
373

A VLSI-ORIENTED ARCHITECTURE FOR REAL-TIME RASTER DISPLAY OF
SHADED POLYGONS*

(Preliminary Report)

The

Donald Fussell
Bharat Deep Rathi

University of Texas at
Austin, Texas 78712

Austin

ABSTRACT

This paper describes the organization of a large-scale graphics hardware system which can
produce color, shaded, anti-aliased, perspective images of complex three-dimensional
scenes in real time. By complex scenes we mean those consisting of at least 25,000
polygons. In contrast, existing high-performance raster systems of this type can handle
only 1000 to 4000 polygons. This level of complexity is attainable with reasonable cost
and reliability only if large parts of the system can be implemented as custom VLSI chips.
In particular, it is possible to replace a traditional frame buffer with a device which
stores polygons rather than points and performs scanout, shading, and anti-aliasing on
them. With the addition of other special-purpose chips which perform transformations,
clipping, perspective projection, and lighting calculations, such a "polygon buffer" forms
the core of a parallel, pipelined organization which achieves the desired level of
performance.

KEYWORDS: Graphics hardware, raster display, real-time, VLSI

1.0 INTRODUCTION

Recent advances in the availability of
design techniques and fabrication facilities for
VLSI circuits have created new opportunities for
designers to produce special-purpose
architectures. Computer graphics is one of the
application areas which has benefitted most from
this situation to date. Using the custom VLSI
design techniques introduced by Mead and Conway
[11], a number of researchers in recent years
have developed new hardware systems whose
function is the high-speed implementation of
algorithms essential to the production of
high-quality images by computer [1] [2) [3) [7)
[8) [14) [17]. These new approaches complement
the work of designers of graphics hardware
systems who did not have access to the
technology of integrated circuit design and who
therefore could not regard as feasible methods
which may now may not only be possible, but in
some cases even preferable.

The goal of this work is to design a
hardware system which can produce color, shaded,
anti-aliased, perspective images of complex
three-dimensional scenes in real time. By
complex scenes we mean those consisting of at
least 25,000 polygons. In contrast, existing
high-performance raster systems of this type can
handle only 1000 to 4000 polygons in real time,

so our requirements include about an order of
magnitude increase in the complexity of the
scene. In order to achieve increased
performance cost-effectively, it will be
necessary to make use of massive parallelism of
operations and of pipelining techniques, while
carefully designing the system to consist of
only a few basic module types and thus only a
few chip types which can be used in large
numbers to achieve the desired performance at a
low cost. In this sense, the architecture we
are proposing is a radical one in that it would
have been impractical at the level of complexity
we wish to obtain without the use of
special-purpose chips.

The reduction of this complexity into a
simple, regular structure suitable for VLSI
implementation is a task which must proceed in a
top-down fashion as the system design
progresses. This paper is a preliminary report
of an ongoing project, and thus only the higher
levels of the design are described here.

*This work supported in part by NSF Gr a nt
MCS- 8109489.

Graphics Interface '82

2. 0 SYSTE~l OVERVIEW

The fu nctions which must be performed by a
graphics sys tem in order to produce a realistic
iQagc of a three-dimensional polygonal model are
by nO~1 we ll understood. Figure 1 gives a
pictorial representation of the operations which
must be performed in transforming a database into
a n image on the sc reen. We may envision data as
being pipelined through the various operations
f rom thl~ mo de l. data structure onto the di.splay.
The two ends of the pipe line represent the scene
in object coordinates (the model) and image
coordinates respectively. In the former case,
the representation is more compact, due both t o
hierarchical encoding of the data and to the fact
that at even the lowest levels of the hierarchy
the geometric primitives used are polygons or
higher-order parametric surfaces. The
representa tion of the scene in image coordinates
must ultima t e ly be reduced to points, which are
the lowes t -level and least compact geometric
primitives available for representation of
complex sc:e nes .

Instan ce .md
V lewirg

Tr ans (onnation s

Clipping

Perspective
Projection

ScalwlIt, Shad inr,
Ant I-aliasing

Hiddl~n s urface

Figure 1

Image generation process

374

We ca n pa rtition th e operatlo~s being
performed dur i ng the image synthesis process into
t wo general c lasses. The first is a
transformation froD a model in object coordinate
space t o a n image coordinat e space description
and the sec ond is the r edu c tion of a stnlctured
collection of hi gh-l e vel mod e ling priQitives t o a
set of low-level ou tput primitives, which for th e
case of raster displays are points. Instance
trans forma ti ons a nd viewing tra nsforma tions are
d evot~d prima rily to the firs t task of coordinat e
system tra ns formation (although instance
transforma tions also serve to decode the
structure of the model to form a simpl e
collection of modeling p rimitive s), while
scanout, shading, and anti-aliasing are involved
in the conversion from mod e ling t o output
primitives. Clipping may be considered to fit
into th e first ca tegory since it is peforQed on
high-level primitives as part of th e
transformation to a n appropriate image-spac e
representation . Hidden-surf~ce removal can be
considered an independent operation since it can
be performed in con j unc tion wi th ei ther process.
although for the impl eme ntations we a r e
interested in, it is inticiate ly rela t ed t o t he
primitive redu c t ion process.

Hardware app roaches to hie h-performance
image gene ration have handled these two classes
of opl'r<ltions ind"]ll'lIcienlJy, il lld thl' ilr('hfte c t"rl'
we p ropose will follow this tradition. Both
hi gh -pe r fo rm3ncr raste r a nd vec tor d i spl~y

systems have long employ ed sp ecial-pul"pose a rra y
process ing mndulp s fo r doing the matri x-vecto r
multiplicaticl1 '; required for coordi nate
transfo rnation as we ll as hardware clippi ng
devices. The a dvent of VLSI technology has made
possibl e t he crea tion of special- pu r pose chips t o
perform the same ope r a ti ons a t a l owe r hardware
cost and with gr ea ter reliabi lity. The Geome try
Engine of Cl a rk ha ndle s both of these functions
with a set of l 2 v irtually identical 1I0S chips in
current technology , which could be reduced to a
single ch ip in the near future Il]. This system
can currently pr ocess approximately 1000 polygon s
in real time , a nd with the projected redu c tions
in s iz e a nd conc omitant increases in speed, thi s
should i ncrease to about 4000 .

The second class of opera ti ons invo l ving
pr imi tive reduc tion has been somewha t more
difficult to handle at real-time r :1tes and has
therefore con tribut ed more t o the complexity a nd
expense of r ea l-time image gene ration sys tems.
Thi s is easily see n when the cos t of a typical
r ea l-time vec t or display is compared with t hat of
a r aste r display of comparable performance , since
th e primary distinc tion between the two in terms
of hardware r equirements arises as a r es lll t of
t he absence of most ope rations of thi s t ype .
Most VLST-ori ented app roaches to solving this

Graphics Interface '82

portion of the image synthesis problem have begun
wi th the idea of enhancing the capabilities of a
frame buffer in order to allow i t to tackle
problems of this class [2] [7] [8] [17]. The
work of Cohen [3] is a notable exception to this.

The architecture proposed here is based on
the same idea, to take advantage of the
opportunity to create custom chips in order to
add processing capability to the previously
passive memory function of the frame buffer. If
we assume that each element of a frame buffer
need not be merely a memory cell, that we have
the freedom to make the unit more complex,
endowing it with the capability to implement for
itself some operations which must be done for '
image generation in parallel with all the other
cells of the frame buffer, then the question
arises as to whether it might not be better to
make each unit a higher-level primitive than a
mere point. This is the approach we take, which
is distinct from those noted above, in which the
primitives remain points but the points are
provided with added processing power. In our
system, the "frame buffer" consists of a
collection of polygons rather than points. For
simplicity and uniformity of implementation, the
polygons are required to be triangles. The
advantages of this requirement outweigh its
limitations. Since any polygon can be easily
triangulated, any scene described by a collection
of polygons can be easily transformed into a
description consisting only of triangles. In the
process, any "non-planar polygons" which may have
existed in the original scene description are
removed. Moreover, procedures which are used for
automatic generat i on of scene descrip~ ions from
real-world input data typically generate only
triangles [5]. Finally, Gouraud shading, the
most suitable smooth-shading techni que for fast
hardware implementation, produces no shading
anomal i es on triangles.

It makes sense to call this collection of
triangle processing elements a frame buffer
because it performs an analogous function in the
graphics system to that of a traditional frame
buffer in that it serves as a medium for storing
the scene description after it has been
transformed into image space. Of course, no
reduction of high-level to low-level primitives
has been performed before the image space scene
description is stored, so this funct i on must be
performed by the frame buffer itself. From the . point of view of the refresh controller for the
raster display, the "triangle buffer" appears to
be a frame buffer in that the controller outputs
addresses to it on an address bus and receives in
return a pixel's color value on a data bus. Each
triangle processor performs a scanout of the
triangle it contains, incrementally determining
the color and Z coordinate value for each pixel.

375

These are f e d through arbitration logic which
determi nes which pixel is closest t o the observer
and returns the color of that pixel on the data
bus. At t 'he cost of added c omplexity, the
arbitration logi c can also be used to perf orm
anti-aliasing, resulting in a filtered pixel
color value being returned on the data bus. Thus
the triangle buffer performs all operations
involved in the reduction of high-level to
low-level primitives.

r- -
I
I

r- --

1-

Hos t
Computer

Mode l memory
-,

I
I

I
I
I
I
I

Triangle I
buffer I

----- - ----'

Figure 2

Syste m organiza t ion

Graphics Interface '82

The remaind e r o f the syst em' imp lements the
coordinate transformations, clipping, perspective
division, and shading calculations for the
vertices. It also contains a dual-ported memory
for storing the object-space scene description.

3.0 SYSTEM ORGANIZATION

In this section we describe in more detail
the organization of the major portions of the
system. The overall organization is depicted ill
Figure 2. Our dlscussion will begin with a
consideration of the triangle buffer, followinp,
which the modeling memory and transformation
pipeline are described.

3.1 The Triangle Buffer

The triangle buffer consists of an array of
triangle processing units, each of which performs
scanout and smooth-shading of the triangle it
contains. A triangle processor could be
considered a smart, dual-ported memory "cell".
It is connected on the one hand to a bus over
which it receives information from a triangle
initialization unit, and on the other hand to a
comparator tree onto which it outputs color and Z
coordinate values. It is also connected to an
address bus through which the CRT refresh
controller indicates the X-Y address of the
current pixel. Since the data bus is write-only
from the transformation and clipping unit into
the triangle buffer, no corresponding address bus
is required. When polygon data is output to the
triangle buffer, it is simply accepted by the
first free triangle processor available. The
advantage of this scheme is that it simplifies
the interface to the transformation and clipping
units. The disadvantage is that it requires
every polygon in the scene to be rebroadcast to
the triangle buffer at every refresh cycle. The
overall collection of triangle processors in the
buffer is partitioned into a set of "slices",
each containing the number of triangles which can
be processed in real time by a single
transformation, clipping, and triangle
initialization pipeline. In our system this
number is estimated to be about 1000.

3.1.1 The Triangle Processor -

Each triangle processor consists of 20
registers, with associated addition, compariso n ,
and control logic, as shown in Figure 3 . Ea c h
processor performs a simple scanout of t he
t r ~ i l'1 g1.< · . ba s e d o n a n .identi f ication of the

376

From refre sh
controller

From triangle
initialization unit , ,

r1 Address 1r1 Tnput I bu s bus

I
~ y

""- X-left
r--- Control ..-. dx/dy-left
r--.-- log ic X-right ,

~ I-k!x/dv-right
~ dz/dy
~ Z-left
~ Z

'-I- dz/dx

I ~ deltay
I- X-alt

J Comparator ~ d c;,L d y-a,l t dx/dy-alt

dz/dy-alt

H Adder I ~ deltay-alt
C-alt
d c/dv

1 ~ l
C-l e ft

_I dc /Jx

I-

I-
f0-

t-
I-
fo-

I-
t-

fo-

fo-

r--
r--
t--
I-

t--
I-

I-

I-

t-
1 Adder 1 I-- C (c ol o r)1-

I
" • yz coordina te Ca l o r , ~

To compar a t o r tree

Figure J

,

Bloc k diag ram o f triangl e proce ssor

init i al left and right boundary edges " f) ,l t: le
third "alternate" ed ge by the triangle
initiali.zation module (see Figure 4). The
processor monitors the address bus until a Y
a ddress eq ua l to the va lu e s tore d in the Y
r e giste r is sent. If then monitors the X address
until it rea ches a valu e e qua l to X-left, at
which time it outputs the initial color a nd Z
coordinate. For each subseque nt pixel, the color
is incremented by d c /dx and the Z coordinate
value by dz / dx and the new values are output.
When the X address rea ches X-right, the output is
halted and the next scanline is prepa r ed by
adding dx/dy-left, dx /dy-right, d z /dy and dc /d y
to X-left, X-right, Z-l e ft, a nd C-l ef t
respective l y . The va lues o f Z and C a r e t hen se t
equal to Z-left a nd C-l e ft and t he va lue o f
deltay is decremented by 1. 7\-1 s process
c ontintlf>s Rcanli.ne b y sC<Jn.l i. ne un til de l tay

Graphics Interface '82

Direction
of scan + alternate

Figure 4

Assignments of triangle edges

reaches O. At this point, X-alt is compared to
X-left and X-right to determine whether the left
left or right edge should be replaced by the
alternate edge. The value of dx/dy-alt, is then
copied into dx/dy-left or dx/dy-right as
appropriate. In the former case, the values of
dz/dy-alt and dc/dy-alt are copied into dz/dy and
dc/dy respectively. deltay is set to the value
of deltay-alt, and the processing cont~nues until
deltay once again reaches zero. At this point
output is disabled, and the triangle processor
enables itself for input of a new triangle. Note
that this scanout procedure for triangles is
similar to that of [12] and [IS]. The use of
trapezoids in which the top and bottom edges are
horizontal, as done in [10] and [16], would allow
a reduction of 5 registers and some
simplification of the control. However, this
would require the polygons in the scene model to
be subdivided into such trapezoids each time they
are transformed. By maintaining the scene model
as a set of triangles, we totally avoid the need
for polygon subdivision at each refresh cycle.
All operations of the triangle processors are
fixed-point. Operations on colors are assumed to
be in RGB space, with the addition unit actually
performing parallel operations on each of the
three components. The use of separate, fast
adder units for color and Z coordinate
calculations assures that new values of each can
be generated at the required bandwidth.

377

3.1.2 Arbitra tion Logic -

The triangle processors resemble the object
processors proposed by Cohen [3] and Weinberg
[16]. A significant difference in our approach
is that we do not serialize the operation of
these processors using a linear array of
comparators. Instead, we use a binary tree of
comparators, through which the depth and color
values output by the triangle processors are
pipelined. As a result, all triangle processors
are equidistant from the endpoint of the pipeline
and thus can operate on the same pixel
simultaneously. This simplifies the
synchronization and control of the system, and
indeed allows the triangle buffer to resemble a
frame buffer in its function. The complexity and
number of comparators required is the same in
both cases. Their operation is straightforward;
they compare the two input Z values, and the
closer of the two to the observer is output to
the next pipeline stage along with its associated
color. The root of the comparator tree outputs
the color of the visible portion of the scene at
the current pixel to the CRT refresh controller.

If anti-aliasing is desired, it is possible
in principle to employ the method proposed by
Weinberg [16], modified to work on a binary tree
rather than a linear array of comparators. This
method involves scanout of polygons at subpixel
resolution so that the degree of coverage of the
current pixel by each triangle can be determined.
The comparators then maintain a list of partially
visible polygon sections for the current pixel,
sorted by Z. The last comparator outputs the
list to a filter processor which calculates the
appropriate color for the pixel. This algorithm
requires that each comparator be able to merge
two sorted input lists, which is no more complex
as a pipelined algorithm for a binary tree than
for a linear array. However, in addition to the
added complexity of the comparator unit, this
approach has the serious drawback that it builds
a list which can grow as it passes through the
comparator pipeline. Thus more values must be
passed through later stages of the pipeline than
through earlier ones, requiring that the
bandwidth of the pipeline increase with proximity
to the output end, or else that synchronous
operation of the system be fatally disrupted.
This drawback holds for a linear array of
comparators as well as for a binary tree. As a
result, we have chosen not to use this approach.
For simplicity, the current system design does
not include anti-aliasing, although we a re
investigating me thods which can be used without
unduly complicating the operation: of the triangl e
buffer.

Graphic. Interface '82

3.2 Modeling, Transformation, And Clipping

As mentioned in an earlier section, th 0
ob j ec t space representation of the scene is
maintained in a separate, dual-ported memory.
This memory contains a set of triangles, each of
which consists of a color and a sequence of
vertices described in world coordinates. In
addition , each vertex is associated with a normal
vector, which is the average of the normals to
all polygons adjacent to the vertex, in order to
perform smooth-shading. All coordinates a r e
stored as floating-point numbers.

This memory is attached to the system bus of
a host computer on the one hand, and to a set of
transformation processors on the other. The host
computer may be a general-purpose machine or a
dedicated graphics processor. It is responsible
for all manipulations of the scene database, for
int e racting with the user and for execution of
all application software. If a
hierarchi cally-structured model is used as a
source datahase, this process o r must decode the
s truc ture f o r us e by the display sys t em . It is
also responsible for controlling the motion of
the observer and of the objects in the scene.
This involves specifying transformations to be
performed on designated sets of polygons in the
scene description. The transformations are
encoded in the form of standard 4x4 homogeneous
matri ces. Only a single such transformation is
performed by the transformation processing units
o n a triangle, so all coacatenation of instance
and viewing transformations must be done by the
hos t processor.

The organization of the model memory and its
interface to the transformation processors is
shown in Figure S. Each transformation unit
communicates over a local bus with only as many
polygons as it can process in real time, along
with a set of transformation matrices which allow
the set of polygons to be segmented into disjoint
sets of objects. Each such matrix is associated
with a pair of registers in which the identifiers
of the first and last polygon in the
corresponding object are stored. Thus an object
is a contiguous sequence of polygons on the loca l
bus. If a transformation pipeline can process
1000 triangles in real time, then a hout 23, 000
words of memory will be accessible on each local
bus if we allow 10 independent objects. In this
way l a rge numbers of triangles can be processed
in parallel slices of 1000 triangles.

The transforma-tion pipeline consists of an
interface to' a local model memory bus, a
ma trix-vec tor multiplier, a seque nce of clipping
units, and a triangle initializa tion unit, as
depicted in Figure S. The interf ace functions t o
ncr.ess the object memo ry, load matrices into the

378

to

Model memor y slice

Tria ngle
descriptio n s

Tr a n sfonn.a t ion
spec ifica t ion s

Add r ess
bus

Hodel memo r y
interface

Data
bus

Tn msforma t ion
a nd

clippin g unit

Triangle
in i t ial izat ion

unit

l oca l bus r - - - - - - - - - - - - -1- - -

to comparators
con nec ting other slices

Address bus Refresh
control le r

Data bus -
from root of comp ara tor tree

Figur e 5

Detail of syst em sUrr

Triangle I
- I

buffer I
s lic e J

Graphics Interface '82

transformation processor, load clipping
parameters into the clipping unit, and feed
polygons into the pipeline. The transformation
unit does matrix-vector multiplication, either as
a systolic linear array [4) or as done by Clark
[1). The clipping pipeline consists of six
identical units, each of which clips a polygon
against a plane of the truncated viewing pyramid.
The triangle initialization unit is primarily a
division/subtraction engine which calculates the
color for each vertex, performs perspective
division, sorts polygon vertices by Y and then X,
and then calculates the parameters of the
triangle to be loaded into the triangle buffer.
It also converts the floating-point values used
by the transformation and clipping processors to
fixed-point format for use by the triangle
processors. Note that each triangle
initialization unit communicates with only the
triangle processors in a slice of the triangle
buffer via a local bus analogous to that used to
interface with the object memory.

4. 0 VLSI IMPLEMENTATION

The system described here is a very
large-scale project which requires the design of
a number of special-purpose units. The
dual-ported object memory is available
commercially, but the other parts of the system
must be custom designed. As stated before, the
goal of the system is to allow real-time display
of scenes consisting of at least 25,000
triangles. This implies 25,000 triangle
processors and an equal number of comparators,
and an estimated 25 transformatio~ pipelines,
along with approximately 575,000 words of object
memory. To build such a system at a reasonable
cost it will be necessary to make use of all the
capabilities of today's VLSI design and
fabrication technology. If we optimistically
assume one micron feature sizes, we can
reasonably estimate that two chips will suffice
for each transformation pipeline and that perhaps
32 triangle processors and an equal number of
comparators will fit on a large chip. With these
assumptions, implementing a 32,000 triangle
system will require 1000 triangle processor
chips, 1000 simple comparator chips, 64
transformation pipeline chips, and 736,000 words
of dual-ported memory. At a cost of $100 per
chip, we obtain $264,000 for special-purpose
chips, so we can generously estimate a $500,000
cost of goods for the system and thus a selling
price in the neighborhood of $1 million. This is
comparable to the cost of existing systems which
provide an order of magnitude less performance.

The design of this type of system i s
certainly a non-trivial task, particularly in a
university environment. We view this overall

379

organizati on as a rich source of design projects
which can be implemented and tested
independently, with the object of consolidating
them into a s naIl-scale working prototype. The
comparator unit, the simplest independent
subsystem, has been designed and is currently
being prepared for fabrication. The design of
the triangle processor is currently underway, and
the various parts or the transformation pipeline
will be undertaken subsequently.

5.0 CONCLUSION

We have described a high-performance
hardware organization suitable for real-time
display of complex three-diminsional scenes. It
is primarily intended to provide an order of
magnitude increase in the capability of
high-performance systems used for such
applications as flight simulation. These goals
are distinct from those of most other researchers
who have applied · the opportunities afforded by
the availability of custom-designed integrated
circuits to the design of graphics display
hardware. The complexity of the system makes it
more ambitious and its realization a more distant
prospect than these other design efforts.
Nonetheless, it illustrates at yet another level
the exciting prospects made available to the
field of computer graphics by recent advances in
VLSI technology.

Acknowledgements

The authors would like to thank Sanjay Deshpande
for his contr~butions to the development of this
organization.

References

[1) Clark, J.H. , A VLSI Geometry Processor for
Graphics, Computer, July, 1980.

[2) Clark, J.H. and M.R. Hannah , Distribute d
Processing in a High-Performance Smar t
Image Memory, LAMBDA, vol.l, no.3, 1980.

[3) Cohen, D. and S. Demetrescu, A VLS I
Approach to Computer-Generated I magery ,
Technical Report, USC , 1979.

[4) Foster, M.J. and H.T.
Special-Purpos e VLSI
January 1980.

Kung, The Design of
Chips, Computer,

Graphics Interface '82

(5) Fuchs, H., Z.M. Kedem, and S.P. Uselton,
Optimal Surface Reconstruction from Planar
Contours, Communications of the ACM, vol.
20, no. 10, October 1977:-693-70Z:-

(6) Fuchs, H. and B. Johnson, An Expandable
Multiprocessor Architecture for Video
Graphics, Proceedings ~ the Sixth Annual
ACM-IEEE Symposium on Computer
Architecture, April 1979.

(7) Fuchs, H., J. Poulton, A. Paeth, and A.
Bell, Developing Pixel-Planes, a Smart
Memory-Based Raster Graphics System,
Proceedings, Conference ~ Advanced
Research in VLSI, Massachusetts Institute
of Technology, January 1982, 137-146.

(8) Gupta, S., R. Sproull, and I . Sutherland,
A VLSI Architecture for Updating
Raster-Scan Displays, Computer Graphics,
vol. 15, no. 3, August 1981, 71-78.

(9) Kaplan, M. and D.P. Greenberg , Parallel
Processing Techniques for Hidden Surface
Algorithms, Computer Graphics, vol. 13,
no.2, August 1979, 300-307.

(10) Jackson, J.H., Dynamic Scan-Converted
Images with a Frame Buffer Display Device,
Computer Graphics, vol. 14, no. 3, July
1980, 163-169.

[ll) Mead, C. and L.
VLSI Systems,
1980.

Conway,
Reading,

Introduction to
Addison-WesleY,""

(12) Myers, A.J., An Efficient Visible Surface
Algorithm, Technical Report, Computer
Graphics Research Group, Ohio State
University, July 1975.

(13) Parke, F.I., Simulation and Expected
Performance of Multiple Processor Z-Buffer
Systems, Computer Graphics, vol. 14, no.
3, July 1980, 48-56.

(14) Roman, G. and T. Kimura, A VLSI
Architecture for Real-Time Color Display of
Three-Dimensional Objects, Proceedings of
the Delaware Valley Microprocessor
Conference, April 1979, 113-118.

[15) Romney, G.W., Computer Assisted Assembly
and Rendering of Solids, Technical Report
4-20, Department of Computer Science, The
University of Utah, 1970.

[16) Weinberg, R.,
Synthesis and
Graphics, voL

Parallel Processing I mage
Anti-Aliasing, Computer

15, no. 3, 55-62.

380

(17) Whitted, T., Hardware Enhanced 3-D Raster
Display Systems, Canadian Man-Computer
Communications Conference, June 1981.

Graphics Interface '82

