LINEAR QUAD- AND OCT-TREES:

THEIR USE IN GENERATING

SIMPLE ALGORITHMS FOR IMAGE PROCESSING

Irene Gargantini* and Zale Tabakman
Department of Computer Science
The University of Western Ontario
LONDON, CANADA N6A 5B9

ABSTRACT

A linear quad-tree (oct-tree) is an efficient d

ata structure used to represent all relevant

properties of a quad-tree (oct-tree). It basically consists of a sorted array of quaternary (octal)

integers, where each integer corresponds to a blac
and each digit corresponds to a quadrant subdivision.
efficient structures from the point of view of space re

K node in the quad-tree (oct-tree) representation,

Linear quad-trees (oct-trees) are extremely
quirements, saving from 75% (80%) up to 98%

(99%) of the memory locations required by the regular quad-trees (oct-trees). In this paper we briefly
mention all the algorithms so-far implemented at Western using linear quad-trees (oct-trees), we dis-
play their worst-case complexities and provide the reader with references to the papers in which a
detailed description of the algorithms and the corresponding running-time estimates are given.

KEYWORDS: quadtrees, octtrees, linear quadtrees, linear octtrees, data structures, image processing,

computer graphics

1. Introduction

The new data structure called 'lincar quad -
tree', recently developed at Western [2,,3,4.,5,
12], can be successfully used to generate simple
and fast algorithms for image processing. This
paper contains:

(i) a short introduction to linear quad-trees,
their properties and space requirements;

(ii) a listing of the algorithms designed to
perform operations on regions represented
by linear quad-trees;

(iii) the extension of linear quad-trees to the
three-dimensional case.

*

This work was partially supported by the
Canadian Government through the Natural
Sciences and Engineering Research Council,
grant A7136.

When compared with regular quad-trees [1,06,7,10,
11] a 'linear quad-tree' presents the following
advantages:

(a) the information contained in the six fields
of a quad-tree node is packed into one
single field;

(b) only black nodes need to be stored;

(c) the encoding used for each node incorporates
adjacency relations in the four principal
directions as well as the path from the root
to the node in the corresponding (unbuilt)
quad-tree;

(d) operations like encoding, decoding, contour
finding, rotation, superposition and detec-
tion of connectivity have lower worst-casc
time complexities than the corresponding
algorithms using regular quadtrees.

Graphics Interface '82

2. Representation of a Simply Connected Region
by Means of a Linear Quadtree

A simply connected region is usually given
as a set of unit-picture elements (called
'pixels') in a 2M'x 2N _ array arrangement, where
n denotes the resolution parameter or degree of
refinement of the screen. Fig. 1 gives an in-
stance of a region which is simply connected
while Fig. 2 gives an cxample of a region which

.

Fig. 1. A simply connected region.

A quad-tree is a data structure used to
represent some of the properties of a given
region in terms of 'large' groups of pixels in-
stead than in terms of each single pixel as in
the array form. A 'linear quad-tree' is a
structure aiming at representing the same prop-
erties of a quad-tree in a more compact form.
This idea can be at best illustrated by an
example. Consider the region shown in Fig. 3
with n=3 and the following encoding scheme:

0 for the North-West-quadrant, 1 for the North-
East-quadrant, 2 for the South-West-quadrant
and 3 for the South-East-quadrant. Use now a
weighted quarternary code (with digits 0,1,2,3
to the base 4) to describe the successive quad-
rant subdivisions, starting from the largest.
In the example of Fig. 3, the region is de-
scribed by the following (sorted) sequence:

003, 021, 023, 030, 031, 032, 033, 122, 210,
211, 212, 213, 300, 301, 302, 303, 310, 311,
312, 313, 320, 321, 322, 323, 330, 331, 332,
333,

Condensation [2,3,12] is applied by intro-
ducing a special 'marker X', which must be en-
coded with an integer >3. We refer to this
'mixed encoding' as the 'mixed-quarternary'

s,

NN
NN

AN\

%
.

Fig. 2. The region shown is NOT simply connected

003

021(030|03I

023|032|033|122

210|211 3001301 |310| 311

212213 1302|303(312 |313

320|321 330,331

322|323|332|333

Fig. 3. Labelling pixels in the quarternary
codes.

representation. The sequence becomes
033, 021, 023, 03X, 21X, 3XX.

The reader familiar with regular quad-trees
can see that only black nodes have been stored
and that the encoding of cach node (from left to
right) completely describes the path from the
root to the node. Linear quad-trees have been
shown to require, in the worst case, at most 25%
of the memory locations needed by regular quad-
trees and only 2% in the most favorable cases

[3].

Graphics Interface ‘82

3. The Algorithms

Before deseribing bricefly the algorithms,
let us introduce some notation. Let n, as indi-
cated before, represent the resolution parameter
of the screen. Let I and J denote the row and
column indices (respectively) of a pixel in the
2N x 2 _array. Let NP denote the number of
black pixels, N the number of black nodes, and
L the perimeter of the region, defined as the
number of unit-pixels sides forming the boundary
of the region. When more than one region is in-
volved, subscript 1 refers to the first region,
subscript 2 to the second region, and so forth.
The relations

N < NP < 2%,

valid for all binary images, arc often used to
derive estimates of running times under the form

log2N 5_1og2NP < 2n.

ALGORITHM ENCODING maps a pixel given in the
(1,J)-form (I,J = 0,1,..., 20 -1) into its
quarternary code. ALGORITHM DECODING maps a
pixel or a node into the (I,J)-form. Both
algorithms perform their jobs in time propor-
tional to n and can be applied to all pixels
simultaneously. Both mappings, therefore, can
be performed in parallel fashion (see, for in-
stance, [2,5]).

ALGORITHM CONDENSE groups together pixels
or nodes which belong to the same subquadrant.
This algorithm can be executed in linear time
[12].

ALGORITHM ADJACENCY (north to south, south
to north, west to east and east to west) finds
the node adjacent to a given one in a prescribed
direction. This procedure evaluates quadrant
transitions (if any) starting from the right-
most digit of a given node. This algorithm
operates in time proportional to n [2,5].

ALGORTTHM SEARCH establishes whether or
not a quarternary code represents a black
pixel: such a procedure is needed because we
store only black nodes. Since the sequence of
sorted encoded nodes can be stored in an array,
searching can be done in logarithmic time with
respect to the total number of black nodes [12].

ALGORITHM ROTATION-90 is a trivial proced-
ure, based on the natural way we adopt to
represent quadrants. A rotation of *90° (or a
multiple thereof) can be accomplished by a
parallel one-to-one digit conversion of black
nodes according to quadrants transition [4,5].

125

ALGORITHM CONTOUR (incorporating ADJACENCY
and SEARCH) accepts as input a lirear quad-trece
and a given node, and produces, as output, the
corresponding chain code [12]. CONTOUR includcs
an initialization procedure which takes care of
the pixels on the boundary of the screen and a
termination criterion. Its time complexity is
bounded by (n*L), where L is the perimeter of
the region, as previously introduced.

ALGORITHM SUPERPOSITION distinguishes among
the various cases occurring when the two given
regions have:

(i) same pixel size and same screen center;

(ii)

different pixel size but same screen
center;

different screen center but same pixel
size.

(iii)

In cases (i) and (ii) the corresponding proced-
ures are based on merging two sorted lists, and
can, therefore, be carried out in linear time
[2,5]; case (iii) requires a suitable transla-
tion of the center as explained in [5]. Inter-
section can be designed in a similar fashion.

= = = — e ___
! [k
| |
[|
| i !
| =3\ ;
I (’1032) 4 :
: 27~k \ taonmr// /s |
p— N |
: e ~ (0304032 o3| N[// 1302 / 7T
| / loimoszo\\\\ 033) |zzol|22| -~ 1321 ,/ 133
| |
| | b - / /332
A\ ~
: [2w0204 \ /
x |) v 311X
| \ /
| \‘\.__ _',/' /
| / 33x
[/
! /
' /
|
| / 33xx
I '
| | 6
b e i e B
\
~ i
Fig. 4. Detecting connected regions

Graphics Interface '82

ALGORITHM CONNECTIVITY is designed to iden-
tify k 2 1 simply connected regions [3,12].
CONNECTIVITY accepts as input a linear quad-tree
and outputs k linear quad-trees, each represent-
ing a simply connected region. For instance, in
the case of the region shown in Fig. 4, six
linear quad-trees would be identified, corres-
ponding to the regions delimited by dotted lines
or represented by single pixels. The algorithm
can be executed in time proportional to (n*N),
where N is the number of black nodes of the in-
put linear quad-tree.

The worst-case complexities for the above
algorithms are given in Table 1.

Worst-case
Operation time complexity
pixel region
Encoding 0(n) O (n*NP)
Decoding 0(n) 0(n*N)
Condense O (NP)
Adjacency 0(n)
Search 0(n)
Rotation 0(n) 0(n*N)
Contour O(n*L)
Connectivity 0(n*N)
Super- ’
position two regions
cases (1),
(ii) O(N1 +N2)
case (iii) O(n*(NPl +NP2))

Table 1. Time complexities

4. Linear Oct-trees

A much greater saving in terms of space is
shown to occur when we extend our new structure
to three dimensions. We can reduce the ten or
eleven fields required by regular oct-trees as
described in [8] to only one. We represent each
voxel in a weighted octal system (with digits
0,1,2,..., 7 to the base 8). Condensation is
still represented by marker X which now must be
encoded with an integer >8.

Algorithms for encoding voxel into their
octal representation, decoding nodes, finding
adjacent nodes, searching for a black voxel,
rotating a three-dimensional object and super-
posing two objects have been designed [4] accord-
ing to a scheme very similar to the one adopted
for the two-dimensional case. In three dimen-
sions another interesting problem arises, con-
sisting of projecting an object onto the
principal planes. With linear oct-trees this

problem can be easily solved as shown in [4].
Some experimental programs designed to test the
above algorithms can be found in [9].

L Concluding Remarks

Both linear quad- and oct-trees are very
efficient structures from the point of view of
space requirements. The algorithms for image
manipulation also compare favourably, on the
average, with those formulated for regular quad-
and oct-trees. One of the main characteristics
of quad-trees which we did not discuss in this
paper is the dynamic capability a quadtree has,
i.e., its ability to expand through its terminal
nodes ONLY when n, resolution parameter, is
incremented. A simulation of this capability is
discussed in [2] where we show how all white
nodes can be generated DIRECTLY from a linear
quad-tree.

Other interesting topics to be investigated
are: the formulation of an efficient algorithm
to determine the boundary of a three-dimensional
object and the reconstruction of a linear quad-
tree (or oct-tree) from the chain code. We hope
to address these questions in a forthcoming
paper.

A software package for linear quad-trees
has been developed as part of the fourth-year
thesis of the second author [12] and is avail-
able on request. At the present time it is run-
ning on the DEC system-10 and is written in the
PASCAL language. Future plans include the
development of its optimized version for the
VAX 11/780 system of the Department of Computer
Science.

References

1. Dyer, C. R., Rosenfeld, A., and Samet, H.
Region representations: boundary codes from
quadtrees. Comm. ACM 23 (1980), 171-179.

2. Gargantiri, I. An efficient way to repre-
sent properties of quadtrees. Conditionally
accepted by Comm., ACM.

3. Gargantini, I. Detection of connectivity
for regions represented by linear quadtrees.
To appear in Comput. Math. Applics.

4. Gargantini, I. Linear oct-trees for fast
processing of three-dimensional objects.
To appear in Comptr. Graph. and Image Pro-
cessing.

5. Gargantini, I. Translaticn, rotation and
superposition of linear quad-trees.

Graphics Interface '82

10.

11.

12.

Submitted to the Inter. Journal of Man-
Machine Studies on Jan. 26, 1982.

Hunter, G. M. and Steiglitz, K. Operations
on images using quadtrces. TIEEE Trans. on
Pattern Analysis and Machine Intell. 1
(1979), 145-153.

Hunter, G. M. and Steiglitz, K. Linear
transformations of pictures represented by
quadtrees. Comptr. Graphics and Image
Processing 10 (1979), 289-296.

Jackins, C. L. and Tanimoto, S. L. Oct-
trees and their use in representing three-
dimensional objects. Comptr. Graphics and
Image Processing 14 (1980), 249-270.

Lam, G. Linear oct-trees for image pro-
cessing. (CS490y Thesis (1982), Computer
Science Department, The University of

Western Ontario, London, Canada N6A 5B9.

Samet, H. An algorithm for converting
rasters to quadtrees. TIELE Trans. on
Pattern Analysis and Machine Intell. 3
(1981), 93-95.

Samet, H. Region representation: quad-
trees from boundary codes. Comm. ACM 23
(March 1980), 163-170.

Tabakman, Z. A software package for linear
quad-trees. (CS490y Thesis (1982), Computer
Science Department, The University of
Western Ontario, London, Canada N6A 5B9.

Graphics Interface '82

127

