
345

THE USE OF OBJECT ORIENTED LANGUAGES IN GRAPHICS PROGRAMMING

Mark Green and Paul Philp

Unit for Computer Science J
McMaster University

Hamilton, Ontario
Canada

ABSTRACT

In this paper we discuss the application of object oriented languages to the construct ion of
graphics programs. Our experience with a particular object oriented language, called EDL, suggests
that this type of language is superior to more traditional languages wh en it comes to the production
of highly interactive graphics programs.

We present a brief description of EDL and outline our implementation of it. Language features
that support graphical input and output are discussed. The use of EDL in the construction of user
interfaces, and several applications of EDL are presented.

KEYWORDS : object oriented languages, graphics languages, user interfaces

1. Introduction

For several years we have been using an
object oriented language, called EDL , in the
production of highly interactive graphics pro­
grams. Our experience with this language sug­
gests that this type of programming language is
superior to more traditional programming
languages for this particular application. In
this paper we present a brief.introduction to
the object model of computation and the particu­
lar obj ec t oriented language we have been using.
Our implementation of EDL is briefly described
giving special at t ention t o graphical inp ut and
output. We then show how EDL can be used in the
construction user interfaces. The final section
of this paper describes three typical applica­
tions o f EDL.

In the object model of computation a pro­
gram consists of a number of independent enti­
ties called objects. Each object has a data

area a nd a set of procedures. The data in an
object can only be accessed by that object. The
objects in a p rogram communicate by sending mes­
sages to each other. A message consists of the
name of the object to receive the message, the
name of the message, and any data associated
with it . Wh e n an object receives a mess age the
message name is used to find the procedure that
processes it. The procedures in a n object can
change any of the object's data values, send
messages, and create new objects. Conceptually,
each o f the objects in a program is a separa t e
process running concurrently with t he othe r
objects in the program . This model of comp uta ­
tion encourages the development of highly modu­
lar program with each object responsible f or one
well defined function.

Two well known object oriented languages
are Smalltalk [Kay 1977) [BYTE 1981] and Actors
[Hewitt 1977] .

Graphics Interface '82

2. Language Description

In this section we present an brief
introduct i on to the EDL programming language. A
more detai led description of this language is
contained in the EDL Programmer's Manual [Green
1982a).

2.1. Data

There are four data types in EDL; numer­
ic, string, sequence, and code. The two simple
data types are numeric and string. The numeric
data type represents numeric values, either
integer or real. The string data type is an
arbitrary length character string. Literals of
this type are represented by a series of charac­
ters enclosed in double quotes (e.g. "string").

The only structured data type in EDL is
the sequence. A sequence is an ordered set of
elements. An element can be either another
sequence , or one of the simple data values.
Literal sequences are made up of sequence ele­
ments enclosed in brackets. Some example
seq uences are:

1 23 4 5

"a s tring" 10 "another sequence"))

1 [2 [3 1 4 5)

Each sequence has three special posi­
tions; first, last, and current. First ~nd last
correspond to the first and last elements in the
sequence. The current position can point to any
element in the sequence. It is used for scan­
ning through sequences. The current position
can be set to the first element of the sequence
by the use of the reset operator. It can be
advanced to the next element by the use of next.

Values at any of the three positions can
be examined. There are primitives to extend the
sequence at either end and to insert items into
the middle of it. It is possible to pop values
off the front or back of a sequence. These are
the only destructive operations that can be per­
formed on sequences.

The last data type is code. This data
type is used to represent executable program
code. This is the only program representation
that is maintained by the system. In order to
o btain the source form of a program the operator
makestring is used.

Var iables are assigned types when they
are declared. There is no static type checking

346

in EDL. All type checking is performed at run
time (this is similar to Small talk [Inga lls
1978). There are operators for determining the
type of a data value.

2.2. Statements

All statements in EDL have the same basic
form. A statement consists of a statement body
and an optional guard. A guard consists of the
keyword if followed by a logical expression.
The body can be an assignment, an operator, or a
statement list. A statement list is a list of
statements enclosed in braces (ie. { and }).
The guard and body parts of a statement are
separated by the keyword do. If there is no
guard the do is optional. A statement is exe­
cuted if its guard is true, or if it has no
guard. If the guard is false the statement is
skipped. Some example statements are:

x=x+l ;

if eq(y,20) do print(x);

if ne(x,O) do {
z=y / x ;
x=x-l ;
print (y) ;

} ;

2.3. Tools and Events

The objects in EDL are called tools.
Each tool is capable of processing a number of
different types of events. An event has a name,
and a value. This value is of a specified type.
Inside its defining tool an event is associated
with a statement. When the event occurs this
statement is executed.
access the value of
e ent's name.

An event's statement can
the event through the

There are two types of events in this
sys t ern ; ex t ernal and internal. An ex te rnal
event occurs when a user interacts with an inpu t
device . In this case the event name has previ­
ously been associated with that input device.
The event's value wil l be the new value of the
device. An internal event is generated when a
tool performs a send operation • . The send opera­
tion specifies the name of a tool, the name of
an evpnt, and the value of the even t . ~his

operation has the following format

tool_name <- event name data

If more than one data value is
are collected into a sequence.
then used as the event's value .

specified, they
This sequence is

Internal events
are us ed for communications between tools, and

Graphlc8 Interface '82

to implement control structures.

The defini tion of a simple stack tool is
shown in fig. 1. A tool definition consists of
four sections. The first section contains the
name of the tool and the definitions of its
pa rame ters. These parameters are the same as
varia bles, except they are given a value when
the tool is created. The next section of the
tool contains variable declarations. All vari­
ables used in a tool must be declared. A vari­
able is declared by specifying its name and
type. The event section of the tool definition
contains event declarations. An event declara­
tion contains the name of the event, its type, a
device association (if it is an external event),
and a statement. The declarations for internal
and external events have the following formats.

on event name type perform statement

on event_name type assoc device_name
perform statement ;

In these declarations on, perform, and assoc are
keywords and device_name is the name of an input
device. The last section of the tool definition
contains the initialization statement for the
tool. This statement is executed when the tool
is created.

The stack tool's parameters specify where
an event is sent if an error occurs in the
operation of the stack. The only error that
could occur in this tool is an attempt to pop an
item off an empty stack. The only variable
declared in this tool is "store". It is used to
store the values in the stack.

A s tack tool can process
events; push a nd pop. The push
va lue onto the top of the stack.
following format

two t ypes of
event pushes a

It has the

stack <- "push" value

able to store
to handle this a

An event of
pop event is
top of the

We would like our stack to be
values of any type. In order
special type called any is used.
this type can have any value. The
used for popping values off the
stack. The format of this event is

stack <- "pop" tool_name event name

The tool_name and event_name specify where the
popped value is to go. In response to this
event the stack tool first checks to see if t he
stack is empty. If it is an error event is sent
to the error handling tool. The break operator
exits a specified number of nesting levels. In

347

this case we exit to the end of the statement
for the pop event. If there is a value on the
top of the stack an even t is crea ted which sends
it t o the specified tool .

The initialization statement for the
stack tool sets the variable "store" to a new
empty sequenc e .

tool stack(error_tool : numeric;
er ror event: string};

var
store

event

sequence;

on push : any perform
a dd_front(sto r e ,push};

on pop : sequence perform {
if null ?(f irst(s tore}} do {

error tool <- error event pop;
break(2} ;

} ;
first(pop} <- l as t(pop} pop_front(store} ;

} ;

init
store newseq;

endtool;

fig. 1

A tool instance is created by the use of
the activate operator. The parameters to this
operator are the name of the tool and its param­
eters . The name of the new instance is returned
as the va lue of thi s ope r ato r.

To create a stack instance called "st"
the following statement is used.

st = activate(stack,error,"stack_error"};

After the activate call " s t" is ready to accept
push and pop events. The deactivate opera t o r
can be used to destro y a tool instance.

3. The Implementation of EDL

The current implementation of EDL runs on
a PDP 11/23 minicomput e r under the UNIX operat ­
ing systpm . The graphical display dev ices sup ­
ported by this implemen t ation include a AED 512
colour graphics display, a ADM 3A with r e tro­
graphics, and several standard ASCII terminals.
Input devices inc l ude a Summagraphics Bit Pad
with a fou r butto n cur so r, a joystick , and ASCII

Graphics Interface '82

keyboards.

The EDL system consists of a compiler and
an interpreter. The compiler translates EDL
source programs into byte code instructions that
are executed by the interpreter. These byte
codes are similar in format to the ones used in
Smalltalk [Ingalls 1978].

The EDL interpreter has three major com­
ponents, the byte code interpreter, the storage
management system, and the input sytem. All
three components are implemented as a collection
of routines written in 'C'.

The largest of these components is the
byte code interpreter. The byte codes are exe­
cuted on a stack based machine, and they include
special instructions for the sending of mes­
sages. Most of the EDL compiler has been incor­
porated into this part of the interpreter so
statements can be interactively entered and exe­
cuted.

The storage management system provides a
two level storage structure for objects. Wh e n
an object is created the storage manager allo­
cates space for it in main memory. If a request
for storage is made when main memory is full,
the virtual memory processor is called. At this
point objects a re swapped out onto a disc fil e ,
on a least recently used basis, until enough
space is freed. Objects remain on the disc
until they must respond to a message.

One of the more interesting featu-es of
EDL is the input system, which generates the
external events that provide the driving force
in an EDL program. At regular intervals the
status of all input devices is checked. If a
change in the status is detected, the current
state of the input device is read, and the event
associated with this device is generated. This
event is sent to all objects that have external
events associated with the device.

4. Graphical Output in EDL

Most
and output
users. Two
production

EDL program rely on graphical input
techniques to communicate with their
approaches have been taken to the
of graphical output in EDL. Both of

these approaches will be discuss e d here .

Originally the display file model [Newman
1979] was used as the basis for graphical output
in EDL. In this model a global data structure,
called t he display file, is used to structure
the graphical output produced by a program. The
display file is divided into a number of seg­
ments which contain the graphical primitives

348

generated by the program. The progr am can
specify the segments to be displayed at any
point in time by using the post and unpost
operators. At any time onl y one segment, called
the open segment, can be receiving graphical
primitives from the program. This model is used
in most graphics subrouti.ne packages.

The use of the display file model in EDL
caused several problems. Since only one segment
Can be open a t a time only one obj e ct can be
producing graphical output at a time. In non­
concurrent programming languages this is not a
problem, but in EDL where several objects can be
producing graphical output at the same time this
was a severe restriction. It meant that when it
comes to producing graphical output all the
objects in a program must synchronize them­
selves. This is counter to the view of each
object being an independent entity. When an
object produces graphical primitives it needs a
segment to put them in. Segments are a global
resource so bef o r e an object can use a particu­
lar segme nt it must check to see if any of the
other objects are using the same segment. Again
thi s is counter to the philosophy of independent
objects. This experience i ndicates that any
graphics system that depends on a global data
structure will not work well in an object
oriented language .

The mode l of graphical output currently
used in EDL is much Simpler than the display
file model. In this model the objects in a pro­
gram use a pseudo display device that is capable
of displaying at least two colours (black and
white). There are two t ypes of geome trical
primitives in this model; lines and text. The
line graphical primitive is produced by the
drawline operator. The parameters to this
ope rator are the two end points of the line.
The tex t graphical primitive is produced by the
standard EDL print operators. The operator
movecursor is used to specify where the text is
to appear on the screen. A graphical primitive
can be removed from the display by using the
colour perator to set the colour to zero and
redrawing the pr imitive.

Display organization is provided b y the
objects that produce the display. Each objec t
that produces an image on the display must also
be capable of erasing that image a nd pe rfo r ming
any other graphica l operations on it . An exam­
ple of an EDL object that uses t his model is
shown in fig. 5 . Using this model it is possi­
ble t o const r uct a set of objects that simulate
the display file model.

Graphics Interface '82

5. User Interfaces

One of the major applications of EDL is
the production of highly interactive programs.
These programs make heavy use of graphical input
techniques and must have high quality user
interfaces. In this section we will look at how
some common interaction techniques can be imple­
mented in EDL and an example user interface.

One of the most common interaction tech­
niques is menu selection. In this technique the
user selects a command by pointing at it on a
display. Usually this display consists of com­
mand names or special icons that represent com­
mands. Menus can be handled quite easily in
EDL. A menu can be viewed as a collection of
rectangular areas. In decoding a menu selection
a program determines which rectangle the user
pointed at. The EDL operator "in" is designed
to simplify this decoding process. This opera­
tor takes three operands; a coordinate value, a
lower, and an upper bound. If the coordinate
value is within these bounds it returns true.
We can use two "in" operators to determine if a
point, (x,y), is within a rectangle in the fol­
lowing way

if in(x,xl,xu) and in(y ,yl,yu) do
print("in the rectangle");

This technique can be extended to decod­
ing the whole menu. As an example, consider the
menu shown in fig. 2 .

one 400

I
two 300

three 200

l four 100

900 1000

fig. 2

The positions of the commands in this menu are
indicated in the figure. The input device we
will use is a tablet that has a four button cur­
sor. The button used to select a menu item is
called the "z-button". An EDL tool that decodes
this menu is shown in fig. 3. The menu tool's
parameter is the name of the tool instance that
menu hits are reported to. The first two events

349

(xpos and ypos) defined in this tool have no
statements associa ted with them. Their only
purpose is to pick up the current position of
the tablet cursor. The zaxis event does all the
work in this tool. The first guard in this
event guarantees that the menu is decoded only
when the user presses the "z-button" and not
when he releases it. The rest of the guards
determine which rectangle, if any the tablet
position is in.

tool menu(control:numeric);

event
on xpos:numeric assoc tabx;

on ypos:numeric assoc taby;

on zaxis:numeric assoc zbutton perform {
if eq(zaxis,l) do {

} ;

if in(xpos,900,1000) do {
if in(ypos,SO,lSO) do

control <- "four";

} ;
} ;

if in(ypos,lS0,2S0) do
control <- "three";

if in(ypos,2S0,3S0) do
control <- "two";

if in(ypos,3S0,4S0) do
control <- "one";

endtool;

fig. 3

In most applications there are several
menus available to the user. The user interface
contains a tool for decoding each of these
menus. At any point in the dialogue only a sub­
set of these me nus will contain relevant c om­
mand s . In orde r to preve nt the use r from
selecting an inappropriate command only the
tools decoding relevant commands are ac tivat ed .
A control tool is used to determine the menu
decoders active at each point in the dialogue.

To illustrate the application of EDL to
user interfaces consider the following simple
user interface. The purpose of this user inter­
face is to aid the user in arranging a number of
simple geometrical objects on a display screen.
The geometrical objects ~an be circles, squares,
or triangles. There is a menu on the right side
of the screen containing the three shapes. The
user can select one of the shapes through the
use of a tablet. A copy of the selec ted
geometrical object is made and it is used as the
tracking cross. The selected geometrical object
can be dragged t o any position in the work area
and deposited there by pressing the "z-button"

Graphics Interface '82

on the tablet. An object in the work area can
be picked up again by pointing at it. It can
then be dragged to another position in the work
area. A picture of the display used by this
program is shown in fig. 4. A formal definition
of this user interface can be found in [Green
1981].

o

o
.-.~.-----------~-.-----'

fig. 4

This user interface can be divided into
four components; menu, work area, tracker, and
the geometrical objects. The logical starting
point for the design of this program is the
geometrical object. Each geometrical object is
impl e mented by a separate tool. A geomtrical
object must be capable of performing four tasks.
The first task is producing a picture of itself
on the display screen. This is performed by the
"draw" event. The "move" event is used to move
the geometrical object around the display. The
third task is detecting when the user has
selected this geometrical object. This is han­
dled by the "zaxis" event. Finally, the tool
must be able to replicate itself. The "copy"
event is used for this. The EDL tool definition
for the triangle geometrical object is shown in
fig. 5. The definitions for the other two types
of geometrical objects are similar.

Defining a common communications protocol
for all geometrical objects has two advantages.
First, it makes it easy to add a new type of
geometrical object to the program. All the
details pertaining to geometrical objects are
contained in the tools implementing them.
Second, it makes the design of the rest of user
interface easier. The rest of the user inter­
face does not need to know how to manipulate
geometrical objects or know where they are
located.

350

tool triangle(owner:numeric; x:numeric;
y:numeric; size:numeric);

var
seg: numeric;
temp:numeric;
xl : numeric;
y 1 : numeric;
oldx numeric;
oldy : numeric;

event
on xpos:numeric assoc tabx;

on ypos:numeric assoc taby;

on zaxis:numeric assoc zbutton perform
if eq(zaxis,1) do

if in(xpos,x,x+size) and
in(ypos,y,y+size) do {
owner <- "hit" self;

} ;

on copy:numeric perform {
temp=activate(triangle,copy,x,y,size);
owner <- "new" temp;

} :

on new owner:numeric perform
owner=new_owner;

on move:any perform {

} ;

self <- "draw" oldx oldy 0;
s elf <- "draw" xpos ypo s 1;

on draw:seq perform {

} ;

init

colour(pope(draw»;
x1=first (draw);
y1=last(draw) ;
drawline(x1,y1,x1+size,y1);
drawline(x1+size,y1,xl+size/2,y1+size);
drawline(xl+size/2,yl+size,x1,yl);

self <- "draw" x y 1;
oldx=x;
oldy=y;

endtool;

fig 5

The next component of the user interf a ce
is the menu. The tool which implements this
component has two t asks. The first task is
creating the geometri cal obje c t s in the menu.
The other task is responding when one of the
geometrical objects in the menu is selec ted.

Graphics Interface '82

This involves creating a copy of the geometrical
object and passing it on to the tracker. The
tool definition for the menu tool is shown in
fig 6.

The tracker tool is responsible for drag ­
gin g geometrical objects. It responds to two
events; new_symbol, and hit. The new_symbol
event occurs when an object in the menu or work
area is selected by the user. The hit event is
generated when the user wants to deposit the
object being dragged. The tool definition for
the tracker is shown in fig. 7.

tool menu(tracker:numeric);

var
circle_object:numeric;
triangle_object:numeric;
square_object:numeric;
hit_object:numeric;

event
on hit:numeric perform {

hit object=hit;
hit=objet.:t <- "copy" tracker;

} ;

on new:numeric perform {
tracker <- "new_symbol" hit_object;

} ;

init
circle_object=activate(circle,self,900,2s0,

20) ;
triangle_object=activate(triangle,self,900,

500,20);
square_object=activate(square,self,900,7s0,

20);

andtool;

fig. 6

The last component of this user interface
is the work area tool. The event in this tool
handles hits on the geometrical objects in the
work area. The tool definition for this tool is
shown in fig. 8.

6. Some Applications of EDL

In this section we present three typical
applications of EDL. All three of these appli­
cations involve interactive graphical input and
output. These examples illustrate the range of
applications that can be tackled with this
language.

351

tool tracker;

var
work_object:numeric ;
menu_object :numeric;
cross:nume rlc;
dragged_object:numeric;

event
on xpos:numeric assoc tabx perform

dragged_obj ec t <- "move";

on ypo s:numeric assoc taby perform
dragged_object <- "move ";

on new_symbol:numeric perform {
dragged_object=new_symbol;
cross <- "hide";

} ;

on hit:numeric perform {
dragged_obj ec t <- "new_owner" work_object;
cross <- "show";
dragged_object=cross;

} ;

init
work object=activate(work area,self);
menu-object=activate(menu~self);
cros;=activate(tracking_cross);
dragged_object=cross;

endtool;

fig. 7

tool work_area(tracker:numeric);

event
on hit:numeric perform {

hit <- "new_owner" tracker;
tracker <- "new_symbol" hit;

} ;

endtool;

fig. 8

6.1. A Simple Geometrical Modeling Program

The traditional approach to geometrical
modeling is to use some data structure to
represent the geomet rical objects. A set of
procedures is then produced to display and mani­
pulate this data structure. In this section we
present a program which defines a geometrical
model as a collection of EDL objects . These
objects r e present two dimensional shapes con-

Graphics Interface '82

s i s ting of i.l sequence of straight line s.

This program is implemented in EDL as a
single tool . When a new object is to be added to
the model an instance of this tool is created .
The coordina t es that define the shape o f the
object are stored in a sequence. Points are
added to this sequence by sending the object an
"add" message with the associated x and y
values . When this message is received the new
point is placed at the end of the sequence .

As an example consider a box with corners
at (400,400), (400,600), (600,400), and
(600,600) . The box could be contructed by the
f o llowing sequence of statements:

box = a ctivate(geometric_object)
box <- "add" 400 400
box <- "add" 400 600
box <- "add" 600 600
box <- "add" 600 400
box <- "add" 400 400

Notice that no assumptions are made about
how the coordinates are being generated. They
could be produced by a user sketching on a
tablet, entered interactively from the keyboard,
or by another object which calculates them.

Now that the box has been created we need
a mechanism for displaying it on the screen. The
"draw" mess age is used for both drawing and
eras ing objects. The value of the draw message
is the colour that the object is to drawn in.
To erase an object a "draw" message with the
va lue zero i s sent. To d isplay the box the fol­
lowing message would be sent

box <- "draw" 1 ;

To erase the box we would send the message

box <- "draw" 0

When the object receives the "draw" mes­
sage, the object is drawn by calling the opera­
tor drawline to connect each pair of coordi­
nates.

Transformations of the object are accom­
plished by sending a series of messages for
scaling, rotating and translating. Each of these
messages specifies the type and value of the
transformation. Examples of these messages
appli e d to the box are :

box <- "scaleX" factor;
box <- "move" dx dy;
box <- "rotate" theta.

352

When a n object receives a trans fo rma tio n
message each point in the sequence is
transformed r e lative to the origin. When an
object is c r ea t e d the origin is set to the cen­
tre of the display screen, but this may be reset
with the "origin" message.

The geometric_object tool allows for
quick and easy mode ling of two dimensional
objects . The user of this tool only needs to
know whic h messages are needed for their appli­
cation, since the sequence of coordinates is
hidden inside the object.

This example program s hows how objects
can be used for organizing gra phical data into a
logical unit. The simplicity of this results
from the modula rity of ea ch object.

6.2. A User Interface Prototyping System

A major application of EDL is the user
interface pro to typing system called PROSYS
[Green 1982b J • This program provides an
interac tive environment for the construction and
editing of use r interface prototypes. In this
program a prototype is construction from a set
of pre -programmed building blocks. Each of
these building blocks simula tes a small part of
the user interface. There are building blocks
for most o f the s tandard input, output, and
interaction techniques. The building blocks are
connected by data paths which carry the graphi ­
ca l informa t ion i n the prototype . This a ppr oach
t o prototype construction makes it possibl e to
quickly se t up a prototype and change it with a
mi nimal a mount of effort.

In PROSYS each of the building blocks is
implemented by a separate objec t. The da t a
paths in the prototype are implemented by
events. PROSYS itself is a smal l collectio n of
object s that manage the objects in the prot o type
a nd pr ov i de a mechanism for c r eating and editing
prototypes. Since the pr o totype is implemented
as a set of obj ec t s it i s possible to intermix
the developmen t and t es ting of a prototype . To
a l a rge extent the prototype is independent of
PROSYS so special editing a nd t e sting modes are
not needed. Since the building blocks are
implemented as EDL tools i t is quite easy to
extend the set of building blocks without
effecting the pro t o t yping program.

Th e flexible environmen t provided by EDL
made it possible to take this approach to proto­
type development .

Graphics Interface '82

6.3. An Interactive Tool Editor

The EDL system includes an graphical syn­
tax based editor for tools. This editor allows
the user to edit one tool at a time using any of
the supported display devices and a tablet. The
tool editor divides the screen into three areas
called the initialization area, the event menu,
and the event display. The initialization area
is located in the bottom part of the screen and
is used for displaying the initialization state­
ments for the tool. The right side of the
screen has a list of all the events in the tool.
This list is used as a menu to select the event
to be edited. The event display occupies the
upper left side of the screen. This area is
used for displaying the event that is currently
selected. The EDL statements in this area and
the initialization area are formatted by a pret­
t y printer.

There are three basic commands in the
tool editor. The first command selects the
event to be edited. This command is invoked by
pointing at the event name on the event menu and
pressing the "z-button" on the tablet cursor.
At this point a pretty printed version of the
selected event will appear in the event display.
The other two commands are used to edit the EDL
statements in the event display and initializa­
tion area. Since the statements in these areas
are pretty printed each line corresponds to a
major syntactic component of a statement. The
insert command is used to add lines to an EDL
statement. To invoke this command the user
points to the position where the new lines are
to appear and presses the "z-button". He then
enters the new lines through the keyboard. The
delete command is used to remove lines from a
statement. This command is invoked by pointing
at the line to be deleted and pressing "button-
1" on the tablet cursor. After these commands
have been processed the new version of the
statement is displayed.

The tool editor directly operates on the
compiled version of the tool. This makes it
possible to test the results of each editing
operation without leaving the editor or recom­
piling the tool.

7. Conclusions

In this paper we have presented an intro­
duction to the object oriented language EDL and
have shown how it can be used in the production
of highly interactive graphics programs. This
language is well suited to this particular
application area for the following reasons.

1) Objects are highly modular so it is

3<;3

possible t o develop and test prugrams in an
incremental fashion. USing the tool editor
objects can be modified while the program
is running.

2) The highly modular
makes it possible
standard i~teraction
best illustrated by
~iscussed in section

nature of tools also
to develop libraries of
techniques. This is
the prototyping system
6.2.

3) The concurrent nature of objects makes it
easy to produce highly interactive programs
that make use of combinations of devices
and interaction techniques.

4) The interactive environment provided by the
EDL system encourages experimentation with
different interaction techniques. This
stimulating environment encourages the pro­
grammer to be creative in his user inter­
face designs.

References

BYTE 1981 "Spe cial Issue on Smalltalk",
BYTE, vol.6, no. 8 , August 198 1.

Green 1981 1 Green M., "A Methodology For the
Specification of Graphical User Interfaces",
Computer Graphics, vol.lS, no.3, p.99, 1981.

Green 1982a 1 Green M., "The EDL Programmer's
Manual", TR 82-CS-01, Unit for Computer Sci­
ence, McMaster University, 1982.

Green 1982b 1 Green M., "Towards a User Inter-
f:> Prototyping System", Graphics Inter-
face'~ Proceedings, 1982.

Hewitt 1977 1 Hewitt Carl, "Viewing Control
Structures as Patterns of Passing Messages",
Artificial Intelligence, vol.8, no.3, 1977.

Ingalls 1978 Ingalls Daniel H. H., "The
Smalltalk-76 Programming System: Design and
Implementat ion", Proceedings of the Sth
Annual ACM Symposium on Principles of Pro­
"ramming Languages, 1978.

Kay 1977 1 Kay AlIen C., "Microelectronics and
the Personal Computer", Scientific American,
vol.237, no.3, Sept. 1977.

Newman 1979 1 Newman W.M., R.F. Sprollll, Prin­
ciples £f Interactive Computer Graphics, 2nd
Edition, McGraw-Hill, 1979.

Graphics Interface '82

