
107

SSAlAIDS: A GRAPHIC, INTERACTIVE SYSTEM FOR STRUCTURED SYSTEMS ANALYSIS

Richard D. Hoffman, Linda N. Harris and Brett W. Bickham
Exxon Corporation /

Florham Park, New Jersey

ABSTRACT

Computer application requirements collection and analysis occurs at Exxon through a methodology called
Structured Systems Analysis (SSA), which emphasizes the modeling of systems via a series of diagrams. In this
paper, we discuss a tool, SSA/AIDS, which provides computer-based support for SSA via an electronic drawing
board . We begin by describing the applications development life-cycle in general, and briefly describe Exxon's
history with methodologies and tools which support this life-cycle . We concentrate on a specific task in the
cycle, requirements collection, and present SSA as a methodology for accomplishing this task. We show how
SSA is supported by SSA/AIDS, and conclude with a discussion of our plans to extend SSA/AIDS so that it
supports the entire applications development life-cycle .

KEYWORDS: requirements collection, software engineering environments, interactive graphic systems,
computer-assisted develooment. •

Introduction
In the past decade, the growth of software and

graphics systems devoted to the automation of
industrial design processes has been enormous.
The Computer Assisted Design (CAD) station has
proven to be a great productivity aid, and has
become so ubiquitous that we are usually surprised
when we encounter a manufacturer without one.
Yet there is no commercially available package
which provides similar aid to developers of
applications software. Computer professionals
have spent many hundreds of work-years
automating the work of others, while only lately
turning our attentions to the problem of helping
themselves.

The amount of interest shown in computer­
assisted software development systems has recently
begun to increase, as industry has begun to
appreciate the productivity gains which can be
attained through the use of such systems. Th is
paper describes some of the work we have been
doing at Exxon to increase the productivity of our
own applications developers and, in particular
discusses a graphic, interactive design tool,
SSA/AIDS, which automates part of the work of

systems modeling and requirements analysis. For a
good survey of related work being done by others,
see Hunke [2] .

The applications development life-cycle
The applications development life-cycle in use at

Exxon consists of six phases through which all
software application development projects pass.
These phases include :

• Scoping (high -level problem definition)

• Exploration (detailed problem defini t ion)

• Specification

• Design

• Development

• Startup

Graphic. Interface '82

Starting in the early seventies, Exxon began to
develop a comprehensive set of methodologies to
support these phases and to improve the
productivity of applications developers. These
methodologies emphasized the use of diagrams
and tables wherever possible to enhance
communications between project analysts and their
clients.

The first of these methodologies was Program
Structure Technology (PST), in which detailed
design is accomplished through a series of
hierarchical diagrams such as the one in figure 1.
Based on a technique developed by Jackson [3]. PST
improved productivity by standardizing the
program design process, shortening the time
required to code and test applications, and
guaranteeing thorough documentation .

FIGURE 1:
The Program Structure Diagram,

a hierarchical (tree) diagram
employed by PST.

When, in the late seventies, we began to
develop tools to support the methodologies, we
started with PST. The result (based upon a
prototype developed at an Exxon affiliate) was
PST/AIDS, a tool to assist the user with the PST
methodology. PST/AIDS permitted the analyst to
draw his diagrams on a Tektronix 4014 storage
tube, and offered some syntax checking of the
diagrams, and a primitive but useful code
generation facility. It provided a fixed pattern of
potential boxes which could be made visible and
connected to produce trees (hierarchical diagrams).
Its command set included commands to delete,
copy and move subtrees, which significantly
simplified diagram creation and editing. Most

10fl

commands were implemented by cross-hair
movement and one or two keystrokes.

For more information about PST and PST/AIDS,
see Menard [4) . Both PST and PST/AIDS support
only the Design and Development phases of the life
-cycle, as do most commercial productivity aids. To
improve productivity earlier in the life-cycle, we
developed a methodology to model systems, and
thus assist in the scoping and exploration phases of
the life-cycle. The remainder of this paper deals
with that methodology, and the tool which
supports it.

Structured Systems Analysis
When analyzing a system or business in the

scoping and exploration phases of an application, it
is useful to start by developing a "system model" .
This is a description of a system which is

• thorough,

• clear,

• concise,

• unambiguous,

and from which one may abstract requirements.
The problem of constructing models which satisfy
these criteria continues to plague analysts and
applications developers. Most methodologies
which currently exist for modeling systems either
fail to satisfy one or more of the four criteria or lack
the generality to model a broad class of systems.

At Exxon, we have developed a systems
modeling methodology, Structured Systems
Analysis (SSA), based on the work of Jackson [3].
Yourdon [1]. and others. The methodology
employs a set of four annotated diagrams and
some supplementary information (consiting of
tabular and textual material) to describe a system
in terms of :

• the decomposition of the system into functions
which create, transform or destroy data;

• the flow of information and material between
these functions;

• the decomposition of functions into activit ies;
and

• the decomposition of data aggregates into
elements.

Graphics Interface '82

The diagrams are created and modified as a
result of a series of interviews between the analyst
and the client, and through the study of supporting
data. Three of the diagrams have the same simple
tree structure of the PST diagrams (see figure 2) .
The information flow diagram (listed second
above) has a more complicated structure, consisting
of a network of symbols which may be
interconnected in many ways (see figure 3) .

FIGURE 2:
An example of the Global Model,

one of three tree diagrams
employed by SSA.

VE~ oar DO~\:,
warehouse

FIGURE 3:
Part of an Information Flow

Diagram.

Wh en completed, the SSA diagrams provide a
system model which satisfies the necessary criteria:
the model is thorough, clear, concise and
unambiguous. The methodology is flexible enough
to model a very large class of systems, and can do so
at varying levels of detail, as required by the client
and the task at hand. For more information on SSA
and its sources, see Mendes [5] .

109

The need for automation
SSA has achieved a fairly wide usage within

Exxon-- most of our affiliates have adopted it as
their standard for systems analysis. We have had
considerable success using SSA to model and
analyze systems, but we have also realized that the
technique could be made even more productive.

The SSA diagrams posess simple structures, but
can sometimes be quite complicated and thus prove
difficult to draw. A diagram modeling a section of
a large, complex system may require many pages.
Furthermore, since the SSA process is usually
iterative, the analyst may find it necessary to make
several revisions of each diagram before the model
is complete.

The diagrams, which are the main vehicle for
communications between the analyst and his client,
must be clear and comprehensible, so revisions
usually entail a complete redrawing of the
diagram. By the time a model is complete, each
diagram may have been redrawn by the analyst
many times, and probably at least once (for
presentation purposes) by a graphic artist.

And as w ith any system model, one has the
problem of storing and maintaining large amounts
of data in some easily retrievable form . All these
things force analysts to concern themselves w ith
matters other than the content of their models,
and are potential barriers to productivity.

One finds analogous problems in the tasks of
creating and editing large amounts of code or text.
This suggests a solution in the form of a computer­
based diagram editor.

Design directions
In SSA/AIDS, we intended to provide a tool

which would assist the analyst in all phases of the
SSA process. We also wished to encourage the use
of SSA by making it easier and more profitable to
apply than alternative analysis techniques. In this
sense, we intended SSA/AIDS to be a "lure" for SSA.
And finally, we wanted to ensure that SSA/AIDS
would be compatib le with future tools.

We arrived at three major requirements which
drove the design of SSA/AIDS. They were :

• Completeness -- SSA/AIDS must facilitate the on­
line computer representation of all SSA
diagrams and supporting material.
Furthermore, the representation must posess
high graphic quality, and must be automatically
reproducible on paper. Anything less than this
forces the user to make a choice between doing
the job partially on the computer or entirely by
hand, and this is a choice that will sometimes go
against the computer, no matter how
sophisticated the tool.

Graphics Interface '82

• Convenience -- SSA/AIDS must be user-friendly,
self-explanatory and error resistant, as well as
easier and faster than the manual process.
These requirements should guide the design of
all interactive tools, but take on special
importance in a tool which will mostly be
employed by infrequent or occasional users of
the computer. We designed SSA/AIDS so that a
user of SSA could log on to one of several host
operating systems, invoke SSA/AIDS, and
proceed immediately without recourse to an
instruction manual, and without fear of
destroying his own work or the work of others.

• Compatibility -- SSA/AIDS will serve as the
foundation for future tools. We wished to
design its editors and underlying data structures
so that it could easily be extended to handle
new types of diagrams and information. This
forced us to keep the tool as general as possible,
within the context of the applications
development life-cycle. A secondary concern
here was the minimization of confusion and
frustration to analysts who use both PST/AIDS
and SSA/AIDS.

We will now show how these requirements
were met by the current implementation of the
tool.

High-level Operation
SSA/AIDS runs in several different IBM

mainframe environments (includ ing TSO), and uses
the Tektronix 4014 for graphic input and display. It
operates in four modes, highly differentiated from
each other to minimize confusion . These modes
consist of :

• General (commands to delete, copy, rename and
analyze diagrams);

• Tree Edit (commands to construct and edit the
diagrams pictured in figure 2);

• Network Edit (commands to construct and edit
the diagrams pictured in figure 3); and

• Help (a series of tutorial panels on each
command and matters in general).

The tree editor has the same screen appearance
and command structure as the diagram editor in
PST/AIDS. Although the network editor required a
fairly different set of commands, they were kept
similar wherever possible, once again to minimize
confusion for previous PST/AIDS users.

110

In both edit modes, the screen is divided into
two areas : a drawing board, where the diagrams
are constructed and edited, and a system response
window, where warning and error messages are
displayed, and where the user is sometimes
prompted for information which will not appear in
the diagrams. These two areas are separated by a
banner that identifies the diagram being edited,
and its type.

Figures 4 and 5 depict these two screens. Notice
that the banners are very different, so that the user
can identify his environment immediately. The
general and help modes are characterized by
interactive dialogue, and are differentiated
through their prompts.

(Drawing Board)

(Banner)

_ - - - - network editor ---~---- -- . diagram name

(System Response Area)

FIGURE4:
Network editor screen.

In each of the four modes, every user action
leads to some kind of visible system response, so
that the user always knows what mode he is in, and
whether the system is responding . Table 1 offers a
summary of the four modes.

A discussion of the detailed workings of
SSA/AIDS is not within the scope of a short paper.
However, in the next few paragraphs we highlight
some of the more interesting of these details with a
few examples from the design of the network
editor.

Graphics Interface '82

(System Response Area)

. (Banner) diagram name
tree editor

(Drawing Board)

FIGURE 5:
Tree editor screen.

d Mo e Purpose Mode cues

Genera l Management of Prompt for
d iagrams (create, command, no
copy, delete, etc.) crosshairs

Tree Edit Construction and crossha i rs,
editing of tree banner at top
diagrams

Network Construction and crosshairs,
Edit editing of network banner at

diagrams bottom

Help Obtaining infor- Prompt for
mation about the he lp, no
system and its crosshairs
commands

11 1

Genera

The network editor
The most important (and inte ·esting, from a

computer-graphics point of view) sub-task in the
design of SSA/AIDS was the design of the network
editor. Although it will have other purposes in the
future, the network editor currently exists only to
facilitate the information flow diagram of SSA.
Since this diagram is often the key to a successful
SSA model, we took extra care to ensure that our
three requirements were satisfied in the network
editor.

To undersand our approach, one must first
know a little about the structure of the information
flow diagram (IFD) . Looking at figure 3 again, one
sees that there are several types of nodes in an IFD
and that lines of any orientation may join these
nodes. Nodes may also be joined by arcs.
Arrowheads are used to indicate the direction of
flow. Annotations are placed inside the nodes and
alongside the connecting joins. Join annotations
may be placed anywhere, as long as the association
between the join and the annotation is visually
clear.

SSA prescribes rules by which IFDs are to be
constructed. For example, certain nodes must be
uniquely named, and there must be no
unconnected nodes. On the other hand, SSA offe rs
only guidelines-- no firm rules-- to limit the amount

Entry to other modes

Tree Edit Net. Edit Help

E command, E command, H command
tree qualifier network

qualifier

Q (quit) or X No direct H command
(ex it) com- transfer
mand

Q (quit) or X No direct H command
(exit) com- t ransfer
mand

null line returns user to mode from which
help mode was entered

TABLE 1:
Summary o f SSAIAIDS command modes

Graphics Interface '82

of data on a single IFD. Consequently, they can get
very crowded. Nevertheless, diagram appearance is
very important, since a diagram which is too
cluttered will probably not be easily understood.

Here are a few of the design issues which faced
us in the design of the network editor :

• How can the editor determine the optimum
location for a join annotation?

• How can the editor ensure a "good-looking"
diagram?

• How can the editor ensure a "correct" diagram?

The answer to each of these questions was "It
can't ." There was no scheme for the automatic
placement of text for which we could not
immed iately conceive of several counter-examples
in which the automatic placement was decidedly
wrong. Similarly, there was no way to
automatically reform at the diagrams in a way that
would always please the user.

On the other hand, it would have been possible
to force the analyst to conform to the rules of SSA,
but not desirable. In the early stages of an SSA
project, most analysts want to experiment with
their diagrams, and often violate SSA rules while
creating their model. These analysts eventually
correct their diagrams, but would find a tool which
deprived them of the freeJom to occasionally
violate a rule very frustrating.

In answer to these and other questions, we
adopted the principle of "user control" . We
resolved to give the user as much control over his
own work as was possible, and to make it easy for
him to do anything that he might reasonably wish
to do within the context of SSA. If he then desired
to maintain diagrams which were incorrect or
unclear, that was his responsibility. In this way,
SSA/AIDS facilitates the different ways in which
different analysts have come to use SSA. The next
few paragraphs provide some examples of this
principle as applied to the three questions raised
above.

Annotation placement
A user requests a join by typing" J" over the two

nodes which he wishes to connect. SSA/AIDS then
displays a prompt in the system response area,
requesting that the user designate the starting
location of the annotating text, and the text itself.
To ensure that the user sees the prompt, a warning
beep sounds as the prompt is issued . To guard
against the possibility of the user still not seeing
the prompt, SSA/AIDS tests the next location which
the user designates for reasonable proximity to the

11 2

JOin . If the location is too far from the join,
SSA/AIDS assumes that the user has forgotten that
he needs to specify the location, and reminds him
in the system response area. If the user actually
wants to leave the join unannotated, he enters a
null line after specifying the location .

Should it later transpire that the user has placed
the annotation in a poor position (perhaps because
it is too near the annotations of succeeding joins),
he may use a command which moves the text on
the diagram without requiring it to be re-entered .
Figures Ga and Gb show an example of this.

FIGURE 6a:
A typical join. The text "parts " is

in the wrong place.

r::\
~

FIGURE Gb :
The join from figure 6a, three

keystrokes later.

Graphics Interface '82

Diagram a~pearance
SSA/AIDSoes not permit nodes to overlap.

There are no other rules to affect the appearance
of an IFD. Nodes may lie as close to each other as
the user desires, and joins may cross over nodes and
other joins. A join annotation may be placed
almost anywhere, even if it obscures other text.
However. the "Move" command allows the user to
eliminate any of these overlaps that are not
actually necessary. In practice, most users' first
approach to a diagram is a rough draft in which
they discover new entities, which they record
anywhere in the diagram. Then, as the relations
between entities becomes clearer, the move
command, which preserves joins, proves a very
convenient way to clean up the diagram.

Figures 7a and 7b show an example of the move
command. Annotating text is automatically
positioned (via an algorithm which keeps the
relative locations of text and join constant), but can
be easily re-positioned by the user. The move
command has proved to be the most powerful
command in the SSA/AIDS repertoire since, in a few
keystrokes, it accomplishes a task which previously
required the redrawing of an entire diagram. No
user of the tool so far has felt the need for any
other kind of reformatting device.

VEN­
DOR

warehouse

FIGURE 7a:
A cluttered portion of an

Information Flow Diagram.

Rule enforcement
SSA/AIDS detects a number of SSA rules

violations. When they occur, the user receives a
warning message in the system response area, but
is never forced to comply. Thus the user is free to
break the rules if he sees fit. The warning,
however, prevents inadvertent violations, and also
helps instruct new users of SSA.

113

FIGURE 7b:
The diagram from figure 7a,

two keystrokes later.

Future enhancements
SSA/AIDS has already begun to help analysts

with the SSA process. Users have indicated that
SSA/AIDS has not only significantly speeded up
their work, but that it has also helped them to
produce work of better quality, since it frees them
from worrying about the appearance of their
diagrams, and allows them to concentrate on the
content instead .

We are now using SSA/AIDS to analyze the SSA
process and the current version of SSA/AIDS itself in
preparation for a major enhancement of the tool.
This enhancement will include :

• Extensions to the existing functionality. Most
SSA/AIDS features currently only deal with one
diagram at a time; we will add features to check
diagrams against each other for consistency and
correctness, and to allow more information
exchange between diagrams. We will also add
features to analyze the diagrams for potential
trouble-spots in the system being modeled.

• New functionality. SSA/AIDS does not yet
support the tabular and textual elements of
SSA. There are also elements of other
methodologies which will soon be included, so
that the tool will cover other phases of the
applications development life-cycle besides
scoping and exploration .

• Better environment. We are experimenting
with prototypes of SSA/AIDS on termi nals other
than the 4014, such as IBM's 3279 color graph ic
terminal. We are also looking into the
possibility of running SSA/AIDS on a dedicated
micro-computer.

Graphics Interface '82

Our ultimate goal is to provide a set of tools which
support the entire applications development life­
cycle, and to put these tools within easy reach of all
our analysts. SSA/AIDS, which is already improving
the productivity of our analysts, even when applied
to itself, is a major step toward that goal.

BIBLIOGRAPHY

[1] . Constantine, L. and E. Yourdon, Structured
Design, (Englewood Cliffs, NJ : Prentice-Hall,
1979).

[2] . Hunke, H., Software Engineering
Environments, (Amsterdam: North-Holland,
1980).

114

[3] . Jackson, M ., Principles of Program Design,
(London : Academic Press, 1975).

[4] . Menard, J., "Exxon's Experience with the
Michael Jackson Design Method," Database,
Winter-Spring 1980, pp. 88-92 (reprinted
from Proceedings of the Application
Development Symposium, Monterey,
California, October 1979, pp. 143-8).

[5]. Mendes, K., "Structured Systems Analysis : A
Technique to Define Business
Requirements," Sloan Management Review,
Summer 1980, volume 21, number 4, pp. 51-
63.

Graphics Interface '82

