23

SOFTWARE FOR DEVICE-INDEPENDENT GRAPHICAL INPUT

by

Griffith Hamlin
Los Alamos National Laboratory

ABSTRACT

This paper discusses a three-level model and a graphics
software structure based on the model that were developed
with the goal of making graphical applications independent
of the input devices. The software structure makes
graphical applications independent of the input devices in a
manner similar to the way the SIGGRAPH CORE proposal makes
them independent of the output devices. A second goal was
to provide a convenient means for application programmers to
specify the user-input language for their applications.

The software consists of an input handler and a table-driven
parser. The input handler manages a CORE-like event queue,
changing input events into terminal symbols and making their
terminal symbols available to the parser in a uniform
manner. It also removes most device dependencies. The
parser is table driven from a Backus-Naur form (BNF) grammer
that specifies the user-input language. The lower level
grammar rules remove the remaining device dependencies from
the input, and the higher level grammar rules specify legal
sentences in the user-input language.

Our implementation of this software is on a table-top
minicomputer. Our experience with retrofitting existing
applications indicates that we can find a grammar that
removes essentially all the device dependencies from the

application proper.

Key words: device-independence; graphical input; user

interface.

I. INTRODUCTION

The proposed SIGGRAPH CORE standard provides a
large measure of device-independent graphical
output [1]. It represents a synthesis of many
years experience in producing graphics output on
various devices. The same measure of device-
independent graphical input, however, does not
exist. The CORE proposal does eliminate
application program dependence upon specific
physical input devices, provided the physical
devices can be cast into one of several
logical-device classes (pick, button, valuator,
keyboard, locator). However, logical-device
dependence of the application program is not
addressed. Also, it is hard to see where some
input devices (for example, a voice recognition

unit) fit into the logical-device classification
scheme. Van den Bos has described an
alternative to the logical device model [2].
This paper presents a model that can incorporate
the Graphics Standards Planning Committee (GSPC)
logical-device model, but adds another layer
between the logical devices and the application.

II. MODEL OF USER INPUT

The literature identifies three different types
of processing of the user's input: lexical,
syntactic, and semantic (see Fig. 1). 1In
looking at several existing programs at the Los
Alamos National Laboratory, we observed that
device dependence is usually introduced into the

Graphics Interface ‘82

application at the middle level. At the first
(lowest) level of the model in Fig. 1, users
select and use physical-input devices. Software
provides them with low-level (lexical) feedback.
Examples of this are tracking a table or light
pen and echoing of text. This processing is
device dependent but application independent,
although the device may be able, through
subroutine calls, to specify one of several
alternative types of lexical-level feedback.
This level of software also changes physical-
device input into logical-device input, and
corresponds fairly well to a CORE-like input
subsystem.

Device
Application Independent
Semantic *
Processing Application
Dependent
Logical
Syntactic EQVICZ R
Level > SpAGER
P .
Sapsaig Application
} Dependent
Logical
Device
Inputs
Physical
Lexical gevnc: t
Level RDSRESE
p g
rocessing Application
Independent
Physical
Input User
Devices Feedback
Fig. 1

At the second level of the model, the processing
becomes application dependent. In most
applications we studied, the processing was also
device dependent because the application
required certain (logical) devices to be used.
Here the application-dependent syntax is checked

24

to see if the series of user input forms a legal
phrase in the user-input language of the
application. Syntactic-level feedback is given
at this level. This feedback may involve
reasonable amounts of application-dependent
processing, but this processing is not the
primary processing of the application. If the
input specification corresponds to a legal
phrase in the user's input language, this
processing often changes the input phrase (often
a single parameter of a command) into a standard
form for use by the rest of the application.

At the third (highest) level of our input model,
the processing is application dependent and is
usually logical-device independent. Changing
user input phrases into some standard form in
the middle level typically removes the device
dependencies in the applications we studied.
This third-level processing may gather up
several such phrases (parameters) until a
complete sentence (command) is available, and
then perform the processing requested by the
command. Command processing is the primary
processing of the application.

III. SOFTWARE STRUCTURE

According to our model, software for graphical
input should be able to isolate the device
dependencies in an application to, at most, the
middle level, and perhaps eliminate most device
dependencies even from that level. Fig. 2 shows
the basic soflware structure we use Lo Lry to
accomplish this. At the bottom of Fig. 2, we
have indicated a standard CORE-like input
subsystem that accepts physical-device input and
converts it into logical-device input. This
subsystem corresponds to the lower level of the
model and is application independent but device
dependent. In the CORE proposal, the main
application program would access this logical-
device input directly through the event queue.
However, we have added two modules at this
point: the input handler and a parser. The
input handler is part of the lower level
(application independent) processing and the
parser is at the middle level of the model. We
feel that with proper grammar design the input
handler and the lower level grammar rules in the
parser can be used to remove the logical-device
dependencies from the input.

The function of our input handler module is to
continually scan the input-device event queue,
changing input events into terminal symbols for
the parser and making them available to the
parser in a uniform manner. Our input handler
module recognizes some special user-input
actions that allow users to enable/disable the
various input devices, thus giving them some

Graphics Interface '82

Application Logical
Program |- Device
’ Independent
"Standardized” Application
Input D
Sentences pencent
i
Table-driven |e Grammer |
Parser - Table [77
'
"Stondardized”
Input Logical
Phrases Device
l Dependent
Input .
HonZler & Application
f Independent
Logical
Device
Inputs
|
Physical
Core—like Device
Input B Dependent
Subsystem
’ Application
Physical User iniclwpanicient
Input Feedback
Devices
Fig. 2

measure of dynamic control over the choice of
input device. It also removes most device
dependencies by passing to the parser the type
of input rather than the device from which the
input came. For example, it makes selecting a
menu item with a locator device
indistinguishable from typing the name of the
menu item on a keyboard or pushing a button
associated with the menu item. It also makes a
position indicated on a locator device
indistinguishable from that position entered by
typing the coordinates on a keyboard. Foley and
Wallace have discussed simulating one class of
input device by another class [3]. Generally,
our input handler makes such simulation
invisible to higher levels of software. Only
the type of input is returned, not the device
from which it came. The input handler may, by
default, enable and arm a device that is
normally used for the expected type of imput,
but this is not required.

25

Sometimes, however, the application programmer
may wish to generate different syntactic-level
feedback for input from different devices. Our
software discourages this, but allows for it in
order to handle special circumstances. For this
reason an application can, by a request to the
input handler, find out the logical device that
produced each input terminal symbol. Use of
this information, of course, introduces device
dependencies at the next higher level. To
isolate these dependencies as much as possible,
our next level software is a table-driven parser
whose lower level grammar rules are designed
specifically for each application to remove the
remaining logical-device dependencies. These
lower level rules have the effect of
transforming the input phrase into a standard
form. The parser's semantic interface at this
level provides the syntactic user feedback by
calling application-dependent routines. These
grammar rules can, with some effort, distinguish
between different input devices. However, it is
just as easy not to do so. We hope this will
encourage device independence. With experience
it might be possible to discover a set of
often-used, lower level input grammar rules and
build them into the input handler.

The higher level grammar rules used by the
parser determine if user input forms legal
statements in the user input language, and
provide a semantic level interface to the
application program, passing it user input
commands that have been transformed into a
standard form. This corresponds to the third
(highest) level of our model.

IV. IMPLEMENTATION

This software structure has been implemented in
Fortran on a DEC LSI-11 microcomputer. This
places the first two levels of input processing
on the microcomputer, isolating all device
dependencies to the microcomputer so that the
main application program running on a host
computer is input- and output-device
independent. The physical input devices include
a keyboard, a data tablet, a joystick, a voice
recognition unit, several knobs and switches,
and a thumbwheel cursor, which is part of the
Tektronix 4014 storage tube output device.
Output devices include the storage tube and a
high-resolution (768 x 1024) black-and-white
video display.

An implementation of the proposed CORE input
subsystem was not available, so our input
handler scans the physical devices directly,
funneling all input into a stream of terminal
symbols to the parser. An application program
can pass to the input handler the physical

Graphics Interface '82

layout and entries in a menu on either of the
two locator devices. The input handler will
then make indistinguishable to the parser
keyboard entries of the menu items and locator
hits on the menu items. Special keyboard keys
are recognized by the input handler and allow
the user to enable/disable the thumbwheel cursor
and display of the menu on the storage tube
screen. Although the application program can
specify that it wants one device or the other
enabled for the next input, the user is not
required to use it. The only way the
application programmer can absolutely require
use of a certain device is to request the input
handler to provide device information in the
form of specific device-dependent terminal
symbols and to specify these device-dependent
symbols in the grammar used by the parser.
Then, if the user uses anything but the required
device, it will not parse and the application
program's error routines will be invoked.
Although this type of use of the system is
possible, the system discourages this use by
making it harder to require a specific device
than it is to allow use of any device. This
behavior is opposite to the way many existing
systems work.

The parser used in this implementation is LANG-
PAK [4], a table-driven parser in fairly wide
use. [t allows the application programmer to
enter a grammar, along with semantic operations
to be invoked upon matching the various grammar
rules. Sample input sequences can then be
interactively entered and checked by the parser,
so that the application programmers can check
their grammar. The semantic interface between
LANG-PAK and the application program was changed
in this implementation so that any Fortran
statement or statements can be placed as
semantic specifications anywhere in the grammar.
These statements will be executed when the
associated grammar rule, or partial rule, is
matched in the user input string. These
statements are typically CALL statements to the
various application program subroutines that
perform the actions associated with various user
input.

V. USES

For interfacing to existing Laboratory
applications, we have built on top of the
graphical input software a small LSI-11 resident
program that communicates with the main time-
sharing network at the Laboratory. This system
provides a user-tailorable front-end to other
existing applications that run on the Lime-
sharing system. User input from the various
graphical and text input devices is mapped by
the parser and associated semantic routines onto

26

the input format required by existing Laboratory
applications. Dillerent grammav and semantic
routines are used for different existing
applications. The first application, MAFPER, is
an existing Laboratory application for producing
presentation slides [5]. MAPPER reads a file of
commands that specify the slide, including x,y
coordinates of graphics entities such as boxes,
circles, and lines. The common mode of using
MAPPER is to use a text editor to construct a
command file and then execute MAPPER with this
file as input. We observed that the most time-
consuming aspect of this use of MAPPER is
correctly entering the x,y coordinates of
various graphical entities. Iteration is
necessary because we are forced to use a
nongraphical keyboard to specify graphical
objects. A grammar was written for the LSI-11
resident front-end program that accepted input
from all devices and converted it to the MAPPER
format. A menu was laid out providing an item
for each MAPPER command. With this menu, users
can trace existing sketches of slides or create
new sketches on a data tablet. No modification
to any program running on the time-sharing
system was required. Using this front-end on
several test slides, we found that the time
required to generate a slide was reduced
considerably because of the reduced number of
tries needed to position the graphics objects
correctly.

the

One problem with this usage is providing
convenient syntactic-input language phrases and
feedback on all devices without modifying the
application on the host computer. We prefer to
be able to specify graphical objects differently
on different devices. For example, MAPPER
requires a center and a radius to specify a
circle. If we use the tablet for the center
point, we must change to a valuator device or
simulate a valuator with the tablet to give the
radius. It would have been straightforward to
use the tablet to enter a center point and a
point on the circle, but the existing
application was not written that way. Our
solution was to perform syntactic processing in
our microcomputer on two tablet points, a center
and a point on the circle, to calculate a radius
that was then passed to MAPPER. This
modification of the user-input language worked
successfully, but it introduced some device
dependencies into the lower levels of the
input-language grammar and introduced some
device-dependent processing of the tablet input.

The second application to use this system was a
small two-dimensional interactive drawing
program called DRAWIT. DRAWIT allows the

definition of sub-objects and instances of thesc
sub-objects to be placed at various positions on
1t allows modification or deletion

the picture.

Graphics Interface ‘82

of these sub-objects as entities and also allows
drawing and deletion of individual lines and
text in the picture. The user-input language
was purposely kept quite simple to facilitate
use on different logical-input devices. Each
command consists of a logical button (to specify
the command), optionally followed by a location.
For example, the location following move or draw
commands specifies where to move or draw to.

The only exception is the command to place text
in the picture, which is followed by a text
string. This syntax was well suited to our
Tektronix thumbwheel cursor, which allows us to
couple a single keyboard character with the
cursor location. Also, we could easily simulate
this syntax using only the keyboard, using only
the cursor, or using only the tablet by
designating part of the tablet as a menu of
commands. Our input handler alone was able to
remove all device dependencies from higher
levels of software in this case, which allowed
the user to choose among all possible ways of
using our three physical devices to specify two
input items. Our parser in this case
essentially performed the identity function.

With use of DRAWIT, we observed a user
preference for the tablet device. We also
observed that it was annoying to be forced to
alternately move the tablet stylus between the
locator area and menu area of the tablet,
especially on the draw command, which was often
repeated many times in succession. Therefore,
we modified DRAWIT slightly to improve its use
with the tablet by allowing the command to be
omitted if it was the same as the previous
command. Even though the impetus for this
modification came from a particular device,
DRAWIT is still input-device independent in the
sense that it processes input from all devices
in the same manner. Indeed, it does not know
which device produced its input.

VI. CONCLUSIONS

This software structure has been used to
successfully retrofit existing applications and
remove device dependencies. This structure -
allows existing applications to make use of
newly available input devices. The hardest
problem has been providing good syntactic level
phrases and feedback on all devices without
modifying the existing applications.

With this system, we tend to continue using the
current input device (to preserve tactile
continuity) until we really need to switch to
another one. This use is made possible by the
user being able to select/deselect input devices
without the application program's intervention.
However, an application may require first an

27

input from one device class and then an input
from another device class. We can simulate one
class of device with another. We took this
approach in both applications described above.
This system was successfully able to hide the
simulation from the application, but it was not
able to do so and still make optimal use of all
the devices from a human engineering viewpoint.
These difficulties were remedied in the two test
applications, either by changing the
application's user-input language or by
introducing some device-dependent processing of
some user input.

The table-driven parser has isolated the input
language specifications and has made
experimenting with user input languages much
easier.

We conclude from our limited use of this
software that it can successfully eliminate
application dependence upon specific logical-
input devices. However, the software can not
guarantee successful human engineering for all
devices.

REFERENCES

1. "Status Report of the Graphics Standards
Planning Committee," Computer Graphics
(13,3), August 1979.

2. Jan Van den Bos, "Definition and Use of
Higher Level Graphics Input Tools," Computer
Graphics (12,3), August 1978, pp. 38-42.

3. J. D. Foley, and V. L. Wallace, "The Art of
Natural Graphic Man-Machine Conversation,"
Proceedings of the IEEE (62,4), April 1974,
pp. 462-471.

4. L. E. Heindel, and Jerry Roberto, LANG-PAK -
An Interactive Language Design System,
American Elsevier, New York, 1975.

5. D. H. Dahl, "MAPPER User Manual," Los Alamos
Program Library Write-up J5AJ (1979).

Graphics Interface ‘82

