
123

LINEAR QUAD - AND OCT-TREES: THEIR USE IN GENERATING
SH1PLE ALGORITHMS FOR IMAGE PROCESSING

Irene Gargantini* and Zale Tabakman
Department of Computer Science

The University of Western Ontario
LONDON, CANADA N6A 5B9

ABSTRACT

A linear quad-tree (oct-tree) is an efficient data struc tu re us ed to represent a ll r e levant
properties of n quad-tree (oct-tree). It bas ically consi s t s of a sorted array of quaternary (octal)
int eger s , where eac ll integer corres ponds to a black node in the quad-tree (oct -tree) repre s entation,
and each digit corr esponds to a quadrant subdivision. Linear quad-trees (oct-trees) are extremely
efficient s tructures from the point of view of space requirements, saving from 75% (80%) up to 98%
(9 9%) of the memory locations required by the regular quad-trees (oct-trees). In th is paper we briefly
men t ion all the algorithms so-far implemented a t Western using linear quad -trees (oct-trees), we dis ­
pl ay their worst-case complexities and provide the reader with references t o th e papers in which a
detailed description of the algorithms and the corresponding runn i ng-time estimates are given .

KEYWORDS: quadtrees, octtrees , linear quadtrees , linear octtrees , da ta s tructures, image processing,
computer graphi cs

1 . Tntrodl lc ti oll

Th e ! \('I\' rlaul s tru c t ure call ed '1 in ca r qU;ld ­
tree', recently developed at West e rn [2,3,4,5,
121, can be success full y used to generate simpl e
and fast al gor i thms for image proces s in g . Thi s
paper contains:

(i) a short introduction to linear quad-trees,
their properties and space r equirement s ;

(il) a l i s ting of the al gorithms designed t o
perform opera tions on r egions represented
by linear qua d-tree s ;

(iii) the extension of linear quad-t rees to the
three - dimensional cas e .

* Th i s work wa s parti a ll y s upport ed hy t.he
Canadian Governmen t through t he Na tural
Sci ences and Engin eeri ng Res ear ch Council ,
grant A71 36.

Wh en cOlllpa r ed with r egular quad-trees rl,(), 7 ,l !l ,
11] Cl 'linear quad-tree ' present s the f ollowi ng
advantages :

(a) th e i n f ormation contained i n the s i x fi e ld s
of a quad - tree node is packed into on e
s in gl e field;

(b) on l y b l a ck nodes need to be stored ;

(c) th e encoding used for each nod e i ncor porates
ad j ac ency relations in the four principa l
di r ect i ons a s well as the path from th e r oo t
t o th e node i n th e corr espondin g (unbu i l t)
quad-tree;

(d) oper a t i ons l ike encoding, decod i ng , con t our
f i nding , rot ation, superposit i on a nd de t ec­
t i on of connect i vi t y have l ower worst -cls e
time compl ex i t ie s t han the co rrespond i ng
a l gor i thms us ing re gu l ar quadtrees .

Graphics Interface '82

2. Representation of a Simply Connected Region
by Means of a Linear Quadtree

A simply connected region is usually given
as a set of unit-picture elements (cal led
'pixe 1 s') in a 2n x 2n - array arrangement, where
n denotes the resolution parameter or degree of
refinement of the screen. Fig. 1 gives an in­
stance of a region which is simpl y connected
wh i1 e Fi g . 2 gives an exampl e of a region which
is not.

Fig. 1. A simp ly connected region.

A quad-tree is a data structure used to
represent some of the properties of a given
region in terms of 'large ' groups of pixels in­
stead than in terms of each single pixel as in
the array form . A 'linear quad-tree' is a
structure aiming at representing the same prop­
erties of a quad-tree in a more compact form.
This idea can be at best illustrated by an
exampl e. Consider the region shown in Fig. 3
with n = 3 and the following encoding scheme: ° for the North -West-quadrant, 1 for the North­
Eas t-quadrant, 2 for the South-West-quadrant
and 3 for the South-East-quadrant. Use now a
weighted quarternary code (with digits 0,1, 2,3
to the base 4) to describ e the successive quad­
rant subdivisions , starting from the larges t.
In the example of Fig . 3, the region is de­
scr ibed by the fol l owing (sorted) sequence:

003, 021, 023 , 030, 031, 032, 033, 122, 210,
21 1, 212, 213, 300, 301 , 302, 303, 310, 311,
312,313,320,321,322,323,330,331,332,
333.

Condensation [2 ,3,12] is appli ed by intro­
ducing a specia l ' marker X', which must be en ­
coded with an integer >3. We refer to this
'mixed encoding' as the 'mi xed-quartern ary'

124

Fig. 2 . The region shown is NOT simply connected.

1003

021 030 031

023 032 033 122

210 211 30C 301 310 311

212 213 302 303 312 313

320 321 330 331

322 323 332 333

Fig. 3. Labelling pixels in the quarternary
codes.

representation. The sequence becomes

033, 021, 023, 03X, 21X, 3XX.

The reader familiar with r egular quad-trees
can see that onl y black nodes have been s tored
and that the encoding of each node (from l eft to
right) completely describes the path from the
root t o the node. Linear quad-trees have been
shown to require, in t he worst case, at most 25%
of th e memor y locations needed by regular quad­
trees and only 2% in the mo s t favorab1e cases
[3] .

Graphics Interface '82

3 . The Algorithms

Be fore dL' s rrihing hrieFl y th e ;il gorithms,
l e t us i ntroduc e some notation. Let n, as indi­
cated before, represent the resolution parameter
of the screen . Let I and J denote the row and
column indices (respectivel y) of a pixel in the
2n x 2n - array. Let NP denote the number of
black pixe l s , N the number of black nodes, and
L the perimeter of the region , defined as the
number of unit-pixels sides forming the boundary
of the region. When more than one region is in­
volved, subscript I refers to the first region,
subscript 2 to the second region, and so forth.
The relations

N < NP < 2
2n ,

valid for all hinary images, are often used to
derive estimates of running times under the form

log2N ~ 10g2NP < 2n.

ALGORITHM ENCODING maps a pixel given i n the
(I,J)-form (I,J = 0,1, ... , 2n-1) into its
quarternary code. ALGORITHM DECODING maps a
pixel or a node into the (I,J)-form. Both
algorithms perform their jobs in time propor­
tional to n and can be applied to a ll pixels
simultaneous ly. Both mappings, therefore, can
be performed in parallel fashion (see, for in­
stance, [2 ,5)).

ALGORITHM CONDENSi gr oup s together pixels
or nodes which belong to the s ame subquadrant.
This a lgor ithm can be e xecuted in l i near time
[1 2] .

ALGORITHM ADJACENCY (north to south, south
to north, west to east and east to west) finds
the node adjacent to a given one i n a prescribed
direction. This procedure evaluates quadrant
transitions (if any) starting from the right­
most digit of a given node. This algor i thm
operates in time proportional to n [2,5].

ALGORITHM SEARCH establ ishes whether or
not a quarternary code represents a black
pixel: such a procedure i s needed because we
s tore only black nodes. Since the sequence of
sorted encoded nodes can be stored in an array,
searching can be done in logarithmic time with
respect to the total number of black nodes [12].

ALGORITHM ROTATION-30 is a trivial proced­
ure, based on the natural way we adopt to
represent quadrants. A rotation of ±90 o (or a
multiple thereof) can be accomplished by a
parallel one-to-one digit conversion of black
nodes according to quadrants trans i t i on [4 , 5].

125

ALGORITHM CONTOUR (incorporating ADJACENCY
and SEARCII) accepts as i nput a liT.ear quad-tree
:I!ld a):ivcn 110.1 (' , :lIld produc es , a s output, th l'
corresponding dwin code l1 2J. CONTOUR includes
an initialization procedure which takes care of
the pixels on the boundary of the screen and a
termination criterion. Its time complexity is
hounded by (n*L) , where L is the perimeter of
the region, as previously introduced.

ALGORITHM SUPERPOSITION distinguishes among
the various cases occurring when the two given
regions have:

(i) same pixel size and same screen center;

(i i) different pixel size but same screen
center;

Cl i j) diFfere nt screen center but same pixel
size.

In cases (i) and (ii) the corresponding proced­
ures are based on merging two sorted lists, and
can, therefore, be carried out in linear time
[2,5]; case (iii) requires a suitable trans l a­
tion of the center as explained in [5]. Inter­
section can be designed in a similar fashion.

r----- - -- --r-----------1
I
I
I
I

"'::::""-3' I
f 1032) I
I 4 I /"2- 1210 1211 If / 5 I

/ " \ ---- (F~0312 " ,\ 1/-+ /
// ''I 0313

~
1212

/
1302

I l0231 ~ ""<'-, 0331 122011221 ~./ I r-
132 1 I 1331

I \ "-
,

b322 / /1332 I \ -- -- --I 2100 21011 \ /
I \ / I 3 11 X I I \ /
I "- // --- / I 313X
I I
I /
I I
I
I I 33XX

I I
I I 6
L _ ____ __ ______

\.

......... -------'
Fig . 4. De tecting connec ted r egions

Graphics Interface '82

ALGORITHM CONNECTIVITY is designed to iden­
tify k ~ 1 simply connected regions [3,12].
CONNECTIVITY accepts as input a linear quad-tree
and outputs k linear quad-trees, each represent­
ing a simply connected region. For instance , in
the case of the region shown in Fig. 4, six
linear quad-trees would be identified, corres­
ponding to the regions delimited by dotted lines
or represented by single pixels. The algorithm
can be executed in time proportional to (n*N),
where N is the number of black nodes of the in­
put linear quad-tree .

The worst-case comp1exities for the above
algorithms are given in Table 1.

Worst-case
Operation time complexity

oixel reQion

Encoding O(n) O(n*NP)
Decoding O(n) O(n*N)
Condense O(NP)
Adjacency O(n)
Search O(n)
Rotation o (n) O(n*N)
Contour O(n*L)
Connectivity O(n*N)

Super- two regions position
cases (i), n (NI + N2) (ii)
case (Ui) O(n*(NP l + NP 2))

Table 1. Time complexities

4. Linear Oct-trees

A much greater saving in terms of space is
shown to occur when we extend our new structure
to three dimensions. We can reduce the ten or
eleven fields required by regular oct-trees as
described in [8] to only one. We represent each
voxel in a weighted octal system (with digits
0,1,2, ... , 7 to the base 8). Condensation is
still represented by marker X which now must be
encoded with an integer >8.

Algorithms for encoding voxel into their
octal representation, decoding nodes, finding
adjacent nodes, searching for a black voxel,
rotating a three-dimensional object and super­
posing two objects have been designed [4] accord­
ing to a scheme very similar to the one adopted
for the two-dimensional case. In three dimen­
sions another interesting problem arises, con­
sisting of projecting an object onto the
principal planes . With linear oct-trees thi s

126

problem can be easily solved as shown in [4].
Some experimental programs designed to ~est the
above algorithms can be found in [9].

s. Concluding Remarks

Both linear quad- and oct-trees are very
efficient structures from the point of view of
space requirements . The algorithms for image
manipulation also compare favourably, on t he
average, with those formulated for regular quad­
and oct-trees. One of the main characteristics
of quad-trees which we did not discuss in this
paper is the dynamic capability a quadtree has,
i.e., its ability to expand through its terminal
nodes ONLY when n, resolution parameter, is
incremented . A simulation of this capability is
discussed in [2] where we show how all white
nodes can be generated DIRECTLY from a linear
quad-tree .

Other interesting topics to be investigated
are: the formulation of an efficient algorithm
to determine the boundary of a three-dimensional
object and the reconstruction of a linear quad­
tree (or oct-tree) from the chain code . We hope
to addres s these questions in a forthcoming
paper.

A software package for linear quad-trees
has been developed as part of the fourth-year
thesis of the second author [12] and is avail­
able on request. At the present time it is run­
ning on the DEC system-lO and is written in the
PASCAL language . Future plans include the
development of its optimized version for the
VAX 11/780 system of the Department of Computer
Science.

References

1. Dyer, C. R., Rosenfeld, A., and Samet, H.
Region representations: boundary codes from
quadtrees . Comm. ACM 23 (1980), 171-179.

2. Gargantini, T. An effic ient way to repre­
sent properties of quadtrees. Conditionally
accepted by Comm. ACM .

3 . Gargantini, I. Detection of connectivity
for regions represented by linear quadtrees.
To appear in Comput. Math. Applics.

4. Gargantini, I. Linear oct-trees for fast
processing of three-dimensional objects.
To appear in Comptr. Graph. and Image Pro ­
cessing.

s. Gargantini, I. Translation, rotation and
superpos ition of linear quad-trees.

Graphics Interface '82

Submitted to the Inter. Journal of Man­
Machine Studies on Jan. 26, 1982.

6. Hunter, G. M. and Steiglitz, K. Operations
on images using quadtrees. IEEE Trans. on
Pattern Analysis and Machine Intell. 1
(1979), 145-153.

7. Hunter, G. M. and Steiglitz, K. Linear
transformations of pictures represented by
quadtrees . Comptr . Graphics and Image
Processing 10 (1979), 289-296 .

8. Jackins, C. L. and Tanimoto, S . L. Oct­
trees and their use in representing three­
dimensional objects. Comptr. Graphics and
Image Processing 14 (1980), 249 -270.

9. Lam, G. Linear oct-trees for image pro­
cessing . CS490y Thesis (1982), Computer
Science Department, The University of
Western Ontario, London, Canada N6A 5B9.

10. Samet, H. An algorithm for converting
rasters to quadtrees. IEEE Trans. on
Pattern Analysis and Machine Intell. 3
(1981),93-95 .

11 . Samet, H. Region representation: quad­
trees from boundary codes. Comm . ACM 23
(March 1980), 163-170.

12 . Tabakman, Z. A software package for linear
quad-trees. CS490y Thesis (1982), Comput er
Science Department, The University of
Western Onta rio, London, Canada N6A 5B9.

127

Graphics Interface '82

