to do with the fact that the
relationships between coordinates is only through the
psrameter(s). By the same token, we do not have to
apologize for considering only polynomial formula-
tions. Other functions (with the possible exception of
trigonometric functions to represent circles, ellipsoids
and spheres), are too costly to compute with little gain
in power to justify the cost; and of course theoretically
any curve can be approximated to any tolerance by
polynomials (with some customary analytical caveats).

In addition to these important factors, other qual-
ities are sought in the formulations for easier use in
design and generally better users interface. Consider
the simple definition of a parametric m degree
polynomial:

(1.1)

Note that @(w) and the a@;'s each have x and y (and
possibly z) components. Assuming, without loss of gen-
erality if we consider a finite span, that the parameter
u varies from 0 lo 1, the definition of this polynomial
requires m +1 coefficients

Q(u)=ag+rau+au?+ - - - +a,u™

o, i=0,1,---m

Note: in the rest of this paper, in the interest of
brevity, we will give a formula only for one component
of the points in space if they are similar for all com-
ponents.

The first choice to make is about the degree
(highest power of u with a non-zero coefficient) or the
order (number of coefficient, or degree+1) of the poly-
nomial to use. Cubic are generally used in Computer
Graphics and other applications because they
represent a good compromise between power and

58

complexity. They have the power to allow nonplanar
space curves and inflexion points, and curvature con-
tinuity between two curves defined by different polyno-
mials, which lower degree polynomial do not have.
They are not too complex in the sense that their
second derivative is a linear function of = , and the
number of operations necessary to evaluate theu: is
not too high. Cubic polynomial will provide most of the
examples here, but in most cases extension to other
degrees is straightforward.

What coefficients should be chosen for a curve?
From equation (1.1), the following equations are
readily verified:

Q(0)=a,
Q(1)=a0+m1+a2+a3
QM(0)=a,
W(1)=a,+2a,+3a3
Solving for the a;,
2.0=6(0)
2,=Q"(0)
02=3(Q(1)-@(0))+2@W(0)-QM(1)
23=2(Q(0)-Q(1))+ QM (0)+@™M(1)
Unfortunately, there is little intuition associated
with this set of coefficients. What is needed is a formu-
lation which has a stronger geometric interpretation.
It is well known that the set of all polynomial of order
M (of degree M-1 or less) is a vector space of dimension

M. In other words, any set of four linearly independent
polynomials of order M can form a basis for this space.

(1.2)

Most people, especially in Computer Graphics, are
familiar with the concepts of vector space, dimen-
sionality, basis and change of coordinate system,
mainly as it relates to our two or three dimensional
Fuclidean space. In Computer Graphics, or dealing
with interactive techniques in general, the choice of a
basis is not in term of power and generality, but of
convenience. Any linearly independent set of vectors
has all the generality and power needed, since it can
be used to represent any point with the same number
of coeflicients. So the application and user conveni-
ence should dictate which one to chose. For example,
it is better, when using three mutually orthogonal vec-
tors as a basis in 3-space, to have one of them pointing
away from the center of the planet on which the user
stands (technically known =: -p"). As another exam-
ple, if the user picks points in space with a gun (or
more pacifically a telescope), then polar coordinates
allowing to use azimuth, elevation and distance are
more "matural” than Cartesian coordinates.

A similar situation exists, perhaps less obviously,
in chosing the right formulation for the parametric
curves and surfaces. Taking as an example the family
of parametric curves of third degree, the usual power
basis (w0 ut!,u?u’) gives coefficients which, as we have
seen from formula 1.2 are not very geometrically infor-
mative. The decisive step was taken by Bézier, when

Graphics Interface '82

he rearranged the coefficients of the cubic polynomial
to use a different basis (the Bernstein polynomials)
which allowed the coefficients to have a clear, appeal-
ing geometric interpretation (see subsection 2.2 for
more details).

To show that there is nothing mysterious about it,
consider as an exercise the following goals: we want to
design a basis for third-degree curves such that the
user specifies the two end points, a middle point {mid-
dle in parametric space, but anywhere in geometric
space), and the tangent vector at this point (the vector
defined by the mid-point for origin and another point
for extremity). We need to determine the 4x4 matrix
M to compute the curve:

[Pq
P

z(u)=[uuu'1] [M] Tf (1.3)
z
Py

From the defining vertices (P,, Py, Ty, Py).
2z 2
P b
P+
Y

Figure 1.1 Curve and control vertices.

Note that we could rearrange the order of the vertices,
and therefore the rows at our convenience.
From the constraints:

z(0)=Py C()=Py; C(H=P,
2

[P,
Py
zM (1/2)=[(1/2)* (1/2)? (1/2)' 1] M r
7
P,

we obtain a system of 16 equations with sixteen unk-
nowns, which when solved give the matrix:

—4 0 -4 4
8 -4 6 -4
M =154 -2
1 0 0 0

59

To prove that it constituks a basis, we just have to ver-
ify that the determinant is not zero. The useful pro-
perties of this formulation, for which it was designed,
is that it interpolates the three given points, with
explicit control over the tangent at the middle. The
user can then control it in a visually obvious way. In
other words, the four coefficients of the cubic polyno-
mial have been replaced by something that mean
something to the user. Figure 1.2 shows how the curve
reacts to a change in tangent vector without modifying
the other vertices.

/ |
-

.

Figure 1.2 Curves with same control vertices but for ¥’

-

('Olh

Other properties can be useful in applications.
They could almost all be described in term of the no
surprise principle. The usual list is:

-Convez hull property. A curve is said to have
the convex hull property if it is entirely within
the convex hull of the control vertices.
-Variation diminishing property. Informally,
this means that the curve is "smoother" than
the polyline defined by the control vertices.
-Local contral.The change induced by a change
to a control vertex has only a local effect.
-Continuity.If, as is mostly the case, a shape is

Graphics Interface '82

modelled piecewise from several parametric
curves, it is desirable to have the value and
first few derivatives equal where the pieces
meet. The notation is C!% for zero order con-
tinuity (the curves meet) and in general clnl

for nt*-order continuity, that is equality of the
n' derivative.

It will be seen in the following sections that these
properties are also relevant to the display algorithms.
Without proof, we will state that the formulation given
does not have the convex hull property, has the varia-
tion diminishing property in some sense, and provides
global control locally (the concept of global vs local
control is of little use if piecewise modeling is used).

cl% continuity is easily obtained since the curves
interpolate their end vertices. The equation for ensur-
ing Cl! (tangent) continuity is :

—Py—4P, 2T, +5P,==5Py+4P, —2T, +P; (1.4)
2 z E3 2
for two curves defined by: (Po Py, T, Py and
2 2
(Po. Py, Ty, Py). This does not give the user an
) 2

obvious way to control the continuity. Consider, how-
ever, the situation {more and more prevalent) where
the user choses interactively the conlrol vertices. The
systemn can, in the proper mode, compute the remain-
ing vertices to satisfy ¢!l and/or ¢'?l continuity. If all
are chosen, a change in one will force a change in the
others. In this case, the "weakest" should be changed
(for instance here the tangent, but this can be
modified by the user). In this situation, the exact rela-
tionship as given in 1.4 is not very imporlant, as long
as the changes are predictable.

Having seen how a particular basis can be chosen,

we will now examine the motivations and formulations
of more traditional parametric curves and surfaces.

2. Curve and Surface Formulations

2.1. Hermite Interpolation and Coons Surfaces

Hermite interpolation is specified by a set of
points and derivatives to interpolate. In the cubic
case, these derivatives are first derivatives, and the
resulting curve has continuity of position and of first
derivative (CI!). In particular, let { Pg,Pr......Pm) be
m +1 points to be interpolated and (P¢.P.....Pnm)
be the corresponding values of the first derivative vec-
tor. Parametrically, the if* curve segment Iis
described as the parameter u varies. Specifically, a
curve segment can be written as

11
Qi)=Y Y g5 (w)Pi-1re
j=0k=0

The functions g;, (%) are the cubic Hermite basis func-
tions

goo(t)=2t3=3t%+1
gor(t)=—2t3+3t? (2.1)
g1o(t)=t3—2t%+t

Graphics Interface ‘82

gu(t)=t3—t?

which can be written in matrix form as

[g00(t)gor(t)gro(t)ann(t)]=[t2t1][H] (2.2)

where :
2 -2 1 1
-3 3 -2 -1
H=|lg o 0 o
1 0 0 O

One of the first methods for surface representa-
tion was proposed by Coons [CoonsB87, Forrest72]. The
basic idea is to create a surface by blending four boun-
dary curves. A simple Coons surface can be expressed
as

Q)= Y f)P+ 3 150 Pl.g)
i= Jj=

S Y £ o) f; () P(LG)

1=0j=0
or in matrix form

Q(u,v)=[fo(u)fl(u)][ﬁﬁ’:’ég }

fo(”)
S 1("/)

o) B39 %933]3‘,’83]

Here P(u,0), P(1,1), P(0,v), and P(1,v) are the boundary
curves; P(0,0), 1’(0,1), P(1,0), and P(1,1) are the corner
points; and f4(t) and f,(t) are the blending functions
(see Figure 2.1). Note that the blending fufitions must
satisfy f;(j)=0;, where 8 is the Kronecker delta.
This simple Coons surface does not constrain the
cross-boundary derivatives; thus, it is not possible to
ensure continuity higher than positional when using
composite surfaces.

+[P(u,0)P(u,1)]

r{1,1)
P(u,1) P(lLv)
P(0,1) P(1,0)
P(0,v) P(u,0)

2\ “/’

Figure 2.1. Boundary curves and corner points
for a Coons surface.

For first derivative continuity this method is
extended so that the user is able to specify the cross-
boundary derivatives. This requires four blending

functions, goo(t), goiult), gio(t).and g,(t). The
surface is now written

Q)= Y Y PO, u)g,(u)+ Y 3 PO, g)gy ()

i=0r=0 j=0s=0
S3 9 Y P) g ()0 ()
1=0j =07 =0s =0
or, in matrix form:
[Péo.'u;]

Qu.w)=[go0()g01()g 1007 1:()] | i o
P(l'o)gl:u)
googU;]

v
ga(w)|®®)
guw)

{900)901{u)g 10()g n{w)]

P(0,0) P(0,1) PL1X0,0)PO1(0,1) [900(v)]
Pil,o Pil,l P 1.0%13(0-” 1,1)||[gor(v)
PO(0,0) P90, 1) P(1.1(0,0) P11(0,1) ||g 10(v)
PUOL0) PO 1) 00(1,0) PAD(1,1) ||y, (v)

where
+b
P8 i g)= L) 1y oy 2y

duov®

+[P{u,0)P(w,1) PO (1,0)PO(x,1)]

[

~—

While the Coons formulation is useful and very
general, it requires the specification of a great. deal of
data which lack intuitive interpretation. One way to
simplify equation (2.3) is to use the following boundary
functions:

11
POS)qy j)= 2N PTG)gir ()
i=0r=0

(2.4)

11
PrO(in)=3 3 Pre)i.j)g(v)
j=0s=0
Substituting equation (2.4) into equation (2.3), the
three terms are now equal, and thus equation (2.3)
reduces to

1

1 1
0 2 Y PS5) g (u)gey (v)
1=0j =0r=0s =0

—

Q(u.v)=

1]

or in matrix form

)(0,0)P(1:9(0,1) P(1-1{0,0 0
p1.0(1,0)P10)(1,1) P(11D(1,0) POD(1

The blending functions have to satisfy
90i(7)=g:G)=6;

[900(‘11)]
Q1. 2)={gac(w)g 01 ()g 10(e0)g 1,)T PI T2 2.5)
n{v)
where

[(©.1) ©.1(g 1)!

| P8 P ﬁ(mn‘?:gi_’éwngi’:};’

P(I. P(l,l) '1

1)

61

914()=90MG)=90.® () =g.()=0
These conditions are satisfied by the cubic Hermite

basis functions which were given in equations (2.1) and
(.2).
AN

2.2. Bézier Curves and Surfaces

Recall the binomial distribution from probability
theory and statistics. The probability of exactly 1
successes in m trials, where the underlying probability
of success is wu, is

Bi.m(u)z[T’]

where 7=0,1,...,m and Osu<1.

ut(1—g)m-i)
(2.6)

Consider now a control polygon formed by the
ordered sequence of control vertices,

[Vo.VyerriVin]

The probablility #;,, (%) can be related to these ver-
tices by considering the following game. The player
starts at the vertex Vy. With probability % , he or she
moves to the next vertex, and with probablility 1—u
stays at the current vertex. Then B;,,(u) is the pro-
bability of being at the vertex V, after m trials.
From Lhis, the cxpected posilion after meo trials must
be

m

@m(u)=3 Bym(u)V; (2.7)

i=0
In addition, since B;,,(u) is a probability density func-
tion,

&
Z B‘i.m ('U.)=1
i=0

The set of polynomials B;,(u) are called Bern-
stein polynomials, and they form the Bernstein basis
since they are a basis for the vector space of all poly-
nomials with degree at most m . The expression (2.7)
for the expected position can also be viewed as a Bern-
stein approximation to the sequence of control ver-
tices. This expression is a weighted average of the
m+1 control vertices, with the Bernstein polynomials
being the weighting factors, and defines an m?
degree Bézier curve [Bézier74). Note that each poly-
nomial is nonzero over the entire domain O<u=1 ,
which is why there is global, not local, control.

Consider now the cubic Bézier curve. This means
that m =3 and there is a control polygon consisting of
the four control vertices [Vg, Vy, V5, ¥3]. From equation
(2.3), the Bernstein polynomials for this case are

Bos(uw)=(1-u)?=-u3+3u?-3u +1
By 5(w)=3u(1-u)?=3u3-6u?+3u
Bas(u)=3u?(1-u)=-3us+3u?
Bas(u)=u?

These polynomials are plotted for N<u<1 in Figure
2.2

(2¢)

Combining equations (2.7) and (2.8), the Bézier
curve is

Graphics Interface '82

u=1

Figure 2.2. The cubic Bernstein polynomials for O<u=<1.

Qs(w)=(1—w P Vo+3u (1-u)2V, +3u?(1—u) Vp+u3V; (2.9)
These equations can be recast in matrix notation.
From equation (2.7), the curve can be expressed as
[v]
1%
Qa(u)=[Bo3(u)B 1 5(u) Bz s(u)Bss(u)] V;
V3
From equation (2.8), the polynomials can be written
as:
[Boga(w)By5(w) Bz a(w)Bas(u)]=[uwuu1][B]

where

[-1 3 -3 1 |
13 <8 3 0
B=|3 3 0 0

1 0 0 O

From (2.9), the curve can be rewritten in the following
matrix form:

[v |

Qo) =Tuute 1)[B]|)

V3

(2.10)

The original motivation in the development of the
Bézier formulation was based on the relationship
between the derivatives of the polynomial and the
edges of the control polygon. From (2.9) or {2.10), it
can be readily verified that

@3=Vy
Qs(1)=Vs
Q31(0)=3(V,~ Vo)
Q:("(1)=3(V3—V)

This shows a strong relationship between the control
polygon and the Bézier curve. The curve begins at the
first vertex (Vp) and ends at the last last vertex (Vj)
and is tangent to the control polygon at these vertices.

62

Figure 2.3 A Bézier surface and its control vertices.

A Bézier surface is a tensor product of Bézier
curves. It is defined by a set of control vertices, in
three-dimensional x-y-z space, which is organized as a
two-dimensiona! graph with a rectangular topology. A
point on the surface is 2 weighted average of these
control vertices:

Qm.n(u-'v)= ’z": i Bi,m(u)Bj.n(v) Vij

i=0j =0
or, in matrix form
[Bon (v)

Bin(v)

O (@ 0)=[Bogm (w)Bym(n) -+ By (w)[V]
Bpn(v)

where

[Voo Von !
v=| (2.11)
Viro Vo

In the case of m=n=3, this is the bicubic Bézier
surface, where the basis functions are those defined in
equation (2.8). Comparing the matrix formulations in
equations (2.5) and (2.11),

HPH'=BVB!
From this, expressions can be derived for the elements
of the P matrix in terms of the control vertices so as to
produce an identical surface. Specifically,
P=H"VBVBt H(!)
which evaluates to

[Voo
P= Vso Vaa

3(Vyo—Voo) 3(Vis—Vos)

3(Vao—Veo) 3(Vas—Vas)

Vos

Graphics Interface '82

3(Vo1—Voo) 3(Vos—Voz) !
3(V31— Vzo) 3(Vas—Vag)
N Voo—Vio—Vor+ V11) 9 Voe—Viz—Vos+ Vis)
9(Vzo—Vao—Var+V11) 9(Voo~ Vap—Vag+ V)

The following properties of Bézier curves and sur-
faces should be noted. They have axis-independence,
the variation-diminishing property for curves, the con-
vex hull property global (not local) control, and limited
ability to ensure continuity between adjacent curves
and surfaces.

2.3. B-spline Curves and Surfaces

Splines were first introduced by Schoenberg
[Schoenberg48, Curry47, Curry66] and are named
from the devices used by draftsmen and shipbuilders
to draw curves. A physical spline is used much like a
French curve to [air in a smoolh curve between
specified data points. It is held in place by attaching
lead weights called "ducks". By varying the number
and position of the ducks, the spline can be forced to
pass through the specified data points. A flexible ruler
constrained to go through some points will follow the
curve which minimizes the strain energy between the
points.

If the physical spline is considered to be a thin
elastic beam, then the Bernoulli-Euler eguation can be
invoked. For small deflections, the first derivative
term in the curvature expression can be neglected,
and thus the curvature can be approximated by the
second derivative of the assumed curve. Assuming
that the ducks act as simple supports, it can be shown
that the solution Lo this functional calculus problem is
a piccewise cubic polynomial, continuous up to its
second derivative at the fixed points.

A spline is defined analytically as a sect of polyno-
mials over a a knol vector. A knot vector is a vector of
real numbers, called knots, in nondecreasing order;
that is,

w=[ugu,, ... Ug]

such that u;_,<u;, i=1....,q

A spline of order k (degree k-1) is defined
mathematically as a piecewise (k-1)'st degree polyno-
mial which is k-2 continuous; that is, it is a polyno-
mial of degree at most k-1 on each interval [usubi-1,
u sub i), and its position and first k-2 derivatives are
continuous.

The i'th B-spline basis function of order k (degree
k-1) for the knot vector [w;,...,u;,;] will be denoted
Ni,k(u,;.....u“k ;) and can be expressed as the follow-
ing recurrence relation:

(w —uy)
N; e Uy U)= i - Uive Uigpe— iU+
1.,Ic(ui Ui 4) (ui+k—1—uv:) 1.k l(< Uitk—1)
('“-uk"'l')
TT—N; BT (T PR SNN T I 7
(Ugrp —tUgy,) i¥LE (Ui 44 Uy g i)
with (2.12)
lug<u <uyy,

63

1 U<u <uy
Nt.x('“-tv"l«.+17"")=[0 otherwi;el

In words, equation (2.12) means that the B-spline
of order k in the i'th span is the weighted average of
the B-splines of order k-1 on the i'th and (i+1)'st
spans, each weight being the ratio of the distance
between the parameter and the end knot to the length
of the k-1 spans. Note that the computation of
Ny, ujpin) involves all the knots from u; to
U;i+x, but no others, as it should since the width of sup-
port is k spans.

Curry and Schoenberg [Curry47] showed that the
N,;_k('u.) are indeed a basis, so that any spline of order k
or less defined over a given knolt vector, can be
expressed as a linear combination of B-spline basis
functions defincd over the same knot vector extended
al both ends by k-1 arbitrary knols.

The only restrictions on the specification of the
knot vector are that the same value cannot appear
more than k (the order) times and that the knots must
be in nondecreasing order. When the same knot value
occurs more than once, this is called a multiple knot.
Specifically, u;is a knot of multiplicity M if

Ui ZUi41= 07 FUemo where <k

The continuity at this knot is reduced by M-1.
Since the continuity at a knot would otherwise be
Cl® -2l this means that, in general, the continuity at a
knot is C*-#-1 where M is the multiplicity of the
knot. For exarmple, a cubic spline (k=4) usually has
continuity C?); a triple knot (M=3) would produce con-
linuity CI°1 al thal knot. Thus, discontinuilies are
easily introduced in a spline curve.

Allhough the values of the knots are so uncon-
strained, an especially useful special case is that of
uniform knot spacing, where wu; = i [Barsky82]. For
the case k=4, this generates the canonical uniform
cubic B-spline basis function :

0 w <u;
ug3/ 6 U <U <Ug 4
_J(=8u B 48u R4 3u, +1) /B g, <u <y,

Nia= (Bug®—Bu,?+4)/ 6 Ui 425U <Ug 4n
(1-uy®)/ 6 Ui 435U <Uyj 44
0 Ui pq<U

where wu;'=u—u;,;,j=i.i+1,...,1+3

An important observation is that the shape of
these basis functions are identical, independent of i
that is, all the N, ; (u) are translates of each other.

From the basis functions it can be noted that
there are less than k nonzero basis functions at the
extreme values of u. In order to consistently have k
nonzero basis functions (except at the knots them-
selves), a slightly modified version of the above knot
vector is used. This knot vector has uniform knot
spacing with the first and last knot value each
repeated k times.

Graphics Interface '82

This case closely resembles the behaviour of Bern-
stein polynomials (Bézier curves), and if no interior
knots are presented in the knot vector, the B-splines
specialize exactly to Bernstein polynomials. The
corresponding knot vector is:

[O-- 0 11---1]

e b e
k times k times

To see this, note that equation (2.12) reduces to
N o () =uN; oy (w)+ (1=)Ni sy o1 (02)

where

W<U Uiy

1
Ni-'(“)‘{o otherwise

which is the recurrence relation for the Bernstein
polynomials.

As with Bernstein polynomials and Bézier curves,
B-spline basis functions can be used to approximate a
sequence of control vertices. This expression is again
a weighted average of control verlices; specifically,

m
Qu(u)=) Nip(u)V;
i=0
where the knot vector is:

[wosisy,. .. Uq]

Since there are m+1 control vertices in the con-
trol polygnn, and each control vertex has a
corresponding basis function, there are m+1 basis
functions. Moving through the knot vector, each basis
function is nonzere over a successive set of k+1 knots.
Thus, k+m+1 knots define m+1 basis functions which
correspond to the m+1 control vertices. From this, it
can be seen that the uniform knot vector with multiple
end knots is

[00---001---7 7r - 7]
T e e e I

k=1 m-k+2 k-1
where r =m —k +2. That is,
[o i=0, ..., k-2
w=|i-k+1 i=k-1, ..., m+1
m-k+2 i=m+2, ..., m+k

In the same manner that a Bézier surface was
formed from Bézier curves, a B-spline surface is a ten-
sor product of B-spline curves

Qe o(uw,v)= }njl, En_: Nig(w)N 1) Vi
1=0j=0

Like Bézier curves, B-splines have axis-
independence, the variation-diminishing property for
curves, and the convex hull property. In addition, B-
splines have the advantages of local control (since
each B-spline basis function is nonzero on only k spans
or kxk surfaces) and ease of maintaining high order
continuity. The formulation of B-splines curves or sur-
faces can be given in a manner similar to equation
2:10:

64

!
el

Figure 2.4 B-spline surface and control vertices.

[v]
- Vy
z (u)=[uduu1][S] Ve
V3
where :
[-1 3 -3 1 |
S= 3 -6 3 0
- -3 0 3 0
1 4 3 0

And for the surface:

—

s

v
2 (w)=[uu 1][S1 (V] [ST7| %
1

where [S] is as above, and [V] is the matrix of control
vertices as in (2.11).

2.4. f-spline Curves and Surfaces

The B-spline [Barsky81b] is a new mathematical
technique for curve and surface representation that
has been developed expressly for geometrical and
graphical applications. Interaction with the user is via
control vertices and shape parameters, while the
underlying mathematical formulation is based on the
constraints of continuous unit tangent and curvature
vectors. These fundamental geometric measures are
more appropriate than traditional algebraic ones
based on derivatives. The use of geomelric measures
also adds degrees of freedom that can be captured to
provide further control of shape via two inherent shape
parameters, f, and @,, that are related to tension. The
g-spline representation also has the important advan-
tage of local control.

A B_spline curve or surface is specified by a set, of
control vertices. A point on the i** curve segmenl is a
weighted average of the four control vertices
Visr,T = —2,—~1.0,1. The coordinates ol the point &) (u)
on the it curve segment are then given by

Graphics Interface ‘82

e (u) = Zl b. (B1.f2:u) V. for 0<u < 1.
2

T=—

As the domain parameter » varies from zero to unity
the i curve segment is traced out.

The weighting factors are the scalar-valued basis
Junctions evaluated at some value of the domain
parameter u, and of each shape parameter B; and B,.

The @-spline basis functions were derived in
[Barsky81b]. They are

b _2(Br.Baiu)=2B(1-u)3/ 6
b 1B, Baiu) =[2B7w [1*~3u +3]
+2B7[w-3u2+2]+26, [1u3~3u +2] + B[23w+ 11176
bo(Br.Bziu)=[2BFu?3—u]+28,u [3—u?
+Bzuf[3—2u]+2(1-u"])/ 6
b1(B1.Baiu)=2u’/ 6
where 6=283+48%+48,+8,+2

A point on the (i,5)™ g-spline surface patch is a
weighted average of the sixteen control vertices
Vitrjes, 7 = —2,—-1,0,1, and s = -2,-1,0,1. The
mathematical formulation for the surface Qi (u,v) is
then

Qij (u"‘L") = zl: i‘ br(ﬂl'ﬁzzu) th+'r.j+s bs(ﬂl-ﬁ&w)

r=—2 s=-2

for 0= <1 and 0w < 1.

3. Computational Methods

3.1. Introduction

It is important to distinguish the different kinds of
primitives used through a graphics system. The termi-
nology is not well standardized yel, and the boundaries
still shifting. We will use here the following definitions:

madeling primitives: the building blocks for
the objects in the modeling systems. For
example, they can be solids in a mechanical
CAD systermn, spheres in a molecule model,
parametric surfacess in a shape design system.
gruphic primitives: the primitives used at the
graphics package level, on which the viewing
transformations, the clipping and the shading
is performed.

output primitives: the entities recognized by
the output device (instructions to the display
processor unit). They can be lines, points, pix-
els in a "dumb"” frame buffer, or more complex
entities like filled polygons, or filled circles.

If all the graphics systems used parametric
curves or surfaces as both graphic and output primi-
tives, the rest of this paper would be much shorter.
Since no system uses parametric curves and surfaces
as output primitives, and few use them as graphic
primitives, we have to consider algorithms to convert
parametric curves and surfaces to the commonly used

65

primitives. Since most primitives are defined by a
finite set of vertices (points in 2 or 3 dimensions) we
will start by looking at methods to evaluate a point on
a parametric curve or surface.

3.2. Matrix computation

A point, for a given value of the parameter u , can
be computed directly from the matrix representation
of the parametric curve:

Al
x(u)=[uulu'1] [#M] 12
V3

and similarly for the other coordinate(s). A direct
evaluation from this formula takes 2 multiplications
for the row vector, 12 multiplications and 12 additions
for the vector-matrix multiplication, and 4 multiplica-
tions and 3 additions for the final multiplications by
the vertices. This is a total of 18 multiplications and 15
additions. For the case of the surfaces:
[sl

z(uww)=[ud w? u' 1] (4] [V] [(M]7P°
1

this adds up to 51 multiplications and 39 adds. If the
control vertices are known, and the computation is
done for a large number of points, then the multiplica-
tion [M] [V] or for the surface [M] [V] [M]” can be
done in preprocessing, at a cost of 18 multiplications
and 12 adds, and then for each point evaluation only 5
multiplications and 3 adds are necessary. For a sur-
face, the corresponding figures are 32 multiplications
and 24 adds in preprocessing, and 19 multiplications
and 15 adds per point evaluation. These numbers have
to be multiplied by the number of coordinates.

If vector or matrix multiplicrs are available, these
could lead to a significant improvement in speed [Eng-
land78]. 1t is interesting to note that 4 element vector
multiplicrs, and 4 X 4 matrix multipliers are available
because of the use of 4 x 4 homogeneous coordinate
transformation matrices. It makes cubic equations
even more appropriate. If a circuit is available that
multiplies and summs 4 pairs of pumbers in parallel,
then the point evaluation takes 5 steps, once the vec-
tor [u® w? u! 1] is computed. In the surface case it
takes 12 steps. If the vertices are known in advance,
these numbers become 1 step and 5 steps, respec-
tively. The evaluation of a point can then take a time
of the order of a usecond.

3.3. Polynomial Evaluation
If we rearrange slightly the order of computation,
we have
Vel

[41=[H] |}
Va

and we obtain an ordinary third degree polynomial:

Graphics Interface '82

z(u)=[ud u? u! 1]
Applying Horner’s rule, this could be rewritten:
z(u)=((agu +az)u +0,)u +ag

After the preprocessing (the computation of A1)
the number of operations is then 3 multiplications and
3 additions (compare with 5 multiplications in the
matrix approach). But the price to pay is a certain
loss of regularity in the operations. Note that since we
are dealing with small size polynomials and matrices,
more elaborate methods to lower the asymptotic com-
plexity like Fast Fourier Transform for polynomial
evaluation are not appropriate. However, methods like
Winograd’s [Knuth89] or Strassen’s can be used to save
on matrix multiplication even on 4 x 4 matrices.

3.4. Table lookup

Often in practice, for reasons elaborated upon in
section 6, what is needed is a series of points regularly
spaced in pararelric space. In this case a table
lookup technique allows substantial savings in compu-
tation. I'or each value u; of u needed, the value of the
vector [w® u? w! 1] [M] is computed and stored in a
table. Then to compute z{wu;), the vector is retrieved
from the table using i as an index. Then only 3 multi-
plications and 3 adds remain. If the vertices are
known in advance, then of course the final value itself
is stored in the table. This becomes equivalent to
precomputing a set of points on the curve. In the sur-
face case, only one table is needed for u and v, if the
same number of subdivision is needed for both. It is
because

[sl

v

2

[u3 »? w! 1][M] and [M]T:,
1

are transposed of each other when v =v. In this case,
the computations remaining are 15 multiplications and
15 adds.

3.5. Forward Differencing Techniques.

When the whole surface is computed, or significant
portions of a whole surface, at equally spaced points,
then it makes sensc to exploit the regularity of the
computalion to save on operations. In other contexts,
the same concept is known in computer graphics as
coherence (in this case "object coherence"). An old
and well known technique is called forward differencing
[Ralston65]. It uses the fact that the "nth difference”
of a n'* degree polynomial is constant. The forward
difference of a function f (u) is:

Af (w)=1 (u+h)=f (u)
The second difference is:
APf (u)=Af (w+h)-Af (u)
and so on to the nt* forward difference :
N f (w)=A"T"f (u+h)=A"Tf (u)

In the case of a third degree polynomial:

66

z(uw)=agul+aul+a,u+ag
Az{(u)=3agu’h +(3azh?+2azh)u +aghi+ash?+a,h
A2z (u)=6agh?u +6agh®+2azh?
A3z (u)=Bazh?
which is a constant for a given h.

definition of the forward
compute

From the original
difference, we can
S (n+1)h)=f (nh)+Af (nh).

We now can use the following algorithm: We ini-
tially compute

z(0), Az(0), A?z(0), and A’z(0)

for a given h. Since A3z (uw) is independent of u, we
will write it A3z. Then for n=1 to 1/ h we compute:

z((n+1)h)=xz(nh)+Az (nh)
Az ((n +1)h)=Az (nh)+)Nx (nh)
A%z ((n+1)R)=Az (nh)+Nz

For each new point only 3 additions are needed.
This method has the drawback of having the roundoff
errors accumulating during the computations, which
can make the last points computed quite inaccurate.
To extend the technique to surfaces we have to com-
pute the forward differences of z(u,v) twice, once as a
polynomial of w (v constant) and once as a polyno-
mial of ¥ (# constant).

But cach forward difference is a polynomial in
both © and v , and as such has a forward difference
for both. We then have a 4x4 matrix of forward
differences.

Starting with z(0,0), the next values z(h,0) ,

z(2h,0), -+ can be computed, using the forward
differcnces for . Then z(0,k). z(0,2h)... can be
computed using the forward differences for v. Then
z(0,h), z(h.h), z(2h,h)... can be computed.

At each slep. each row (if we go in the w direc-
tion) or column (if we go in the v direction) has to be
updated by replacing it by the sum of itself and the
next row or colurnn. Each new point then costs 12
additions.

3.6. Recursive Subdivision

In the previous approach, the question was given
z{w), compule z(u+h). This is an incremental
approach. If instead we ask given z(u,) and z(up),
compute z(u) with u,<u<ug, thiz is a subdivision
approach. It also has a strongly hierarchical
approach, since z(u) can properly be viewed as a des-

. . U tug
sendant of z(u,) and z(up). In particular, if u=—7>—
it is have a mid-point subdivision, which can be much
simpler to compute.

Catmull [Catmull74] first introduced this tech-
nique for parametric curves and surfaces.

As an example take the cubic polynomial:

Graphics Interface "82

z(u)=agud+au+a,u +a,

Assume we know the values of r(u +d) and z(u-d). It
is easy to show that:

z(w)= z(u+d) ;z(u ~d) —~(ag+3agu)d?

So the valuc at the mid-point z(u) is the average of
the velues at the end points, minus a correction factor:

2
C(u ,d):(a2+3a3u)d2=z(2)(u)gz—

The last equality can be verified by computing the
second derivative. The correction term can itself be
computed recursively by the same method, and the
the cubic case it is a linear function of w which does
not need any correction term. The algorithm for sub-
division is then first to compute (d=1):

z(0), z(1), C(O,l):EEZﬂL‘ c(1,1)= Z(Zm

then in each following steps to compute (d=0.5):

€(0.5,0.5)= £(0.1)+C(1 gc L),
z(0.5)= 17—@%ﬂch(o.s,o.s)
and the new correction terms:

c(0.0.5)= E01); ¢(1,05)= L1

So to compute each new midpoint involves 3 adds (one
to compute the new correction factor) and 8 shifts.
This is the fastest way to compute a new point on the
curve.

Another way to look at the subdivision of a
surface/curve, is : given a set of control points, gen-
erate 2 sets of control points that together generate
the same curve as the original set. Pictorially the
answer is given for the Bézier curve by the geometric
construction for the case w=0.5 . If the original ver-
tices are (Vy, V;, Vp Vg) and the two new sets of con-

trol vertices are (Ro @, @5 @g) and
(Ro. Rl' Rz' Ra) then:
@o="Vp o=@
VotV _VitVe Ry
= Ve T2
_& N+, _ Vet Vs
=T =73
_GetR, Rg=Vg
W=

This subdivision mcthod requires 6 adds and 6 shifts
per point. It has the advantage of creating subsur-
faces#s, keeping the nature of the primitive used. A
similar method can be applied to the control vertices
of a B-spline curve [Lane80a].

The preceding subdivision method can be applied
recursively without in effect ever computing the points
on the curve itself. The proof that the series of com-
puted control vertices converges to the curve is easy
once the convex-hull property is applied. The more
difficull problem of subdividing arbitrary B-splines,

67

including non-uniform ones, has been solved by the
"Oslo" algorithm [Cohen80]. It also computes new con-
trol vertices, but can be used to split the curves at
arbitrary parameter values.

4. Viewing Transformations

4.1. Rotation, Translation and Scaling

In this section, we discuss parametric curves and
surfaces as graphic primitives, that is as entities that
are subject to geometric computations in general, and
transformations in particular. The viewing transforma-
tions, which are linear transformations, and generally
expressed as 4x4 matrix using homogeneous coordi-
nates [Foley82, Newman79], can always be expressed
as a concatenation of rotation, translation and scaling
matrices.

Similar to the viewing transformations, the
instance transformations (going from the master coor-
dinate system to the word coordinate system) can also
be represented as a concatenation of these basic
transformalion matrices.

It is easy Lo show that for rolation and scaling,
transforming the points on the curve or surface is
equivalent to transforming first the control matrix,
and then using this lransformed matrix to compute
the points.

[z'(w)y'(u)z'(u)]=[z (u) y(u) z(u)][T]

where the primed coordinates are for the transformed
points, and [T] is the 3x3 transformation matrix.
Replacing the z (.),y(«) and z () by their formulation
in a cubic curve:

lVz:chann]

¢ . ; Ve 1 Vi1 Vs
—T73,,2 z1 V1 Va1

[z'(w)y'(w)z' (w)]=[udu w1][M] VooVy2Vas

VesVyaVas
=[uSuPul][M][T]

(7]

where:

[o o
VzoVy0Vz0
Va!"l Vyl V;l
Vz':z quVzg
VzSVySst

(7=

The translation transformation is usually reduced
to a multiplication by a transformation matrix by
using homogeneous coordinates, in essence reducing
point translation in 3-D to vector transformation in 4-
D. See in particular [Riesenfeld81a] about the nature
of the homogeneous coordinates.

We can by extension apply the same technique to
the control vertices matrix. In the case where some of
control vertices are vectors, however, and not points in
2-D or 3-D space, then the usual extension to homo-
geneous coordinates by adding 1 as the fourth com-
ponent is not valid. To keep them unaffected by trans-
lation, as they should be, the fourth component should
be 0 (in other words, the last row of the transformation

Graphics Interface ‘82

matrix is not used). Care should be taken, in this case,
not to try to divide the first 3 components by the last,
as is done after the perspective transformation (see
below).

4.2. Perspective Transformation

In the classic perspective transformation after
the objecls are transformed to the eye coordinate sys-
temn (with the eye at the origin), the new x and y coor-
dinates are obtained by dividing the x and y coordi-
nates by the z coordinate:

_ D %

Sz %

- DY

s ISy Ze

@herc D is the distance eye-window, and Sz, Sy the
window size in the x and y direction. It can be shown
easily that the transform of a straight line segment is
a straight line segment (but they do not have the same

parametrisation).

In the case of a cubic curve or surface, the
transform

Ye(u) D
zg(u) Sy

is not a cubic polynomial. Therefore it is not
rigorously correct to apply the perspective transfor-
mation on the control vertices and then compute the
surface fromn lhe resull. Tortunately, in most cir-
cumslances the difference will not be visually detect-
able, and this is commonly done.

ys(u)=

Before leaving the subject of transformations,
clipping should be mentioned. Simple tests to verify if
the whole surface surface is in or out are possible if
the formulation used has the convez hull property
since in this case if all the control vertices are in (out)
then the whole surface is in {out). In the case where
some verlices are in and other out, then more ela-
borate tests are necessary, and one should use some
of the techniques described in the next section on
display algorithms.

5. Display Algorithms

5.1. Polygonal Approximations

The display algorithms can have tw) purposes: to
transform the parametric curves and surfaces into
graphic primitives, or Lo transform them into output
primitives. In the first case, perhaps they should no be
called display algorithms. To display the graphic prim-
itives, they in turn have to be converled into outpul
primitives. (Note that sometimes the conversion is
trivial: ofter straight line segments are both the
graphic and the output primitives.) If the parametric
curves and surfaces are used as graphic primitives, as
discussed in the previous section, then the second
transformation still has to be applied.

The first method used to display parametric sur-
faces is to subdivide them into polygons, generally qua-
drilateral or triangles, and then use the polygons
obtaincd as graphic primilives, if nccessary applying

68

the required transformations, and displaying the
polygons, using one of the many algorithms available
for polygon display [Newman79] [FoleyB2].

The methods to compute the points on the surface
have been discussed in section 3. It is here clearly
advantageous to subdivide the surface equally in
parametric space, and consequently to use table
lookup or forward differencing.

If we use only one kind of regular polygon to sub-
divide the surface in parametric space, then only tri-
angles and squares are geometrically possible (hexa-
gons will leave some unfilled triangles at the 4 corners
and boundaries). Subdivision into quadrilaterals offers
the advantage of covering the surface with less line
segments, and of being more pleasing to the eye (only
lines approximating isoparametric curves are seen).
This should be the preferred method with a line draw-
ing system.

The drawback with parametric squares is that four
points on the surface are not necessarily coplanar.
This means that from some viewing position the qua-
drilateral in screen space might nol be convex, and
even not simple (i.e. two edges can cross). This would
cause difficulty to most filling algorithms used for sub-
sequent display since some deal only with convex
polygons, and most cannot deal with non-simple
polygons. In this case, a triangulalion is preferable, as
any 3 points are coplanar. Remains the choice of the
subdivision factor. Since adaptlive mcthods will be dis-
cussed in the next subsections, we will here only con-
sider a priori determination of the subkdivision factor.
One solution is to let the user pick it (low for quick
display, high for final version). If it is to be determined
by the system, the two main considerations should be
the size of the surface on screen and the curvature of
the surface. It should be remembered, however, that
equal distance in parametric space does not mean
cqual distance in world and/or screen space. [a
roughly constant distance Puist between sample points
is wanted, then one can apply the viewing transforma-
tions to the four corners of the surface, and given the
maximum distance dn.x between these on the screen,
compute m , the number of intervals on a side by:

| dmax
IPcHst l
The curvature of the surface is a factor, since we are in

effect doing a piecewise linear approximation of a poly-
nomial surface.

One simple way to relate the subdivision factor to
the curvature in the case of Bézier and B-spline formu-
lation is through the control points. In the case of
Bézier:

z®(0)=6[(Vo— V1) +(Vz— V)]
s®(1)=8[(V,~ Vo) +(Va—V2)]
in the case of B-spline:
z@(0)=(Vo= V) +{Va—T1)
z@(1)=(V,=Va) +(Va—V3)

Graphics Interface '82

The number of subdivisions should be inversely related
to the length of these vectors.

5.2. Scanline Algorithms

In recent years there has been a change in many
applications from line drawing systems (refreshed or
not) to raster systems. In terms of output primitives,
this means going from points and lines to pixels and
scanlines (this also means shading and colours - more
about that later). As a consequence, algorithms were
developed to convert graphic primitives to pixels. In
particular algorithms to convert polygons to pixel
scanline segment by scanline segments were designed
[Newman 79, Foley 80]. These algorithms basically
consist of 2 loops, one for the scanlines (the Y direc-
tion) and the other for each pixel on the scanline (the
X direction). The problem is to determine the inter-
section of a plane defined by the eye and the scanline
in screen coordinate system with the object to be

© "scan converted". At the same time the Z value of the

intersection for each pixel is computed, in order to
determine the priority of the objects incident on that
pixel. To simplify computation, usually an incremental
approach is used. In the case of linear objects like
polygons, this means simply that after finding the first
intersection (the polygon vertex with the highest Y),

the endpoints are updated using the E% slope for

each edge. When a vertex is found signalling a change
of intersecting edge, then the slope of the new edge is
used. If new convex polygons are allowed, there can be
more than one active span per polygon at a given scan-
line. Adapting this technique to the scanning of a non
linear surface surface several problems occur: the
highest point on the surface need not be a point on the
boundary. The boundary edges are not the only ones
that determine the scanline intersection, and the
silhouette that define them is not a third degree curve.
The silhouette is either a boundary or the locus of
points where the Z-component (in the eye coordinate
system) of the normal to the surface is 0. New spans
are introduced by local maxima, and spans terminated
at local minima.

Two techniques to solve these problems have been
published by Blinn and by Whitted [Lane80b]. In Blinn
algorithm, the major tool to compute the intersection
is Newton iteration. This is of course an approximation
method, but the coherence of the surface makes it
easy to get accurate first guesses of the solutions and
the iteration converges quickly. They are special
cases however, such as saddle points, simultaneous
maxima in the silhouette and the boundary, that have
to be checked. There can also be singularities wherr
the Newton iteration method fails.

In Whitted algorithm, the scanning proceeds like
for the scanning of a polygon, except that the edges
are described as cubic polynomials. Additional edges
are needed if the curvature along one parameter is
high. The problem of the silhouette edge is solved by
approximaling Lthem by cubic polynomial, oblained by
Hermite interpolation between two points on an edge
where the Z-component of the normal vector is zero.

69

The problem here is that numerous special cases make
the generation of the silhouette edges fail. After all
edges are created, the scan conversion processor first
finds their extrema if they have any (by solving qua-
dralic equation) and break each edge into segments
monotonic in Y. Then the scanning is done using New-
ton iteration to get the value of the parameter at the
intersection. This also might fail to converge.

Scanline algorithms on the whole are fairly pon-
derous, long and hard to code, and suffer many excep-
tions and failures.

5.3. Subdivision Algorithms

In section 3, we pointed out the two main
approaches to the evaluation of points by increment
and by subdivision. For display purposes the same
dichotomy remains, but now the algorithms are driven
by external considerations. In the previous methods
the factors controlling the increment steps were
screen resolution and surface curvature. In the subdi-
vision methods the same factors will ¢rive the subdivi-
sion.

The methods differ by the subdivision technique
used, and by the criterion used to stop the subdivision.
In Catmull's original method [Catmull?4] central
differencing is used, and the criterion is when the four
corner points are inside a pixel. While the subdivision
step is very fast, the method requires a substantial
amount of storage (O(logN) for N subdivision on each
side). The test value to end the subdivision is normally
the size of the subsurface, but since the correcting
factor C(u.d) needed is the second derivative, it could
conceivably be used to test flatness.

Instead of subdividing down to the pixel size, one
could stop when the subsurface is "close enough' to a
polygon to be displayed as such. In this case, we use
polygons as oulput primitives instead of pixels, even
though of course a subsequent procedure can scan
convert these polygons to pixel. Carpenter and Lane
[Lane80k] used this technique. Their subdivision
method computes the new control points of each of the
subsurface as shown in 3.6. The slopping criterion
uses the convex hull property of the Beézier surfaces.
The test for flatness is done on the control vertices,
instead of on the surface itself. The distance from
inside points of the control network to the plane
defined by the four corner points can be used as a
measure. The main drawback of the method is that
cracks appear on the surface, if a subsurface is subdi-
vided, while another subsurface with a common edge is
not.

A third variant proposed by Clark [Clark79] uses
the same subdivision as Calmull does, central
differencing, but uses the correction term

2
Clu,d)=z®@Nu) dT
as the stopping condition. In the Bézier curve
= 0)=6[(Po—P)+(P=r))]
zBN(1)=6[(P3=P,) +(P,~P,)]

Graphics Interface '82

so that
€(0,1)=3[(Pg—P,)+(Pz—P))]

So the smaller C(u,d) is the closer to a straight
line (VoV,VaVs) is. Note that this should be considered
in relation with the resolution of the screen and the
length of (VyV,VaVs). Clark’s termination tests are
done first on the boundary curves along the =1 and
u =0 curves, which one subdivided until they meet the
"flatness’ criterion, then on the v =0, v=1 curves
treated the same. Then the test is carried out to the
middle of the surface, by using the cross derivative
0%z (u,v)

du?ov?
subdividing along the boundary curves first, and then
not subtracting a correction term if any further subdi-
vision is needed (because of the centre of the surface)
Clark’s algorithm avoids the "cracks” along the boun-
dary curves.

The Carpenter-Lane algorithm can be extended to
arbitrary B-spline formulations by using the Oslo algo-
rithm for the subdivision. It should be also noted that
subdivision can be used to clip (especially when the
formulation has the convex hull property, because
then if the clipping plane does not intersect the con-
trol vertices, it does not intersect the curve or sur-
face) and to compute intersections of two surfaces (as
a step in a hidden surface algorithm, for instance).

at the four corners as the test value. By

6. Conclusion

This survey of parametric curves and surfaces and
their associated computational techniques is far from
complete. Some of the topics, important for imple-
mentation, but left out here are:

-transformation form one type of formulation
to another [Barsky81c]

-computations related to lighting models, in
particular normal vector computations
-secondary lighting effects, like shadows and
refraction [Williams78, Whitted80]

-mapping of scalar values onto the parametric
surface, for texture raapping [Blinn76, Blinn78]
or slochastic modeling [ournier82].
-relationship with other surface representa-
tions, in particular quadric and super quadrics
[Barr81]

-techniques, mainly interactive, to effectively
design objects with parametric curves or sur-
fazes for the purpose of Computer Graphics
applications, with a repertoire of control ver-
tices for standard shapes.

A subsequent paper will address these issues. It is
our hope that this partial survey will give the reader a
renewed inleresl in pararnciric curves and surfaces,
and convince hem that Lhey are powerful, yet rela-
tively easy to use as building blocks for cur imaginary
universe.

70

References

Barnhill74a. Barnhill, Robert E. and Riesenfeld, Richard F.(editors).
Computer Aided Geomnetric Design, Academic Press, New York,
1974.

Barr81. Barr, Alan H. "Superquadrics and Angle-Preserving Transfor-
mations”, IEEE Computer Graphics and Applications, Vol. 1, No
1, Januar~7 1981, pp. 11-23.

BarskyBla. Rarsky, Brian A. "Computer Aided Geometric Design: A
Biblic sraphy with Keywords and Classified Index", IEEF Com-
puter Graphics and Applications, Vol. 1, No. 3, July 1981, pp.
87-109. Also to be reprinted in ACM Compuler Graphics.

BarskyB1b. Barsky, Brian A. The Beta -spline: A Local Representa-
tion £ased on GChape Parameters and Fundeamental Geometric
Meas ires, Ph.D. Thesis, University of Utah, Salt Lake Clty, Utah,
December 1881.

Barsky81~. Barsky, Brian A. and Thomas, Spencer W. "TRANSPLINE --
A System for Representing Curves Using Transformations
among Four Spline Formulations”, The Computer Journal, Vol.
24, August 1981, vp. 271-277.

Barsky82. Barsky, Brian A. "A Study of the Parametric Uniform B-
spline Curve and Surface Representations”, in preparation.
Bézier74. Bézier, Pierre E. "Mathematical and Practical Possibilities
of UNISURF”, In Computer Aided Geometric Design, edited by
Earnt 1], Robert E. and Riesenfeld, Richard F., Academic Press,

N.+-Yrk, 1874, pp. 95-126.

Blinn76. Bliin, James F. "Texture and Reflections in Computer Gen-
erated Images”, Communications of the ACM, Vol. 19, No 10,
Oclober 1978, pp.542-547.

Blinn78. Blinn, James F. "Simulation of Wrinkled Surfaces”, SIG-
GRAPH '78 Proceedings, published as Computer Graphics, Vol.
12, No 3, August 1978, pp.286-292.

de Boor78. de Boor, Carl. A Practical Guide to Splines, Springer-
Verlag, Applied Mathematical Sciences, Vol. 27, 1878.

CarpenterB0. Carpenter, Loren C. Vol Libre, computer animated film,
first showing at SIGGRAPH '80.

Catmull74. Catmull, Edwin E. Computer Display of Curved Surfuces,
Ph.D. thesis, University of Utah, Salt Laeke City, Utah, 1974.
Clark79. Clark, James H. "A Fast Algorithm for Rendering
Parametric Surfaces”, SIGGRAPH '79 Proceedings (Abstract

only), to appear in Communications of the ACM.

CohenB0. Cohen, Elaine; Lyche, Tom; and Riesenfcld, Richard F.
"Discrete B-splines and Subdivision Techniques in Computer
Aided-Geometric Design and Computer Graphics”, Computer
Graphics and Image Processing, Vol. 14, No. 2, October 1980, pp.
87-111,

CoonsB7. Coons, Steven A. "Surfaces for Computer-Aided Design of
Space Forms”, Tech. Report No. MAC-TR-41, Project MAC, M.LT,,
Cambridge, Massachusetts, June 1867.

Coons74. Coons, Steven A, "Surface Patches and B-spline Curves".
In Computer Aided Geometric Design, edited by Barnhill,
Robert E. and Riesenfeld, Richard F., Academic Press, New
York, 1974, pp. 1-18.

Curry47. Curry, H. B. and Schoenberg, 1. J. "On Spline Distributions
and their Limits: the Polya Distribution Functions, Abstract
380t", Bulletin of the American Math. Society, Vol. 53, 1947, p.
1114.

Curry66. Curry, H. B. and Schoenberg, [. J. "On Polya Frequency
Functions [V: The Fundamental Spline Functions and their Lim-
its", Journal d'Analyse Mathematique, Vol. 17, 1866, pp. 71-107.

England?8. England, J. N. "A System for [nteractive Modeling of Phy-
sical Curved Surface Objects”, SIGGRAPH '78 Proceedings, pub-
lished as Computer Graphics, Vol. 12, No 3, August 1978, pp.
336-340.

Faux79. Faux, [vor D. and Pratt, Michael J. Computational Geometry
for Design and Manufacture, ELlis Horwood Ltd., 1979.

FoleyB2. Foley, James D. and Van Dam, Andries Fundamentiuls of
Interactive Computer Graphics, Addison-Wesley, 1982.

lorrest72. Forrest, A. Robin. "On Coons and Other Methods for the
Representation of Curved Surfaces”, Computer Graphics and
Image Processing, Vol. 1, No. 4, December 1972, pp. 341-359.

FournierB2. Fournior, Alain, Fussell, Donald S. and Carpenter. Loven
"Computer Rendering of Stochastic Models", to appear in Com-
munications of th2 ACM, June 1982.

Graphics Interface '82

Gordon74a. Gordon, William and Riesenfeld, Richard F. "B-spline
Curves and Surfaces”, In Computer Aided Geometric Design,
edited by Barnhill, Robert E. and Riesenfeld, Richard F.,
Academic Press, New York, 1974, pp. 95-128.

Gordon74b. Gordon, Wfiam J. and Riesenfeld, Richard F.
"Bernstein-Beézier Methods for the Computer Aided Design of
Free-Form Curves and Surfaces”, Journal of the ACM, Vol. 21,
No. 2, April 1974, pp.2983-310.

Knuth89. Knuth, Donald E. The Art of Computer Programming,
Volume 2, "Seminumerical Algorithms", Addison-Wesley, 1969.

lLane80a. Lane,Jefflrey M. and Ricsenfeld, Richard, F. "A Theoretical
Development for the Computer Generation of Piecewise Polyno-
mial Surfaces”, IEEE Trensactions on Pattern Analysis and
Machine Inteligence, Vol. PAMI-2, No. 1, January 1980, pp 35-48,

LaneB0b. Lane, Jefirey M.; Carpenter, Loren C.; Whitted, J. Turner;
and Blinn, James F. “Scan Line Methods for Displaying
Parametrically Defined Surfaces”, Communications of the ACM,
Vol. 23, No. 1, January 1980, pPp. 23-34.

Newman?79. Newman, William M. and Sproull, Robert F. Principles of
Interactive Computer Graphics, McGraw-Hill, 1979, second edi-
tion.

RalstonB5. Ralston, A. A First Course in Numerical Analysis,
McGraw-Hill, 1985.

Riesenfeld73. Riesenfeld, Richard F. Applications of B-spline
Approximation to Geometric Problems of Computer-Aided
Design, Ph.D. Thesis, Syracuse University, Syracuse, N.Y., May
1973. Also Tech. Report No. UTEC-CSc-73-126, Department of
Computer Science, University of Utah.

Riesenfeld81a. Riesenfeld, Richard F. “"Homogeneous Coordinates
and Projective Planes in Computer Graphics”, IEEE Computer
Graphics and Applications, Vol. 1, No 1, January 1981, pp. 50-55.

Riesenfeld81b. Riesenfeld, Richard F.; Cohen, Tlaine; Fish, Russell D.;
Thomas, Spencer W; Cobb, Tlizabeth S.: Barsky, Brian A.;
Schweitzer, Dino L.; and Lane, JefIrey M. "Using the Oslo Algo-
rithm as e Basis for CAD/CAM Geometric Modelling”, In
Proceedings of the Second Annual NCGA National Conference,
National Computer Graphics Association, Inc., Baltimore, 14-18
June 1981, to appear.

Schoenberg48. Schoenberg, Isaac I. "Contributions to the Problem
of Approximating Equidistant Data by Analytic Functions",
Quarterly Applied Math., Vol. 4, No. 1, 1948, pp. 45-99 and 112-
141.

Whitted80. Whitted, J. Turner, "An Improved [lumination Model for
Shaded Display”, Communications of the ACM, Vol. 23, No 8,
June 1980, pp. 343-349.

Williams78. Williams, Lance "Casting Curved Shadows ¢. Curv-d Sur-
laces"”, SIGGRAPH '78 Proceedings, published as Computer
Graphics, Vol. 12, No 3, August 1978, pp. 270-274.

77
N

\ N/

Figure 5.3 Object made of 4 B-spline surfaces
with their control vertices.

A

Figure 5.1 Glass made of 12 Rezier surfaces.

Figure 5.2 Control vertices for the glass.

Graphics Interface ‘82

