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ABSTRACT 

A linear quad-tree (oct-tree) is an efficient data struc tu re us ed to represent a ll r e levant 
properties of n quad-tree (oct-tree). It bas ically consi s t s of a sorted array of quaternary (octal ) 
int eger s , where eac ll integer corres ponds to a black node in the quad-tree (oct -tree) repre s entation, 
and each digit corr esponds to a quadrant subdivision. Linear quad-trees (oct-trees) are extremely 
efficient s tructures from the point of view of space requirements, saving from 75% (80%) up to 98% 
(9 9%) of the memory locations required by the regular quad-trees (oct-trees). In th is paper we briefly 
men t ion all the algorithms so-far implemented a t Western using linear quad -trees (oct-trees), we dis ­
pl ay their worst-case complexities and provide the reader with references t o th e papers in which a 
detailed description of the algorithms and the corresponding runn i ng-time estimates are given . 

KEYWORDS: quadtrees, octtrees , linear quadtrees , linear octtrees , da ta s tructures, image processing, 
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1 . Tntrodl lc ti oll 

Th e ! \('I\' rlaul s tru c t ure call ed '1 in ca r qU;ld ­
tree', recently developed at West e rn [ 2,3,4,5, 
121, can be success full y used to generate simpl e 
and fast al gor i thms for image proces s in g . Thi s 
paper contains: 

(i) a short introduction to linear quad-trees, 
their properties and space r equirement s ; 

(il) a l i s ting of the al gorithms designed t o 
perform opera tions on r egions represented 
by linear qua d-tree s ; 

(iii ) the extension of linear quad-t rees to the 
three - dimensional cas e . 

* Th i s work wa s parti a ll y s upport ed hy t.he 
Canadian Governmen t through t he Na tural 
Sci ences and Engin eeri ng Res ear ch Council , 
grant A71 36. 

Wh en cOlllpa r ed with r egular quad-trees rl,(), 7 ,l !l , 
11] Cl 'linear quad-tree ' present s the f ollowi ng 
advantages : 

(a ) th e i n f ormation contained i n the s i x fi e ld s 
of a quad - tree node is packed into on e 
s in gl e field; 

(b ) on l y b l a ck nodes need to be stored ; 

(c ) th e encoding used for each nod e i ncor porates 
ad j ac ency relations in the four principa l 
di r ect i ons a s well as the path from th e r oo t 
t o th e node i n th e corr espondin g (unbu i l t) 
quad-tree; 

(d ) oper a t i ons l ike encoding, decod i ng , con t our 
f i nding , rot ation, superposit i on a nd de t ec­
t i on of connect i vi t y have l ower worst -cls e 
time compl ex i t ie s t han the co rrespond i ng 
a l gor i thms us ing re gu l ar quadtrees . 
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2. Representation of a Simply Connected Region 
by Means of a Linear Quadtree 

A simply connected region is usually given 
as a set of unit-picture elements (cal led 
'pixe 1 s') in a 2n x 2n - array arrangement, where 
n denotes the resolution parameter or degree of 
refinement of the screen. Fig. 1 gives an in­
stance of a region which is simpl y connected 
wh i1 e Fi g . 2 gives an exampl e of a region which 
is not. 

Fig. 1. A simp ly connected region. 

A quad-tree is a data structure used to 
represent some of the properties of a given 
region in terms of 'large ' groups of pixels in­
stead than in terms of each single pixel as in 
the array form . A 'linear quad-tree' is a 
structure aiming at representing the same prop­
erties of a quad-tree in a more compact form. 
This idea can be at best illustrated by an 
exampl e. Consider the region shown in Fig. 3 
with n = 3 and the following encoding scheme: ° for the North -West-quadrant, 1 for the North­
Eas t-quadrant, 2 for the South-West-quadrant 
and 3 for the South-East-quadrant. Use now a 
weighted quarternary code (with digits 0,1, 2,3 
to the base 4) to describ e the successive quad­
rant subdivisions , starting from the larges t. 
In the example of Fig . 3, the region is de­
scr ibed by the fol l owing (sorted) sequence: 

003, 021, 023 , 030, 031, 032, 033, 122, 210, 
21 1, 212, 213, 300, 301 , 302, 303, 310, 311, 
312,313,320,321,322,323,330,331,332, 
333. 

Condensation [2 ,3,12] is appli ed by intro­
ducing a specia l ' marker X', which must be en ­
coded with an integer >3. We refer to this 
'mixed encoding' as the 'mi xed-quartern ary' 
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Fig. 2 . The region shown is NOT simply connected. 

1003 

021 030 031 

023 032 033 122 

210 211 30C 301 310 311 

212 213 302 303 312 313 

320 321 330 331 

322 323 332 333 

Fig. 3. Labelling pixels in the quarternary 
codes. 

representation. The sequence becomes 

033, 021, 023, 03X, 21X, 3XX. 

The reader familiar with r egular quad-trees 
can see that onl y black nodes have been s tored 
and that the encoding of each node (from l eft to 
right) completely describes the path from the 
root t o the node. Linear quad-trees have been 
shown to require, in t he worst case, at most 25% 
of th e memor y locations needed by regular quad­
trees and only 2% in the mo s t favorab1e cases 
[3] . 
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3 . The Algorithms 

Be fore dL' s rrihing hrieFl y th e ;il gorithms, 
l e t us i ntroduc e some notation. Let n, as indi­
cated before, represent the resolution parameter 
of the screen . Let I and J denote the row and 
column indices (respectivel y) of a pixel in the 
2n x 2n - array. Let NP denote the number of 
black pixe l s , N the number of black nodes, and 
L the perimeter of the region , defined as the 
number of unit-pixels sides forming the boundary 
of the region. When more than one region is in­
volved, subscript I refers to the first region, 
subscript 2 to the second region, and so forth. 
The relations 

N < NP < 2
2n , 

valid for all hinary images, are often used to 
derive estimates of running times under the form 

log2N ~ 10g2NP < 2n. 

ALGORITHM ENCODING maps a pixel given i n the 
(I,J)-form (I,J = 0,1, ... , 2n-1) into its 
quarternary code. ALGORITHM DECODING maps a 
pixel or a node into the (I,J)-form. Both 
algorithms perform their jobs in time propor­
tional to n and can be applied to a ll pixels 
simultaneous ly. Both mappings, therefore, can 
be performed in parallel fashion (see, for in­
stance, [2 ,5)). 

ALGORITHM CONDENSi gr oup s together pixels 
or nodes which belong to the s ame subquadrant. 
This a lgor ithm can be e xecuted in l i near time 
[1 2] . 

ALGORITHM ADJACENCY (north to south, south 
to north, west to east and east to west) finds 
the node adjacent to a given one i n a prescribed 
direction. This procedure evaluates quadrant 
transitions (if any) starting from the right­
most digit of a given node. This algor i thm 
operates in time proportional to n [2,5]. 

ALGORITHM SEARCH establ ishes whether or 
not a quarternary code represents a black 
pixel: such a procedure i s needed because we 
s tore only black nodes. Since the sequence of 
sorted encoded nodes can be stored in an array, 
searching can be done in logarithmic time with 
respect to the total number of black nodes [12]. 

ALGORITHM ROTATION-30 is a trivial proced­
ure, based on the natural way we adopt to 
represent quadrants. A rotation of ±90 o (or a 
multiple thereof) can be accomplished by a 
parallel one-to-one digit conversion of black 
nodes according to quadrants trans i t i on [4 , 5]. 
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ALGORITHM CONTOUR (incorporating ADJACENCY 
and SEARCII) accepts as i nput a liT.ear quad-tree 
:I!ld a ):ivcn 110.1 (' , :lIld produc es , a s output, th l' 
corresponding dwin code l1 2J. CONTOUR includes 
an initialization procedure which takes care of 
the pixels on the boundary of the screen and a 
termination criterion. Its time complexity is 
hounded by (n*L) , where L is the perimeter of 
the region, as previously introduced. 

ALGORITHM SUPERPOSITION distinguishes among 
the various cases occurring when the two given 
regions have: 

(i) same pixel size and same screen center; 

(i i) different pixel size but same screen 
center; 

Cl i j ) diFfere nt screen center but same pixel 
size. 

In cases (i) and (ii) the corresponding proced­
ures are based on merging two sorted lists, and 
can, therefore, be carried out in linear time 
[2,5]; case (iii) requires a suitable trans l a­
tion of the center as explained in [5]. Inter­
section can be designed in a similar fashion. 
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Fig . 4. De tecting connec ted r egions 
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ALGORITHM CONNECTIVITY is designed to iden­
tify k ~ 1 simply connected regions [3,12]. 
CONNECTIVITY accepts as input a linear quad-tree 
and outputs k linear quad-trees, each represent­
ing a simply connected region. For instance , in 
the case of the region shown in Fig. 4, six 
linear quad-trees would be identified, corres­
ponding to the regions delimited by dotted lines 
or represented by single pixels. The algorithm 
can be executed in time proportional to (n*N), 
where N is the number of black nodes of the in­
put linear quad-tree . 

The worst-case comp1exities for the above 
algorithms are given in Table 1. 

Worst-case 
Operation time complexity 

oixel reQion 

Encoding O(n) O(n*NP) 
Decoding O(n) O(n*N) 
Condense O(NP) 
Adjacency O(n) 
Search O(n) 
Rotation o (n) O(n*N) 
Contour O(n*L) 
Connectivity O(n*N) 

Super- two regions position 
cases (i), n (NI + N2) (ii) 
case (Ui) O(n*(NP l + NP 2)) 

Table 1. Time complexities 

4. Linear Oct-trees 

A much greater saving in terms of space is 
shown to occur when we extend our new structure 
to three dimensions. We can reduce the ten or 
eleven fields required by regular oct-trees as 
described in [8] to only one. We represent each 
voxel in a weighted octal system (with digits 
0,1,2, ... , 7 to the base 8). Condensation is 
still represented by marker X which now must be 
encoded with an integer >8. 

Algorithms for encoding voxel into their 
octal representation, decoding nodes, finding 
adjacent nodes, searching for a black voxel, 
rotating a three-dimensional object and super­
posing two objects have been designed [4] accord­
ing to a scheme very similar to the one adopted 
for the two-dimensional case. In three dimen­
sions another interesting problem arises, con­
sisting of projecting an object onto the 
principal planes . With linear oct-trees thi s 
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problem can be easily solved as shown in [4]. 
Some experimental programs designed to ~est the 
above algorithms can be found in [9]. 

s. Concluding Remarks 

Both linear quad- and oct-trees are very 
efficient structures from the point of view of 
space requirements . The algorithms for image 
manipulation also compare favourably, on t he 
average, with those formulated for regular quad­
and oct-trees. One of the main characteristics 
of quad-trees which we did not discuss in this 
paper is the dynamic capability a quadtree has, 
i.e., its ability to expand through its terminal 
nodes ONLY when n, resolution parameter, is 
incremented . A simulation of this capability is 
discussed in [2] where we show how all white 
nodes can be generated DIRECTLY from a linear 
quad-tree . 

Other interesting topics to be investigated 
are: the formulation of an efficient algorithm 
to determine the boundary of a three-dimensional 
object and the reconstruction of a linear quad­
tree (or oct-tree) from the chain code . We hope 
to addres s these questions in a forthcoming 
paper. 

A software package for linear quad-trees 
has been developed as part of the fourth-year 
thesis of the second author [12] and is avail­
able on request. At the present time it is run­
ning on the DEC system-lO and is written in the 
PASCAL language . Future plans include the 
development of its optimized version for the 
VAX 11/780 system of the Department of Computer 
Science. 
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