
115 

THE GRAPHICS SOFTWARE FAMILY 

Mark G . Rawlin s 

Marke ting Manage r 
ISSCO Graphics 
San Diego, CA 

ABSTRACT 

Graphics i s widely accepted as a valuable tool for transforming data into information. Comp uter graphics i s becoming recognized as the perfect medium for producing chart s quickly, economica lly and accurate ly without sacrificing aes the t ic quality . Today's DP manager is now perplexed, for he is now faced with new responsibilities: 

1. He mus t introduce computer graphics in his organization. 
2 . He mu s t be concerned with mac hine portabil ity and device 

interfacing . 

3 . He mu st evaluate the capabilities and s upport of availabl e 
packages. 

4 . He mu st be aware of who the end-u sers will b e a nd what 
sorts of application s they 'll have . 

5. He must understand how graphics software can be tied 
to existin g ap plication programs or how data files can b e 
acc essed . 

There is no one package that can s atisfy all the needs that will arise. A family of graphics software p r oducts, how ever, can address all these concerns . 

Fami! y members h ave common li neage but un ique personalit ies . A family of software packages develop ed by a singl e source has buil t- in consistency at the sys tem end and versatility at the u ser end . The DP manag e r's problems are s olved and the needs of the end-users are easily s atisfied . 

KEYWORDS: graphics software, applica tion programs , portability, 
produ ctivity 

Graphics Interface '82 



Estimates have been made that software will 
comprise 13% of the Gross National Product of 
the United States by the year 1990. Corpora
tions are turning to software as a backbone to 
their productivity tools. In the last decade, 
computer costs have dropped so significantly 
that anyone can now afford a computer. The 
only question surrounding the ultimate use of 
computers is "how to make the software availa
ble in an environment where it will be used". 

Application programs have been around since 
the days of the first vacuum tube computer. 
Getting these programs to be used by people 
other than the programmer has created the 
environment where the " medicine is worse than 
the disease". All of the computing power in the 
world will not make a manager use software tools 
if the "grief factor" is too high. The applica
tion software must be a logical extension of the 
user's men tal process. "If I can use the com
puter as easily as I use my pencil, then I will 
use your software", said one middle manager to 
the director of data processing of a major east 
coast bank. Another often h eard statement is, 
"When J ask for more information all I get is 
more printout. I don't want more data - I want 
more information". 

lCP, a major directory listin g of commercially 
available software packages presents but a 
snapshot of application software in about 400 
pages. This listing does not include software 
written in-house. The total number of applica
tion software systems is staggering. The con
cern now arises in how an organization makes 
these (or any) software tools more usabl-:!. How 
can they transform the data from the computer 
into information for the user. This is a very 
broad problem that has no single solution. 
Among the concerns when analyzing this problem 
are: education and training of the user, user 
friendliness of the software, up/down ratio time 
of the computer, ease of access to the data, 
etc, etc. A proper match needs to be made 
between the sophistication of the user and ap
plication. Does the software need to be written 
for the novice or the expert? How" user 
friendly" does the program need to be? Each 
piece of software n eeds to b e viewed not only 
by itself, but also in its relationship to other 
software within an organization. The programs 
must be evaluated on their individual merit: who 
uses them, how they are used. supporting re
sources for the software, and what other 
ancillary software is necessary to make this 
programming environment truly effective as a 
family of productivity tools. 

The statement which was made before, "1 don't 
want more data-l want more information", 

116 

r e flects a concern which can affect any software, 
whether it is commercially available or written 
in-house. Programs gather or create data, 
analyze it and then present it to the user. This 
path of information is actually many paths. 
Every application might have its own method of 
taking commands from the user, processing the 
data, and offering it for presentation. These 
paths might be further complicated when the 
environment runs the spectrum from highly 
sophisticated to ultra simple. It is in the area 
of "presentation " that graphics has its greatest 
strength . Imagine, if you will, a data base 
retrieval system in which information is being 
correlated in order to show trends. Few will 
deny that the best way to present this trend 
information would be graphically. The end user 
would certainly find more value and productivity 
in his application program if graphics would also 
be produced. Of comparable importance now is 
the ease of production . 

The computing environment 10 years ago made 
graphics a wish, not a reality. Happily, the 
physical problem of getting graphics out of the 
computer no longer exists. That excuse is 
fortunately gone forever. Technology exists 
today to solve virtually any hardware problem. 
A new concern now arises: how do we get 
graphics out of the software- -sophisticated 
graphics for the expert and easy-to-use gra
phics for the novice? 

People swear that properly getting graphics and 
data together for presentation is not that easy . 
T h e data processing department has to be con
cerned about consistency of graphic quality 
across applications, maintenance, flexibility, 
hardware considerations. training of both sup
port people and users, cost, ability to run 
interactively or in batch, and will the software 
require operating system modifications. This 
goes further than just a programming concern. 
Once the software is written, will it be used? 
There is an obvious obligation to the organiza
tion to supply the most productive tools 
possible. 

Just as General Dynamics supplies the fuselage 
for the DC-IO which McDonnell Douglas builds, 
the data processing dep ar tment has at its 
disposal software house5 (independent contrac 
tors if you will) which specialize in doin g just 
graphics . The above-mentioned problems can 
now become more manageable . 

In looking just at the hardware considerations, 
some graphic software does not have the proper 
device independent versatili t y . In looking at 

Graphic. Interface '82 



the co~-; t ractor, it may b e that op erating system 
modifications need to be performed. In looking 
at fle x ibility, it mig ht b e that the graphic 
software can only run in batch. In looking at 
ease-of-use, a programmer might always be 
required. 

What's necessary is a family of graphic software 
which has the same graphic consistency among 
its products: the same maintenance environ
ment, a high value/cost ratio, the ability to 
operate all graphic devices on any computer 
type, and an acceptable level of sophistication 
and quality. The graphics supplier should also 
help with maintenance, installation and system 
support, as well as training. 

Onc e the support questions h ave been answered, 
the data processing department has taken care 
of only the tip of the iceberg. What about 
the needs of the user? Will they want bar 
charts, line charts or pie charts; 3-D or 
mapping; contouring or typesetting ? What 
about sophistication, ease of input, type of 
output? 

In breaking down the application software mar
ket into categories where source is supplied 
and those in which there is no source, the 
industry has created a requirement for a 
graphics option to exid in both programming 
form and in stand-alone turnkey form. For the 
software packages where source is available, it 
is apropos to imbed references or calls to 
graphic subroutines. Applications which do not 
have source need to have an easy mechanism 
to pass data directly to a graphic package. 

Analyzing the user community, potential users 
of graphics s o ftwarc fall into two categories: 
sophisticated programmers and non - computer 
professionals requiring graphics tools. Pro
grammers are adept at manipulating graphic 
subroutines to achieve results. Novice compu
ter users are at the mercy of easy-to-use 
turnkey systems to help them in their work. 

Both of these graphic environments must offer 
consistency in quality, flexibility, and device 
support . The end-user is not concerned with 
the internals of the package he is using. His 
concern is that the plot drawn by Application 
A is consistent with the plot drawn by 
Application B. The user also wants the same 
high quality whether running interactively or 
in batch. All these expectations (and more) 
must be met, easily. 

It is now obvious that the supplier of graphic 

117 

software Illust offer more than one product. H 
the application package has source, a program
mer could imbed routines so charts automatically 
result at the report-generation stage . If 
there is no source or if the end-user lacks 
programming expertise, then the data must be 
accessible by the graphic stand-alone product. 

In putting the graphics into the program, we 
accomplish many things . The graphics can be 
optimized around the application or the data. 
By having access to a graphic subroutine 
library, just the graphic entities which are 
necessary will be brought into the application 
program. For example, if the user has no 
need for generating pie charts, then reference 
to the programs that produce pies can be 
omitted. This obviously cuts down on memory 
usage and thus minimize s resource impact. 

By imbedding graphic subroutine commands in 
an application package, the command structure 
to which the user has become familiar can be 
maintained. It has always been known that a 
stumbling block in the use of software tools is 
the "fear of use " . If manag ement has been 
trained to use existing tools, the last thing 
needed is to make the tools more difficult 
or convoluted. Enhancing a system by 
incorporating graphics is not meant to scare or 
frighten users away. It is very important to 
maintain command friendliness and structure 
the g raphic commands to be very similar to 
the trusted syntax. It is also necessary to 
maintain the confidence in proven software. 
Old procedures are always used with more 
confidence and trust than new procedures. 
In general, "i t is never easy enough to use 
a program which increases productivity". 

T h e second environment of directly accessing 
data by a g raphics stand~alone package can 
create many more concerns, especially if the 
proper graphics software is not chosen. 
Remembering th a t this ar ea is reserved for 
non-computer end-users and/or application 
software which does not have source available, 
a linkage must be created to couple data to the 
graphics product. This linkage can be via 
the data gen erated by the original package. 

Normally, application d ata is ei ther generated i n 
a r ectangular bin ary fil e (work file) or in 
a character-oriented file which can be printed 
on the system line printe r. As data gen e r a
tion occurs naturally in both forms , the user 
should be able to t ake advant age of each 
t echnique depending u pon the application. T h e 
graphic portion should b e able to automatic alJy 

Graphic. Interface '82 



latch onlo lhe machine readable rile or lhe 
print file. Once the data has been created, 
the graphic program s hould u se simple, 
English-like commands to read the data, regard
less of format, extract some data, if necessary, 
and plot it. This two-ste p process maintains 
the integrity of the original package and 
maintains the user ' s confidence in his software 
tool . The standard output t echnique can be 
made transparent to the user and thus 
non-threatening . The user also gets graphics 
when desired . A tall order, b u t quite fillable . 

The variety of application, the diversity of 
end-users and t h e DP manager's requ irement 
for some sort of consiste ncy justifies the need 
for a family of graphics packages. As graphic 
output is a necessary tool for adding value to 
data, data access is also a crucial problem 
about which the DP manager must be concerned . 
By offering users the ultimate in productivity 
tools, a graphics software family is the only 
technique available to keep both the data 
processing department and its end-users 
happy. 

118 

Graphics Interface '82 


