
29

A GRAPHICS INTERCHANGE PROTOCOL AND FORMAT, INCLUDING SYSTEM TOOLS

Kevin Weller l

General Electric Company
Corporate Research and Development

Schenectady, New York

Greg Glass
Institute of Building Sciences
Carnegie-Mellon University

Pittsburgh, Pennsylvania

ABSTRACT

Most research groups over a period of time develop and acquire enough different programs and devices that they are in a position to appreciate the advantages of some common means of communicating information between them. In a small dynamic research environment, however, fixing everyone to a single inflexible standard is usually unacceptable because changes in programs and devices occur at a rapid rate, quickly outdating the standard.
We've attempted to resolve these two conflicting concerns by staging a flexible interchange format system into two distinct levels. The bottom level, the protocol level, is essentially the underlying language in which the format is written . The top level, thejormatlevel, is where the inter­change format is actually expressed. The strength of this division is twofold: uniformity of syntax, allowing high-level parsing tools to be built; and flexibility of semantics, allowing a format which can evolve along with the user community in the least painful way. Detailed descriptions of the protocol, a typical format, and the system tools expected to be provided with an implementation of the protocol are presented.

l. INTRODUCTION

Most research groups over a period of time develop and ac­
quire enough different programs and devices that they begin to ap­
preciate the advantages of some common means of communicat­
ing information between them. Some of the benefits include the
reduced time and effort required to create the interfaces, since it
is necessary to interface each program or device to the standard
just once rather than having to interface it to every other existing
and newly developed program and device. An additional advan­
tage is the increase in overall synergy as new applications begin to
piggyback on older applications and device drivers. For example ,

I Research o n this topic was initiated while at the Institute of Building Sciences,
Carnegie-Mellon University, and completed while at Three Space .

filter programs, such as graphics transformation and display, be­
come possible and more generally useful.

In a small dynamic research environment, however, fixing
everyone to one standard can also be anathema: new research and
applications require new structures the old standard can 't accom­
modate, new devices have new features and requirements that
don ' t fit into the standard, or the standard itself may have been
developed before there was a clear understanding of what it was
required to do , and it is simply inadequate . Often,:as a matler of
sheer practicality , standards are designed as a least common
denominator of what might actually be needed . Standards are per­
ceived, often with justification, as simply too rigid to respond to
changing needs and devices.

We've attempted to resolve these two conflicting concerns by
staging an interchange format system into two distinct levels . The

Graphics Interface '82

result is an interchange format system that is flexible enough to
grow with the user community, aided by the provision of high­
level tools with which application programmers can build inter­
faces easily.

The bottom level of this two-level system, the protocol, is
essentially the underlying language in which the format is written.
It is fixed and is not intended to change. More interestingly,
although it enforces a strong but general syntax. it has almost no
semantics of its own .

The top level , the format, is where the standard is actually ex­
pressed. While its syntax has been predefined by the underlying
protocol (and therefore all format syntax is a subset of the proto­
col syntax). virtually all semantics of the standard are defined at
the format level.

The strength of this division is twofold - uniformity and
flexibility - uniformity of syntax, and tlexibility of semantics. A
strong uniform syntax at the bottom level allows us to build high­
level tools for users of whatever format is developed on top of the
protocol. Flexibility in the format is obtained because no restric­
tions on the semantic meaning of the format are enforced from
the underlying level. Two conflicting demands have been
resolved by separation of the system into two parts, allowing each
demand to be resolved in separate parts with little interaction with
the other.

Using these principles, we have designed and implemented a
system along with a series of tools that makes it easy to write new
interfaces to existing local standards using the same protocol, as
well as to update existing interfaces to both new and changing lo­
cal standards.

2. STANDARDS

Don 't let the foregoing fool you; national and international in­
terchange s tandards are quite necessary and useful for the ex­
change of information between remote sites that otherwise have
little contact with each other and have little other basis for agree­
ment , as we ll as for communication hetween programs and de­
vices that are used often but rarely changed .

Standards. such as the SIGGRAPH CORE Metafile proposed
standard for graphic information [1] and the IGES ANSI standard
for geometric modeling and drawing information [21. by political
necessity must carve out a relatively narrow area of interest
and/or deliver a fairly rigid set of formatting rules. The necessity
of such Iixed standards, and the difficulty of arriving at them in
the first place, cannot be overestimated.

For the dynamic. local environment of interest here, however,
such standards limit both capability and flexibility. For these en­
vironments, where short-term and experimental interfaces are a
daily need , a flexible interchange format system that can evolve
hased on local concerns is required . This paper is intended to ad­
dress this special need.

3. DESIGN CRITERIA

In addition to flexibility and the provision of high-level inter­
facing tools , several additional design criteria for an interchange
format system were felt important enough to influence the design
of the sys te m.

We wan ted the formats developed to be human-readable, not
simply long lists of numbers. People should be able to use the
same format for tes ting the ir programs as they might use for the
actual inte rface to o ther programs. Thu s it was stipulatcd the for­
mats must use only printable characters and allow character names
to appear. Text editors could then be used for manual entry and

10

modification of data formatted in the protocol. It would also ease
transfer of information over networks and other media capable of
handling textual data.

We were concerned mainly about the conciseness of the for­
mats, and not so much about the speed with which they could be
processed . The technique is intended as a visible experimental in­
terface and not a high-speed interface between heavily used and
relatively unchanging programs.

The syntax needed to be flexible enough to allow hierarchical
structuring of data , though we didn 't feel the concept of unnamed
pointers was human-readable enough to be of major concern in
the design .

And. of course, we wanted it all to he n:latively simple, a Ill!
not blossom into another full-scale language development elrort.

4, THE PROTOCOL

The protocol itself consists primarily of only one syntactic
structure which is general enough to allow the assignment of a
wide variety of semantic meaning at the format leve l. This struc­
ture, called a "context ," is simply a name optionally followed by a
bracketed context called a "context body" which may contain an
arbitrary list of other contexts (see Figure I).

Syntax

context :: = name ["<"" context} .. > .. I .

Examples

object
object < atributel attribute2 >

Figure I. The protocol context syntax.

There are also two minor semantic features associated with the
protocol itse lf. The first is the ability to recogni ze (and ignore)
comments. The second is a simple named macro definition , dele­
tion , and recall capability, which can also be used for file inclu­
sion.

The complete syntactic and semantic definition of the protocol
is given in Figure 2 and Appendix I.

Sinee the syntax of the protocol is rigid, it becomes feasible to
provide a set of high-level accessing tools , which make the task of
developing interpreters for the format simpler. In fact, that task
becomes primarily a matter related to the semantics of what is go­
ing on rather than getting bogged down in syntax, since the syntax
is already taken care of by the tools provided with the protocol.
Only three primitive procedures are necessa ry to access formats
written in the protocol: one for initialization and two for accessing.
Users can build many olher tools on top of these primitives,
depending on the regularity of the formats that are used. These
system tools are described in a later section .

5. FORMAT

A variety of semantics can be defined at the formal level be­
cause of the generality of the underlying syntax . Data objecls can
be represenled as si ngle names, as names with attributes, and
even as wmplex hi eran:hically structured objects. The macro ca ­
pability huilt int o the prot oco l also allows da ta ahstrac tioll. Th e
format can also dc lin c procedural s tructures , includin g t:O llllition­
als, compound statements, and even a limited emulation of pro­
cedure calls with parame ters .

Graphics Interface '82

Strings

delimiter

punctuation
stringmodifier
otherchar

< space> 1 < newline> 1 < pagemark> 1
< tab > .
"<"1"> " 1" 1"1 "1 "1"'" .
" # "I" !"I"@".
< any printable char except
detimiters or punctuation > .

nonmodifierchar: < any otherchar except stringmodifier>
,"" < any printable char> .

Comments

Quotedchar
string

comment

Data Group/File Manipulation

filename
groupname
creation
creation body

Contexts

The Protocol

deletion
inctusion

context name
context
contextbody

protocol

(nonmodifierchar 1 Quotedchar)
1 otherchar 1 Quotedchar 1 .

.' "I"
1 < any char except unQuoted matching "I"> 1
"I" .

string .
string .
" # " groupname creationbody .

" "< "
1 < any char except unQuoted matching "> " > 1
">" .

"!" groupname .
" @" (groupname 1 lilename) .

string.
contextname I contextbody I .
"<" I context 1 ">" .

1 context 1 .

Figure 2. The Protocol Syntax described in a modified BNF. It
is informal in that some non terminals (enclosed in
unquoted angle brackets) are described qualitatively
for conciseness or clarity.

5.1 Format Design

Designing a format to serve as a communication standard is as
much of an art as any other form of language design . Creating
the design involves balancing many factors, including readability,
conciseness, generality, modularity , probability of accidental syn­
tax errors, ease of error checking and recovery, and others.

Care in the design of the format can have big payoft's. It can
ensure compatibility with future formats and minimize changes re­
quired . For example, rather than making coordinate locations an
integral part of the format for each data type we were interested in
(such as polygons, lines, points, etc.), we decided that coordinate
lists, though used by many other datatypes, should have a recog­
nizable format of their own regardless of where they appear. A
graphics matrix transform system thus would not need to know
that it was busy transforming a point, a line, or a polygon. And it
could automatically transform a bezier curve when that syntax be­
came defined even though it had never seen one before and had
not been designed with one in mind. Filter programs such as the
transform system normally pass through to the output all informa­
tion they read in, modifying only those things they recognize,
which in this case are only the coordinate values.

Along these same lines, if the format design maintains a close
correspondence between the protocol context syntax and the se­
mantic units of the format, it is possible to provide general pur­
pose applications (such as the transformation system mentioned
above) that can perform its task regardless of the unknown data
types and attributes it may encounter. This allows new elements

31

to be designed after the implementation of the general purpose
applications, without necessarily requiring those applications to be
updated. Error checking and recovery are also easier when there
is a close correspondence of the format semantic units and the
protocol context syntax because of the ability to skip over portions
of the input not understood by the application .

S.2 Format Semantics

The basic protocol syntax available to the format designer.
while simple, has a great deal of flexibility in terms of the wide
range of semantics that can easily be associated with it. Both data
and procedural semantil:S can be assigned to the variations on the
protocol syntax by the choice of syntax and semantics specitied by
the format.

5.2.1 Data Semantics

All constructs, including data constructs, are represented as
character strings in the protocol. The simplest format possible
would be a single string, such as a name or numeric value (see
Figure 3a) . Syntactically, this is just a context consisting of a con­
text name without the context body. If the context body is in­
cluded, the named data entity could have zero or more oc­
currences of other contexts within its context body . This could be
used to associate attributes with the named data (Figure 3b). By
expanding these "attributes" into full contexts with the ir own
context bodies, a hierarchical data structure can be represented
(Figure 3c) . Data abstraction is also possible with the capabilities
of the protocol syntax . By defining a data object context or list of
contexts as a macro with the data group creation capability , an ar­
bitrarily complex object can be repeatedly referenced by a single
name (Figure 3d).

(a) Single Name
object
10.47E91

(b) Name with Attributes
object < big red heavy >

(c) Hierarchically Structured Objects
whole object <

partone <
subpart
subpart
>

parttwo <
subpart <

part

>

part
>

subpart < part >
>

(d) Data Abstraction
Definition :

#abstraction < many things large and small >
Use :

@abstraction

Figure 3. Example of possible data semantics formats.

5.2.2 Procedural Semantics

Procedural semantics can also be assigned to the protocol syn­
tax by a format definition . Combinations of data and procedural
semantics in a format could be used to create a syntax similar to a
limited computer language.

One of the more obvious uses of the context syntax in a pro­
cedural fashion is to use the context as a grouping mechanism for

Graphics Interface '82

compound statements (Figure 4a), Conditionals can also be pro­
vided in a variety of ways (Figure 4b shows one) , Contexts can
also be used to crea te special procedura l context scopes in which
both data and other proced ural constructs might take on spec ial
meanings (Figure 4c) , Though somewhat clumsy, limited pro­
cedures with parameters can also be represented by use of the
macro capabilities of the protocol (Figure 4d),

(a) Compound Statement
Group < Stmtl

Stmt2
Stmt3

(b) Conditionals
if < condition < a or b >

then < Stmtl >
else < Stmt2 >

>
(c) Special Contexts Affecting Contents

display < line 1
line2
polyl
poly2

>
(d) Limited Parametric Procedure Definition

Definition
I procedure to add two parameters'

Use

#adder <
I param list : #paraml < first addend >

param2 < second addend > ,

write < ex pr < @paraml + @param2 > >
>

paraml < 2>
#param2 < 17>
@adder

Ilim itat ion : nested procedures calls may
not use parameters of the same names'

Figure 4. Examples of possible procedural semantics_

5.3 A Format Des ign

For our own local environments we decided to start simple and
designed a format to encode some of the kinds of graphic data we
wanted to ship between various programs and devices , We knew
that the format would be tested , and probably modified and added
to on the basis of what was found m ore desirable in our local en­
vironme nts, We wound up, therefore, designing a family of for­
mats rather than just a single format.

A si mplified description of the format we started with for two­
dimensional graphic data is contained in Figure 5, It uses the spe­
cial coordinate syntax described in Section 5,1 so that it is easier
to build system fi lters as described in that section , The descrip­
tion of the syntax is followed by a shor t sample of graphic data
wrillen in the form at.

Figure 6 describes the syntax of a format that controls the
operation of a graphic transformation system filter. The filter , un­
less o the rwise instructed, will copy data from input to output. If
the tranformation command described is encountered, the process
will continue with the exceptions that any coordinate information
found in the transform context body will be transformed, and the
transform command itself will not appear in the output. The only
thing an implementation of this system filter has to be able to do
is recognize its control syn tax, recognize and transform coordinate
information , a nd copy from its input to its output. It is not neces-

32

Syntax

numeral

coord

2dcoord
2dcoords
2dlinecoords

attributes

2dpoinlB

2dlines

2dlineseQ

2dpolygon

2dtext

..

..

"=

"0"'"1'' ''' 2'''''3'''''4'''
"5" ' ''6''1 ''7''1 ''8'' 1''9'' ,
1"+"'''-'' 1
((numeral I numeral I ["," I numeral']) 1
("," numeral I numeral '))
[("E" I"e") ["+"1 "-"] numeral I numeral I] ,

"2d" "< " coord coord ">".
"2d" "< "I coord coord I "> " .
"2d" "<" I coord coord coord coord I ">" .

I < user defined context for optional special
properties such as color. texture. etr. ·'" , .

"poInts" " <:" I uttributes I
2dcoords [attributes] ">" .
"l ine" "< " [attributes]
2dlinecoords [attributes] "> ...
"lineseQ" "<" [attributes]
2dcoords [attributes] "> " .
"poly" "<" [attributes]
2dcoords [attributes]
I "hole" "<" [attributes] 2dcoords [attributes] ">"
[attributes] ">" .
"text" "<" [attributes I 2dcoord [attribute-s I
"string" "<" contextbody ">" [attributes I "> " .

Sample Data in the Format
la polygon I

poly < red
2d < 20 20

20 -20
- 20 - 20
- 20 20

>
>

Ilabel itl
text < italics

2d < 25 25 >
s tring < this is a square here >

>

I underline label'
line < 2d < 2323 12823 > >

Figure 5. The format syntax definition in modified BNF
designed as a minimal format for the interchange of
two-dimen s ional graphic data.

Synta x

transform

Sample Data

"transform " "<" ["trans" "<" coord coord coord ">" 1
["rotate" "<" coord coord coord ">"]
["scale" "<" coord coord coord ">"]
< context body which contains data
including coords to be transformed >

" > "

#sQuare < poly < red2d < 11 1 -1 -1 -1 -11»>

transform < trans < 10 20 30>
rotate < 459015 >
scale < 100 200 33.33>

@sQuare

transform < trans < 12.0 24.4536.77 >
scale < 100 100 100 >

@sQuare
>

>

Figure 6. The format syntax definition described in a modified
BNF.

Graphic. Interface '82

sary for it to be able to recognize anything else; such as the data
types used (polygons, lines, points, etc.). A short example of data
in the format follows the syntax .

6. SYSTEM TOOLS

Since the general syntax class of all formats is specified by the
protocol syntax, a good part of the effort of developing inter·
preters for a specific form at can be provided by system tools at the
protocol level. These same tools can be used in interpreters for
a ll formats based on the protocol, and can reduce the implementa­
tion effort required for inte rfaces to only those areas speci fically
related to the semantics intended by a specific format. The basic
set of primitive system tools specified here for developing format
inte rpreters operate so mewhere between the level of a typical
compiler scanner and a full parser. They not only isolate individu­
al symbols in the input, but also parse the general protocol syntax
and ide ntify the scope of context bodies. These primitive tools
can also be used as the basis of even higher level tools which may
be restricted to parsi ng syntax limited to the syntax of a specific
format.

6.1 Primitives

Only three primitive procedures are necessary to access data
written in formats usi ng the protocol ; one is used for initiali zat ion
and two are used for accessing the data. These routines are
described below along with a description of their parameter lists in
a Pascal syntax .

procedure source (name: fi/espec);
This procedure performs a ll initializa tion of the protocol
tools and specifies the initial source file or device from
which the protocol data s tream is obtained. It is called
only once at the sta rt of interpretation.

.Iilll('liol/ ('Ol//('XI (s : sll'il/g): /loo/('al/ ;
This function returns the next context name remain ing on
the current context level. The context level is the nesting
depth of con tex t bodies. If there is an unread context
name at this level , context will be true and will return the
s tring containing the new name, then advance its position
in the incoming data stream. Context will only return
names on the current context level; it will not increase the
level auto matica lly for a context that has a context body .
It will thcrefor<! sk ip ov<!r a conte xt body if necessary to
obtain the next context name on the current level. COII­
lexl will re turn false the first time there are no re maining
context names on the current level (it has reached the end
of a context body or has hit the end of the input stream
specified at initia lization). If context returns false it will
also decrease the context level automatically so that the
next call to context will return the next con text name (if
any) at the level above the level of the exhausted conte xt
body. It the refore moves over the end of the context
body delim iter , decreasing the context nesting level. At
the end of the original input source, C011leXI will continu­
ously return false.

functioll dowlI : boo/ean;
Down can be called after any successful ca ll to C011lext, It
will return true if the re is a context body associated with
the most recent co ntext name found by C011lext. It will re­
turn false if there is no conte xt body associated with the
most recent co ntext name. [f true, down will also increase
the context le vel nesting; that is, it will move over the be­
ginning of context body delimiter so that the next call to

33

cOlI/ext will return the first item in the context body associ­
ated with the context name of the previous call to Call/ext.
The new context level will not be decreased until cOlltext
calls exhaust all of the context names in the context body.

These three primitive routines are sufficient to parse a ll proto­
col syntax. Source is used to initialize the process and specify the
initial data source. Contex(returns all context names at the
current level, but goes up a level if it has exhausted all context
names on the current level. D own determines if there is a co ntext
body associated with the current context name, and goes down a
level if there is one.

6.2 Additiona[Too[s

Many more high level tools based on the primitives, while no t
mandatory , can aid the development of a parser for interpre ters.
Some are general purpose, but many restrict themselv<!s to a
specific format syntax and can operate as a high level parsing tool.
[ncreasingly higher level tools are built on top of o ne another un ­
til a tool which parses all productions in the for mat syntax is pro­
duced . The following three routines are a few of the general pur-
pose tools we have found useful in our environment. .

function cton(llumber: s(ring; var r : rea/}: boo/eall;
The C(OIl function tries to convert a given input s tring into
a numeric value if possible. [f the s tring is successfully in­
terpreted as a number CtOIl is true and returns the value in
r ; otherwise cton is false.

fUllction compare(a: arrayofsrrings; s: strillg): index;
[f the string s is found in the array of strings arrayofs(rillgs,
compare will be the value of the array index of the match­
ing s tring; o therwise it will be the invalid index val ue O.
This is a convenient tool for parsing command names .
Even higher level functions can be built which perform
both calls to ('0 11 text and colllpare as a single fun ction .

.lilllCtioll g('(('ool't!s(\'ar x,y,~ : rea/) : hoo/(,(/II ;
This functio n is a variation on ('/011 ; it is a higher level tool
wh ich collects three numeric values at a time by repeated ­
ly calling context and then CIOIl . It is to be used in situa­
tions where a three-dimensional coordinate is expected. [f
the three values are successfully found at the current con­
text level and converted to numbers, then ge(coords is true
and the values are returned in x, y , z; ot herwise getcoords
is false .

6.3 Examp[e of a Parser

The example in Figure 7 illustrates how a parser for a very
simple format can be constructed. The hypothetical format of the
example is intended to be used to create line drawings on a display
and therefore consists only of five display instructions: three data­
types for polygons, lines, and points; and two commands to clear
the screen and to wait for a fixed period of time. The parser
shown interprets data in this format and displays the results. The
example is intentionally simplistic and is only intended to illustrate
how primitives and additional tools can be used when bu ilding a
parser (as well as to illustrate how the primitives work). A
production-quality parser would include more extensive erro r
checking and recovery to guarantee robustness and give th e user
more information about the format syntax (or semantic l) errors .

7. CONCLUSION

Research environments have special need for graphic commu­
nication s tandards which are flexibl e enough to meet changing lo­
cal needs, and which are backed up by e nough high-level tools to

Graphics Interface '82

Sample Program

const NONE - 0 ;
I name array declarationl

POLY - 3 ;
CLE AR I ; LINE - 4 ;
WAIT = 2. POINT - 5 ;

var commands; array [CLEAR .. POINT] of string;

I initialization of name arrayl
procedure init ;
begin

commands[POL Y]
commands[LlNE]
commands[POINT] '­
commands[CLEAR] .~
commands[WAIT]

'POLY
'LINE
'POINT
'CLEAR' ;
'WAIT '.

end I init] ;

lactual parser}
procedure pictureparser (tile : filename);

var s : string;
r , x,y,z, x1,y1,z1, x2 ,y2,z2 : real ;

begin
linitialize]

source !file) ;
init ;

I IOOp on input l
wh ile context(s) do

case compare(commands,s) of
NONE writeln('ERROR - data not formatted correctty ');
CLE AR clea rscreen;
WAIT
POINT

LINE

POLY

end

end I parser} ;

Sample Data

wait ;
if down then wh ile getcoords (xl ,yl ,zl) do

drawpoint(xl , y l , zl) ;
if down then

while (getcoords(xl,yl,z1) and
(getcoords(x2,y2,z2)) do

drawline (x 1 ,yl ,z 1 ,x2,y2 ,z2) ;
if down then

if getcoord s(x ,y ,z) then begin
x l := x; yl := y ; zl := zl ;
wh ile getcoords (z2,y2,z2) do begin

drawl ine (x 1 ,y 1 ,z 1 ,x2,y2,z2);
xl :- x2 ; y l := y2 ; zl := z2;
end;

drawline (xl,y l ,zl ,X,y,Z)
end;

CLEAR Iclear the screen l

POL Y Idrawa squarel
< 100 100

100 - 100
- 100 - 100
- 100 100

>
LINE ladd "legs" to square l

< 100 - 100 100 - 150
- 100 - 100 - 100 - 150

>
WAIT Ilet user walch ill

CLEAR Iclear screen for nex t pic ture l

Figure 7. Example of a parser for a simple formal.

minimize the effort required to interface various programs and de­
vices . We've attempted to address this problem by s taging a s tan­
dard form at sys tem into two levels, allowi ng high -[evel accessing
tools to be built because of the uniformity of syntax on the lowe r

34

leve l, and allowing flex ibi lity beca use of th e independe nce of the
form at semantics defined on the higher level.

ACKNOWLF,D(; MENTS

Thanks are due to the members of the CAD-Graphics Labora­
tory of IBS at CMU for man y constructive suggestions dur ing the
development of thi s sys tem.

BI BLIOGRAPHY

111 " Sta tus Repo rt of the Graphic Standards Pl anning Co mmit­
tee," Compuler Graphics, Vol 13, No. 3, August 1979.

121 " Draft Proposed American National Standard Engin eering
Drawing and Related Documentation Prac tices Digital
Representation for Communication o f Product Defi niti on
Data," IGES Y14 .26M Response Committee. June 198 1.

Graphics Interface '82

Appendix I

GRAPHIC INTERCHANGE PROTOCOL NOTES

I'ROTOCOL SYNTAX NOTES
I . De limiters and punctuation may appear in strings only if they

are quoted by the quote character. Thus the quote character
can only be used directly by quoting itself, i.e. ". Unless it.is
desired to invoke the data group manipulation semantics, a
stringmodifier character must be quoted if it appears at the
beginning of a string. Note also that punctuation and delim­
iters may not be quoted or they will be treated as strings. It
is recommended that the < newline > and < pagemark>
characters not be quoted as the effect may be implementation
dependent.

2. From the definition of "string" it is implicit that one or more
delimiters may appear anywhere in the syntax for the purpose
of separating adjacent string definitions from one another.
These delimiters are also allowed but not required where a
punctuation character would normally appear and fulfill this
function also. Delimiters are NOT allowed between a
stringmodifier character and its associated string.

3. "comment'''s , "creation"'s, "deletion'''s, and "inclusion'''s
may appear anywhere in the syntax that a delimiter could ap­
pear, as long as they are distinguishable from adjacent strings
by appropriate se paration with additional delimiters as re­
quired .

4. There is an implementation-defined limit on the length of
strings. This limit must be at least 256 characters (quotes are
not counted) . The format of strings passed to the user must
be fully described for each language/system in which the pro­
tocol system is implemented .

5. There is an implementation-defined limit on the maximum
length of "creationbody'''s. This limit must be at least
I 024 characters.

6. Note that both comments and creation bodies are only ended
by MATCHING delimiters , meaning that "I", "I" and "<",
"> " punctuation pairs respectively may be nested inside.
Comments may be nested inside one another, for example,
but every "{" encountered must have its matching " I" be­
fore the comment is ended .

7. Only printable characters are allowed in the protocol. This
eases manual checking and editing of the protocol. Nonprint­
ing characters (as well as binary values) can be implemented
in the format using this protocol if requircd .

PROTOCOL SEMANTICS NOTES

The protocol detined here is accessed through a standard set or
interpretation procedures provided to users as defined elsewhere
in this document. Users must always use the se t of accessing pro­
cedures provided to gain access to data using the protocol.

There are four semantic functions provided by the the proto­
col: comments, and data group creation, deletion, and inclusion
(as well as file inclusion) . Their actions are invisible to client pro­
grams lIsing the accessing procedures provided to read data written
in the protocol. The semantics are described below.

\. The "creation" syntax associates the given name with the
given group of data within the "creationbody" . This name is
valid for the entire body of the "context" in which the "crea­
tion" was encountered or the entire interpretation if it was
encountered outside of any "contextbody". This data may
later be repeatedly retrieved and used with the "inclusion"
facility. Implementations of the protocol accessing tools may

35

or may not have these data groups stored in operating system
files of the specified name. Any operating system files possi­
bly created by implementations of the "creation" command
will be automatically deleted at the cnd of the "contexthody"
in which the "crea tion" was encountered or at the end of in­
terpretation if the "creation" occured outside of any "con­
textbody". In this case all local conventions regarding
filenames apply; the user must therefore be aware of the
effect of creating and deleting files with the specified names.
In all implementations the names must be remembered by
the protocol implementation since there is a limited scope for
each named group. There is therefore an implementation
defined limit, no less than sixteen , to the number of max­
imum "creation" groups currently accessable across all
currently valid "contextbody"'s. Note that all characters be­
tween the "<" and ">" of the "contextbody" are simply
transcribed into the named group storage area and arc not in ­
terpreted by the system. Thus no "inclusion "'s,
"creation "'s, or "deletion '''s are performed inside of the
"creation body" at the time of the creation of the named
group; they can only be performed when the data is late r re­
quested for "inclusion" by name. Retrieval of groups by
name via " inclusion" follows a stack ordered name search re­
lated to context level. Thus the definition of a group with a
name identical to a group defined on a preceding level tem­
porarily supersedes the previous definition until the context in
which the second definition occurred is ended . Repeated
definition on the same context level using the same name
simply associates the name with the most recent definition .

2. The " deletion " syntax, when encountered, will cause the
named group created with a similar " creation" to be immedi­
ately forgotlen, and if implemented as files, the named file to
be deleted . If "creation" syntax is not implemented with
files , then no tile deletion will be allowed . Note that group
names are always automatically forgotten when the "context­
body" in which the "creation" of the group occcured ends.
" deletion" performs this function explicitly and immediately.

3. The " inclusion" syntax, when encountered, will cause the
named group or operating system file to be included into the
character stream being interpreted at that point.
"inclusion"'s may be nested up to an implementation-defined
limit , which may not be less than four. Named groups of data
created hy "creation" syntax mayor may not correspond to
operating system files depending on the implementation . If
"creation" does not use operating system HIes in its imple­
mentation , names of groups created by "creation " have pre­
cedence over opcrating sys tem t1lcnames in the case of idcnti­
cal names when usi ng the "inclusion " syntax .

4. The "comment" syntax, when encountered , is entirely ig­
nored and is not accessible to the user through the accessing
routines.

5. Any actions implied by the "creation ", "deletion", " inclu­
sion" or "comment" syntax are taken by the interpretation syste~ provided for the protocol. The client program using
the accessing tools provided with the protocol need not and
cannot be directly aware of file accesses or input redirection
possibly caused by "inclusion'''s, of the file creation and dele­
tion possibly caused by "creation '''s and " deletion '''s , or of
the " comments" passed over by the protocol interpretation
system provided .

Graphics Interface '82

