153

GRIMBI - A COMBINATION OF INTERACTIVE GRAPHICS METHODS
AND CAD DATABASE TECHNIQUES FOR FUNCTIONAL MODELLING

K. Leinemann
Institut fir Reaktorentwicklung
Kernforschungszentrum Karlsruhe

ABSTRACT

The CAD-system GRIMBI serves for synthesizing information structures under functional aspects. It
supports manipulation of informations usually represented as blockdiagrams and tables. This CAD-system,
therefore, is an aid in the early design phases. It is not simply a drawing system, but rather com-
bines interactive graphics methods with database technology for building up information structures,
which represent functional aspects of an object or a system. GRIMBI includes a specialized data
definition facility to define logical model classes and to describe the external graphic data repre-
sentation. Modelling according to a model class is done by standard operations, completed by working
methods like stepwise refinement/abstraction and management of design alternatives. The operations are
supported by an autonomous command/menue language and by a DML, which is an extension of PL/1. GRIMBI
provides a separation of tasks between a mainframe (for data base management and analysis) and a
satellite (for the interactive communication and the graphics subtasks). GRIMBI is implemented as a
subsystem of REGENT, a CAD kernel system.

KEYWORDS: CAD, graphics, database, DDL, DML, functional modelling, satellite, task distribution

1. INTRODUCTION Hence, adaption of the modelling system to
various model types should be easy, especially as
Design of technical products and systems fis it is done by the engineer himself, not by a
concerned with many different design methods, system administrator. Particular emphasis was
resulting in a variety of CAD-systems with their laid upon early detection of modelling errors.
own databases, tailored to the particular needs. This is to prevent waste of resources and loss of
Using such specialized CAD-systems for single time, due to working with an inconsistent model.
tasks or groups of tasks, an over all CAD-system Losses may be significant when an inconsistent
may be built up by an architecture shown in model 1is wused as input to expensive analysis
fig.1. The data bases of the subsystems are computations. In many design areas several
temporary, physical subdatabases of a central different functional models are used simultani-
database containing all the data needed for ously: e.g., in plant design P&I-diagrams are
design and manufacturing. These subdatabases, used as information basis to derive fault tree
sometimes called operational databases, are models, functional models for reliability
Tinked to the central base by data transformers. analysis /1/.
This kind of loose linkage allows to use a higher : el
data abstraction level in the central database, ;_"_'—_‘~'_—'__'bﬁi}ﬁé;'__}
than it is required for the specialized — , FE#E;{%FAL ;
processes. It unburdens the management of the DATABASE i 1
main database, which discriminates only I
parametrized groups of data (information hiding). [3EEEC%L "_<:> : CAD-SYSTEM | |
Such an architecture contrasts to the solution | "FUNCT IONAL :
using logical subdatabases. | MODELLING" || 1
Subject of this paper is a special CAD-system __<:> I |
for functional modelling planned as a building I I
block of an architecture shown in fig.1l. The : :
CAD-system GRIMBI serves for synthesizing and (|| | —~— """ TTTTTTT T
management of information structures under GEOMETRIC
functional aspects. It supports manipulation of MODELS
information usually represented as block diagrams -<:>____4]
and tables.
Basic objectives of GRIMBI follow from its “*<::F____{::::] :giE;FORMER
kind of usage. GRIMBI is particularly designed Lo
for an environment, which 1is characterized by :
rapid development and model changes. Fig.1l: Possible CAD-systems architecture

Graphics Interface ‘82

The analysis algorithms typically are running
on a large main frame in batch (e.g. fault tree
analysis programs for reliability analysis).
Integration of interactive synthesis and batch
analysis therefore is required too.

GRIMBI was designed and implemented according
to the following design objectives. GRIMBI should
support

- construction of graph models, usual in
engineering,

- early detection of problem dependent modelling
errors, to provide consistent models,

- descriptive model class specification to
facilitate adaption to special problem classes
and their changements,

- modelling operations, usual in systems design
like stepwise refinement/ abstraction,
management of design alternatives, handling
various model types simultanously,

- integration of interactive work and batch
computations.

2. GRIMBI SYSTEM OVERVIEW

Like database systems GRIMBI distinguishes
between /2/

- ¢ data definition phase to describe a certain
model class, that means to describe problem
oriented modelling restrictions and

- a data manipulation phase to generate model
class instances and to analyse them.

Fig.2 represents a basic architecture of
GRIMBI, showing its parts (data and processes)
and its kind of usage. For data definition, an
activity, which demands for a careful planning,
and hence is best done in batch mode, a DDL (data
definition language) is available as extension of
PL/1. Interactive modelling, batch modelling,
and batch access for analysis are supported by a
data manipulation module (DBMS).

<

PROCESSOR |~

-

MODEL CLASS L
DESCRIPTION [TT]

CAD-
[9 DBMS 1 pROCESSOR "‘[:::J

MODEL

ANALYSIS |

o~

Fig.2: Basic architecture of GRIMBI

Its operations are bounded by the modei class
restrictions. They are available using a DML
(data manipulation language), implemented as as
PL/1-extension for batch processing, or using a
self-contained command/menue language in inter-
active mode, allowing data identification by
picking. The DML-commands for batch modelling do
not include the possibilities of editing the
graphical representation of the data 1ike symbol
positioning, or routing of connections. Such
graphic information may be added later on in an
interactive mode, before additional interactive
modifications are performed with the model.

3. MODEL CLASS DESCRIPTION

Adaptation of GRIMBI to a certain problem area
is done using the GRIMBI-DDL to describe a model
class. Model class descriptions represent problem
oriented modelling restrictions, they enable the
system to recognize modelling errors and to
guarantee model consistency to the model type
used in analysis algorithms.

The GRIMBI-DDL is based on a problem oriented
data model, suited for functional modelling.
Fig.3 shows graphically the elements of the block
diagram data model. Using such a specialized
data model instead of a general purpose model
(e.g. CODASYL-DBTG), greatly facilitates the
schema definition. This is particularly relevant
in a development environment, where new model
types are created often and are subject to rapid
improvement. The data definition task in this
environment should be done by the engineer, not
by a data base administrator, and therefore
should be easy.

A model class is a collection of user (or
problem) data types, characterized by data types
of the DDL. The GRIMBI-DDL differentiates between
three classes of data types.

(1) Types to describe the basic elements for
model building: BASEOBJECT characterizes
elements without an internal structure, but
with ports. RELATION describes sets of
object pairs, and COMPLEX specifies object
types with a fixed internal structure,
composed of BASEOBJECT and RELATION type
objects.

(2) Types to describe model substructuring:
SUBNET-DESCRIPTOR, SUBNETPORT, NET,
SYSTEMPORT.

(3) Types to describe the graphical
representation of the data: BASEGRAPHIC,
ATTRIBUTEGRAPHIC, PORTGRAPHIC,
PORTCOORDINATES, TEXTWINDOW, PICKAREA.

Basic user elements for modelling are of the
type BASEOBJECT, a data element, characterized by
attributes and ports, but without an internal
structure. Attributes are described by a data

Graphics Interface ‘82

NETPOOL

BASEOBJECT
— o
== .
¢ DESCRIPTOR
1
[§UBNET-ALTERNATIVE i
SUBNET - RELATION

: ©

Ly o) |
P] I ;

P3

Fig.3: Problem oriented data model of GRIMBI

DESCRIBE
1 <usertype> BASEOBJECT [<attriblist>]
[<portlist>]

<attriblist>::
<portlist>
<attrib>

I

|

|

| 2 <attrib> [,2 <attrib>](0:n)
| 2 <port> [,2 <port>](0:n)

| <attribname> ATTRIBUTE

| <datatype>

| [DIM(<dim>)]

| [VSET(<vset>)]

| [DEFAULT(<def>)]
| [CLASS(<class>)]
| ' [REQUIRED]
' .

I

I

I

I

|

|

|

|

|

|

<port> portname> PORT <porttype>
[DIM(<dim>)]
[FAN(<min>,<max>)]
[<port-attrlist>]
BIN FIXED(15) | BIN FIXED(31)
3)
)

<datatype>
BIN FLOAT(21) | BIN FLOAT(5
CHAR(<n>) | BIT(<n>)
::= (<from> TO <to>) | (<v_1>,.,<v_i>
::= IN | OUT | INOUT
3 <attrib>
[,3 <attrib>](0:n)

<vset>
<porttype>
<port-attrlist> ::=

|
I
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

| DESC 1 AND BASEOBJECT STEXT('AND-GATE'), |
| 2 TYPE ATTRIBUTE CHAR(3) DEFAULT('TTL')

| VALUESET('TTL', 'ECL'), |
| 2 IN PORT IN DIM(2) FAN(0,1), |
| 3 NEG ATTRIBUTE STEXT('Signal-negat.')

| BIT(1) DEFAULT('1'B), |
| 2 OUT PORT OUT FAN(O0,5) |
| 3 NEG ATTRIBUTE BIT(1) DEFAULT('1'B); |

Fig.5: GRIMBI-DDL example for BASEOBJECT

155

type, a valueset, and a default value. Arrays of
attributes are allowed. Ports together with
relations define how the objects may be emdedded
in an environment, how objects may be connected
to a problem structure. Ports are of type input,
output or bidirectional. Port arrays are allowed
too, the required and permitted number of
connections may be given. FAN(1,1) for example
means, that the port has to be connected to
another port once and only once in a valid model.
The syntax of the BASEOBJECT is shown in fig.4,
an example in fig.5.

A RELATION describes the possibilities,
respectively the restrictions, of relations
between pairs of objects. Fig.6 shows the syntax
for a RELATION, fig.7 an example of a relation to
construct electrical supply nets. The instance of
a user relation type is graphically represented
by a legend symbol (E_NET1). A relation may be
characterized by attributes similar to the
baseobjects, for example by the VOLT attribute in
fig.7. Additionally, there is a special attribute
for relations, the TUPELATTRIBUTE, related to an
element of a relation, i.e. a connection. The key
issue of a RELATION- definition in GRIMBI is the
formulation of modelling restrictions. The
FROMDOMAINE/TODOMAINE-clauses contain all
object types, allowed to be start points or end
points of a connection. For example: a
connection TRANSF1_OUT - PUMP1_IN in fig.7 is
allowed as a connection of type E_NET. The TYPE-
clause restricts the structure of a relation to a
certain type, for example the type TREE, which
prohibits Tloops. Restrictions, related to
attribute values of object pairs or relations,
are described by the RESTRICTION -clause. In the
example, this clause reclaims the equality of the
voltage values of the connection and the two
connected ports. To be able to use more complex
restrictions, there exists the possibility to
insert special wuser algorithms to check the
consistency. R_ENTRY_CO-algorithms are called
after each CONNECT, R_ENTRY CL are called while
closing a subnet.

The type COMPLEX has been provided as a means
to define macros, composed by baseobject and
relation types. Attributes of a COMPLEX object
are related to attributes of its elements.

The DESCRIPTOR-SUBNET data type characterizes
a subnet type relative to two levels of
abstraction. The DESCRIPTOR part represents the
subnet at the higher level like an object of type
BASEOBJECT, but with an internal structure and a
variable number of ports. Theses ports
correspond to the subnet ports, belonging to the
lower Tlevel of abstraction. Synthesis of a
subnet is restricted to usage of a specified set
of BASEOBJECT, RELATION and SUBNETPORT types.
Subnets are the regions of interest and therefore
may be handled as-a whole.

Graphics Interface '82

| DESCRIBE 1 <relname> RELATION

| [<attriblist>]

| [<tupelattrib>]

| [FROMDOMAINE(<fromlist>)]
| [TODOMAINE(<tolist>)]

| [TYPE(<strutype>)]

| [RESTRICTION(<restr-Tist>)]
| [R_ENTRY_CO(<entylist>)]

| [R_ENTRY CL(<entrylist>)]
| <restr-list>: —<operand><operat1on><operand>
| [,<operand><operation><operand>](o:n)
|

|

|

|

|

|

|

|

|

|

<operand> ::= FROM.<attrname> [(<ind>)]
| FROM..<attrname> [(<ind>)]
| TO.<attrname> [(<ind>)]
| TO..<attrname> [(<ind>)]
| REL.<attrname> [(<ind>)]
| <const>
= | ~= | < | >]| <= | >=
= 2 <attrname> TUPELATTRIBUTE
<like-attrib>

<operation>
<tupelattrib>::

<strutype> ::= TREE |

| DESC 1 E NET RELATION STEXT('SUPPLY NET') |
| FROMDOMAINE(TRANSF.OUT,...) |
| TODOMAINE(PUMP IN,LAMP IN,...) |
| TYPE(TREE) |
| RESTRICTION(TO..VOLT=REL.VOLT, |
| FROM. . VOLT=REL.VOLT)|
| R_ENTRY_CO(POWERSUM) |
| R_ENTRY CL(FREE_PORTS), |
| 2 VOLT "ATTRIBUTE INTEGER DEFAULT(380) |
| VALUESET(220,380), |
| 2 DIAMETER TUPLEATTRIBUTE REAL |
| VALUESET(1.T0 10.) DEFAULT(1.5);]
| I
I I
I I
| |
I I
| |
I I
I I
I I
i |

LAMP @ PUMP

* */ E_NET!

380
I
X | TRANSFORMER
|

Fig.7: GRIMBI-DDL example for RELATION

DDL-GRAPHICS

A special feature of GRIMBI-DDL 1is the
capability to describe graphic symbols for the
external representation of the data. This feature
corresponds to a FORMAT statement of programming
languages which also defines the external
representation of some information. The terms to
describe the symbols reflect the logic structure
of the objects. The BASEGRAPHIC expresses the

basic meaning of the object, ports are described
by the PORTGRAPHIC. Attributes may be related to
TEXTWINDOWS or to sets of symbols (ATTRIBUTE-
GRAPHIC). This facility allows to visualize an
attribute value alternatively by a text string in
a text window or by a symbol, choosen
automatically out of the set in dependency of the
actual value. These parametrized graphic symbols
are useful in visualizing database contents (e.g.
variation of a fluid surface in a vessel, shown

in fig.8).

G! .E1.NEGATION=-'1'B

PV8 I
Al | B1 ' 0o
|
|
Gl |
El E2 | =
G1.TYPE="' g ! B1.LEVEL=S
G1.E1.NEGATION=‘0'B
|
|
| B1 —o
|
&1 I v
&P |
El E2 I o
C1.TYPE=SNQQQQ’ : B1.LEVEL=2
1

Fig.8: Parametrized symbols

Additionally PORTCOORDINATES (the start
points of connections) and PICKAREAS (regions to
identify objects, attributes or ports) are
described with the DDL. Similarly the
representations of relations are defined. A
relation instance in a block diagram is the usual
legend, expressing expressing the meaning of a

set of lines (fig.7).

The DESCRIPTOR symbol has to be surrounded by
a rectangular "port position line" on which the
ports are shifted if the corresponding ports of
the related subnet are shifted. Subnetports in
the related subnet may be allocated and shifted
only on a ‘"position line" too (fig.9).
Subnetports and ports of the related descriptor,
though representing logically the same, look
different, but they have the same relative
position to the descriptor respectivly the
subnet. This position naturally is a run-time
value. If for example an instance of subnetport
is created (INSERT), the related symbol of a
descriptor port is automatically added at the
related position. Subnets are visualized by
block diagrams completed by particular symbol,
the drawings legend, which represent attribute
values of the subnet.

To describe the symbols the GRIMBI-DDL uses
the graphic primitives POINT, POLYGON, CIRCLE,
TEXT, characterized by usual attributes.

Graphics Interface '82

T 9

DESCRIPTOR

e ? ‘}t?gosmou
— Q- — L@
- © ©
& |
. __.__.__..65}_.

Fig.9: DESCRIPTOR-SUBNET graphicé

3. _DATA MANIPULATION

After initialization of a GRIMBI-BANK for a
special model class (schema), modelling s
supported by a many data manipulation operations,
bounded by the model class restrictions. As the
schema is interpreted at run time, the GRIMBI
user may switch easyly between different data
bases and to handle two bases at the same time
(split screen), one for modelling, the other for

reading or graphical editing, that means for
example shifting of symbols or routing of
connections. A model is represented by a

NETPOOL, containing one NET and several SUBNETs
(fig.3). According to the management of
technical drawings, a NETPOOL s ra2lated to a
complete set of drawings, a NET to the general
sketch and the SUBNETs to the detail drawings.
To each SUBNET the system may hold design
alternatives, having the same interface
description (DESCRIPTOR).

Regions of interest (NETs, SUBNETs) are
accessed by the following operations: OPEN - to
get the region of interest by name; CLOSE - to
Teave it; JUMP - to switch from a subnet port in
the actual subnet to the related subnet;
ALTERNATIVE - to go from the actual subnet to a
design alternative, belonging to the same
descriptor; DETAIL - to switch from the actual
net/subnet to a subnet, pointed to by a specified
descriptor; ABSTRACT - to actualize the
net/subnet containing the descriptor of the
current net/subnet.

Structured” modelling is supported by these
operations: INSERT(DELETE) NET/SUBNET; DETAIL
NEW - to insert a subnet, detailing a specified
descriptor of the actual net/subnet; ABSTRACT
INTO - to insert a descriptor, representing the
actual subnet, into a higher Tlevel of
abstraction; ALTERNATIVE NEW - to generate a
design alternative to the current subnet;

157

CONTRACT - to replace a part of a subnet/net by a
descriptor, creating automatically a subnet,
containing the removed structure; EXPAND - to
replace a descriptor by one of its subnets.

Basic modelling operations are: INSERT
(DELETE) BASEOBJECT/RELATION/COMPLEX/DESCRIP-
TOR/SUBNETPORT/NETPORT - to create or delete
instances of the appropriate types; CONNECT/
DISCONNECT - to insert/delete a connection of
specified type (relation); COPY - to copy an
object group with all its internal connections
within the actual net/subnet, or into a new
subnet, or to copy a subnet into the actual
net/subnet. The CHANGE command is used to change
attribute values of an object. JOIN joins the
tuples of two relations of the same type, SPLIT
tranfers a tuple subset of one relation to
another of the same type.

A1l these operation involve both the problem
data and their graphical representation. However,
there are many operations, which deal with
graphics only. They serve for improvement of the
visual representation of the information, without
modifying their semantic meaning. These graphic
editing commands can neither change the topology
of the model nor the symbols or the data, but they
are used to change the route of connections, to
shift, rotate, or scale symbols or groups of
symbols, and to change the visibility of graphics
information, in order to clarify the picture.

Besides logical zooming, based on the
DESCRIPTOR-SUBNET-concept, graphical zooming,
and panning are available.

Navigation in the model structure for analysis
is done using the SEARCH operation, starting from
a "actual position", a group of system managed
data, consisting of the "actual object" and the
"actual relation". Theses positional data may be
pushed/popped. Direct search is possible too.
Access to data of an actual object or relation is
supported by appropriate statements.

4. SYSTEM ARCHITECTURE

The implementation environment of GRIMBI is
shown in fig.10. GRIMBI is running on an IBM
370/168-3033 and a TEKTRONIX-4081 intelligent
graphic terminal. Basic software on the host is
the integrated kernel system REGENT /3/ (an ICES
Tike system), sometimes called "engineering
methods base system"; on the satellite the
TEKTRONIX-DGSS software /4/ is used.

GRIMBI is composed of (fig.11) two REGENT
subsystems (DBANET: data base administration for
nets, DBMNET: data base management for nets) and

a module running on the satellite (IGSNET:
intelligent graphic satellite for nets).
Additionally, fig.11 shows two other REGENT

subsystems, which have been proved to facilitate

Graphics Interface ‘82

iy
i N [) |4 | HC | —] orseiay
[] I* I JOYSVITCH
Y

KEYBORD
B __E:Hz;.sémsc

DGSS FLOPPY

<=9688 BAUD
ASYNCHRONOUS
l MVS-TSO I ‘——‘{ DISK
b

MVS
REGENT

PLOTTER

1BM 378/168-3833

PO
Fig.:10: Hardware and software used by GRIMBI

the implementation of new subsystems. PLS
supports the definition of subsystem POLs and
GIPSY, the REGENT graphic subsystem, allows to
handle 2D and 3D graphics and to convert graphic
rapresentations into a portable graphic metafile.
A1l REGENT subsystems may be used to implement
new subsystems. The association of GRIMBI to
REGENT provides a useful integration of batch
activities (analysis of models) with interactive
tasks (model synthesis).

REGENT

"PLe"

POL-DEFIN.

"GIPSY" o
GRAPHICS METAFILE
ANALYSIS I CRAPHIC SATELLITE
SUBSYSTEMS

"DBMNET" |} IGSNET
GRIMBI-DMS
GRIMBI- | |
4| “DBANET" PROBLEM-DB GRIMBI-

GRAPHIC-DB
GRIMBI-DDS

E

P10
Fig.11: GRIMBI and REGENT

LOAD DISTRIBUTION STRATEGIES

Distributed systems aim at optimum utilisa-
tion of the available resources. A particular
goal is the reduction of response time.

Three basic strategies may be distinguished
with respect to the assignment of tasks to the
host or satellite respectively /5/:

- Fixed distribution: A1l tasks are dividad in-
to two classes; One class is always aliocated
to the satellite, the other to the host.

- Controlled distribution: Some tasks may be
allocated to either the host or satellite
depending on explicit statements of the
operator at run-time or system initialisation
time.

- Dynamic distribution: Some tasks may be
allocated to either the host or satellite
depending on the actual work load on these
partners and on characteristic values of the
task. The system itself performs the
allocation.

Combinations of these strategies may be found.
However, as tasks should be considered as steps
in a process /6/, whose state is characterized by
a possibly large set of data, shifting a task
from the host to the satellite or vice-versa
requires transfer not only of the operations
(which could be 1implemented on each partner
computer) but of all data that represent the
process state. As the data link between host and
satellite has a rather limited capacity in our
environment (as in many others), optimum response
performance calls clearly for a design that
minimizes data transfer. Thus, no benefit can be
taken from the conceptual advantages of dynamic
(and also controlled) distribution of tasks.
Consequently, for GRIMBI a fixed distribution of
tasks was chosen.

THE FIXED DIVISION OF LABOUR IN GRIMBI

The task allocation is primarily determined by
the system response time, which the operator
expects in a certain design situation. Therefore
in /5/ three classes of tasks are distinguished:
lexical, syntactic and semantic. For each of this
classes, the operator will accept a typical
response time. For GRIMBI we decided to handle
all tasks of lexical and syntactic level on the
satellite, that means tasks, which should be
executed in a few seconds and less. The
distribution of tasks (functions and data)
therefore is as shown in fig.12.

Of course, the distribution is always a matter
of judgment. In particular, the subtask of
checking problem restrictions using the schema
information alone (e.g.: checking attribute
values for validity or checking special kind of
connection restrictions) is a candidate for being
allocated to the satellite. This would imply
duplication of the Jlogic schema for the
satellite, to prevent schema access via data
link. However, input checking involving context
information (problem data) always remains as a
host task, because the problem data base
management, including analysis, requires
resources which are available on the host only.

Graphics Interface ‘82

dialog handling
split-screen management
data representation graphics

- positioning of symbols

- routing of connection-lines

- identifying data (pick)
editing of blockdiagrams (DRAWING)
plotting

|

|

[

|

|

|

|

|

|

|

[

| graphic data base
| - symbol library (graphic schema)
| - blockdiagrams
|

| HOST

|

|

|

I

I

I

|

|

|

|

|

|

data definition (model class definition)
problem data management
- handling of problem restrictions
using the logic schema
- handling of problem restrictions
using context informations
data base analysis

problem data base
- schema
- problem data

Fig.12: Task distribution‘of GRIMBI

PARALLEL EXECUTION OF SUBTASKS

The task (or process /6/) concept of
distributed systems offers the Feature of
parallel execution of tasks on the host and the

satellite. For illustration we use the command
INSERT, starting the following sequence of
subtasks:

1. input of a command

2. interpretation of command (resulting in

the display of a graphical symbol)

positioning of symbol

insertion of symbol in graphic data base

checking of validity

if ok then insertion of data in problem

data base else error message

. if error message then delete symbol from
graphic data base

(oA 3 B~ Y U]

~

There are two groups of tasks: (1) editing of
the graphical data representation, burdened with
human interaction, and (2) handling of problem
data. As both groups require a few seconds each,
response time could be gained by parallel
execution as shown in fig.13.

159

e e e e T T T —p——— +
e +! |
	1.getting a command	!
	2.interpretation of	!
l command	!	
e b +!		
v !		
[fsensecssss + !		
¥ ! v		
== e e +		
	3.positioning of	!
Il symbol 1 validity		
	4. insertion of	'] 6.if ok
symbol in] then insertion	
graphic data base	!	in problem base
e +!] else error message		
	ks +	
synchron.	! v	
	==-mmmmeee e * !	
¢ !		
[Fmm s e s +! [
1 7.if error message	!	
delete symbol	!	
e s s e e +!		
SATELLITE ! HOST		
e e T T +

Fig.13: Parallel subtasks

AUTONOMOUS SUBTASKS

To improve the response time behaviour is one
goal in implementing a CAD-system on a
host/satellite system. But another goal of using
such a configuration with two processors is to
achieve maximal independence of both subsystems,
to be able to use parts of the CAD-system,
probably with reduced demands on the abilities.
This improves the over-all availability of the
CAD-system. Typical subtasks, which should be
executable in a stand-alone manner (without
support of the partner computer) are for the
host:

- to parse and analyse the problem data base

- to change values of elements for parametric
analysis of the model

- to define new models in batch mode using a
problemoriented alphanumeric language
(Addition of the graphical representation
of the data should then be possible
interactively later on).

The satellite should be able to process the
following subtasks without host interaction:

- to draw blockdiagrams without problem
dependent checking (DRAWING)

- to browse and edit data representations
(blockdiagrams belonging to a problem data
base)

Graphics Interface 82

To solve these problem without host support,
not only representation graphics has to be
available, but also parts of the problem data:
the model topology, to prevent topology
violations while editing blockdiagrams.
Therefore an independent, self-contained subtask
for blockdiagram manipulation is implemented on
the satellite. These blockdiagrams, usable as
drawings and in host interaction (MODELLING) mode
as graphic representation of problem database
data, are characterized by:

- a set of symbols with ports, graphic
attributes (to supplement the basic
symbols, f.e: signal negation point at a
gate port) and text windows (describing
position, lines, columns) for attached
texts,

- a set of relation-symbols, each represent-
ing a set of connections of the same type
in a blockdiagram (connection legend)

- connections of given types.

Using these independent abilities, GRIMBI is
able to realize a usefull '"split-screen"-
technique, which allows to work effectively with
two subtasks at the same time.

(1) modelling a system with host interaction,
obbeying problem restrictions (e.g. fault
tree synthesis)

(2) browsing or editing another data base of
probably other model class (e.g. R&I-
data) to get information about how to
model (fault trees). This is done without
host interaction.

Implementing a CAD-system like GRIMBI in a
timeshared host environment using a satellite to
improve the response time behaviour and the over-
all availability of the system (including
subsystem availability), a fixed distribution of
labour and data is a usable solution, especially,
if the data link is the main bottleneck. Analysis
of the CAD-system should be done with regard of
subtasks (or subprocesses) instead of
subfunctions.

Thereby two subgoals should be considered:

(1) Separation of parallel executable
subtasks, to be able to optimize the
response time behaviour of the system, if
a multitasking operating system available
on the satellite

(2) Separation of autonomous subtasks to be
able to use parts of the CAD-system with
only one processor.

5. CONCLUSION

GRIMBI is a CAD-system supporting functional
modelling. In a data definition phase, model
classes with problem oriented modelling
restrictions are described, using the GRIMBI-DDL,
based on a data model, suited to functional
modelling. Modelling operations are bound to
theses model classes, thus enforcing consistency
of the models. Modelling is supported by working
methods, usual in systems sythesis: stepwise
refinement/abstraction, management of design
alternatives. Model analysis algorithms are
written using the GRIMBI-DML, an extension PL/1.
Special DML-statements are available to
facilitate navigation in the data structure.
GRIMBI is implemented as a subsystem of REGENT on
a main frame, delegating interactive and graphic
tasks to a satellite. It enhances the batch
system REGENT by a probiem oriented data base
component and a graphics oriented dialog
component. GRIMBI 1is presently used in safety
analysis of nuclear plants for synthetizing fault
trees, which are used as a basis for analysing
the risk of nuclear energy.

ACKNOWLEDGEMENT

The author would Tike to thank Mr. E. G.
Schlechtendahl for his helpfull comments during
the preparation of this paper.

REFERENCES

/1/ Caldarola,L.: Generalized Fault Tree
Analysis Combined with State Analysis.
Report Nr.: KfK-2530, Kernforschungszentrum
Karlsruhe, West Germany, 1980

/2/ Leinemann,K.: Ein System zum funktionellen
Modellieren unter Verwendung von Datenbank-
techniken und interaktiven graphischen
Arbeitsmethoden. Report Nr.: KfK-3217,
Kernforschungszentrum Karlsruhe, West
Germany, 1981

/3/ Schlechtendahl,E.G.,Leinemann,K.: The
REGENT-system for CAD. In: Allan,J.J.III:
CAD Systems. IFIP Working Conf. on CAD
Systems, Austin (Texas), North-Holland
Publishing Company, Amsterdam (1975).

/4/ TEKTRONIX: P10t80-DGSS Reference Manual.
Beaverton(1378)

/5/ Foley,J.D.: A Tutorial on Satellite Graphics
Systems. Computer (1976)8 p.14-21

/6/ Schlechtendahl,E.G.: CAD Processes and
System Design. In: Encarnacao,J.: Computer
Aided Design, Modelling, Systems Engineer-
ing, CAD-Systems. Lecture Notes in Computer
Science Vo1.89, Springer, Berlin (1980).

Graphics Interface '82

