
49

HIERARCHICAL APPROACHES
TO HI DDEN SURFACE INTERSECTION TESTING

No=m Dadoun, David G. Kirkpatrick
University of British Columbia

John P. Walsh
Barron & Assoc. Acoustical Consultants Ltd.

ABSTRACT
An app:oxima~ing hierarchical representation is presented for
performlng hldden surface e l imination in complex scenes.
Methods fo: constructing and using this hierarchy are discussed.
Convex bodles are used as elements in this hierarchy. Recent
results from computational geometry are applied to element
construction and intersection processing.

KEYWORDS: c ompute r g r aph i cs, compu t at i onal geometry , hidden
surface elimination, hi erarch i cal structures, clipping.

1.0 Introduction

In this paper we discuss ways of
structuring environment descriptions
hierarchically to efficiently solve the
hidden line / surface elimination problem .
Our algorithms operate in object space
[555,74] and can be used to operate on
scenes of considerable complexity.

Our interest in this area did not come
out of conventional work in computer
graphics but arose from an ongoing
research project involving computer
simulation of concert hall acoustics
[W,79] [W,80] [WD,81] [WO,82]. The
simulation uses a geometric model of a
room or concert hall which has been
generated by a Computer Aided
Architectural Design (CAAD) system
[BEH,79]. Using this model, given a
source position and a receiver position,
we simulate the acoustics encountered at
the receiver position. This is achieved
by 'beam-tracing': a sound beam (modeled
as a solid angle with a simple polygonal
cross-section) emanates from the source
position and is traced through the room
(along with reflection, diffraction,
absorption, and related effects) to
determine whether or not the beam will
impinge on the defined receiver position
within a given trace length.

The underlying geometrical problem,
testing intersections related to the
beam tracing, can be regarded as a
variant of the well-known hidden surface
elimination problem with several
additional constraints. A solution to
the problem must answer the question:
From a give n source position, which
surfaces in the room being modeled can
be 'seen' within the limitations of this
beam? The traditional hidden surface
problem can be cons i dered static with
one viewer position and one viewing
window. Our problem can be considered
dynamic in that we have many viewing
positions a nd many viewing windows. In
our simulation, a single beam striking
across several surfaces is 'split' into
a number of reflections each of which
must also be traced as a 'new' source
position. With several hundred primary
(pre-reflection) source beams and
potentially exponential growth in the
number of secondary (reflected) beams,
our efforts have concentrated on
segmenting and preprocessing the
geometric model to facilitate the
beam/ surface testing.

The use of geometric h i erarchies in
structuring domain information for
computer graphics was first suggested by
Clark [C,76] . He proposed using

Graphic. Interface '82

hierarchies to limit the amount of
information under consideration at any
particular time (the "working set") and
also discussed generalizing the idea of
clipping to include resolution clipping
and other optical effects. He suggested
that search algorithms take the form of
a recursive descent through the
hierarchy.

Independently, Rubin and Reddy (RR,7S]
deve~opec the idea of a hierarchical
rep~esentation for 3-dimensional objects
for use in artificial intellioence
app licati ons. This was later refined
and applied to computer graph i cs in a
paper by Rubin and Whitted [RW,80].
They used a hierarchy of arbitrarily
oriented parallelepipeds (referred to as
bounding boxes in the following
discussion) to segment their
environments and used image space
scan- li ne algorithms to renoer complex
shaded scenes. Their hi e r archy elements
were creat ed manually using a structure
editor with no attempt to optimize
systematically the volume or orientation
of their bounding boxes.

Our work further explores the notion
of a hierarchical representation by
considering other canqidates for
hierarchy elements, examining the
complexity of automatically segmenting
the space and constructing the hierarchy
elements, and applying recent results in
the field of computational geometry to
the construction, search and clipping
processes. We have attempted to
describe our results in as general a way
as possible. A beam here can be
considered a sound beam in our
application or a viewing window in a
typical graphics application.

2.0 Definitions

The two-dimensional convex hull of a
planar set of points p is the--unique
minimum area convex polygon which
contains p. The most natural
representation is a circular list of
vertices describing the outer contour of
the hull. The three-dimensional convex
hull of a set of points in three-space
rs--the minimum volume convex polyhedron
which contains that set of points.
There are several options for
representing the 3D hull. The simplest
is a graph whose vertices are the
extreme points of the convex set and
whose edges denote adjacency on the

50

convex hull. Convex hulls are
approximations of objects which have
nice computational properties due to
their convexity. In recent years, a
wealth of efficient algorithms for
constructing and using these structures
has been devised by researchers in
computationa! geometry [DK,Sl) [MP,77]
[PH, 77] [Sh, 78].

A bounding box is a cruder
approximat ion -wIth a simpler
representation. Given a set of points
p, a bountiing box is the mi nimum volume
arb itrari ly oriented parallelepiped
which contains p. :t car. be spec ifi ed
as a 4x4 transformation matrix (into
local 'box' coordinates) and x, y, and z
offsets to define the limit of the box.
Rubin and Whitted used a related
approximation element in their hierarchy
although they a l a not attempt to
minimize the volume of their 'boxes' .
Construction and use of these convex
elements is di scusse~ in Section 4.

Our environment description is a
boundary representation [R,SO) which
uses planar faces to describe the
boundaries of the scene being modeled.
We assume as input vertices, edges and
planar faces, along with face adjacency
information. Edges are specif i ed as
pairs of vertices. A face is specified
as an edge ring from which the face
plane equation can be derived.

Face adjacency information can be
specified locally by having a pointer
from each each edge to its two adjoining
faces or globally as a graph relation by
defining a dual graph with nodes
relating to faces, and edges relating to
adjacencies. The global graph relation
of adjacency information can be derived
from the edge information by using a
depth-first search to extract the
connected components.

Although object coherence is not
required in the description of elements
in the given environment, face
orientation may be incorporated to
describe the 'outside' of a wall or
object. I t may also be used to
eliminate back faces (faces oriented
away from the viewer) from
consideration.

Within a geometric model of a scene as
described above, a viewing window is
defined as a viewing (source) position

Graphic. Interface '82

and rays leaving this viewing position
delimiting a beam. This beam could have an arbitrary--polygonal cross-section (non-convex with holes). By definition, beams have contiguous cross-sections. A beam with disconnected components can be
treated as several beams. The representation of a beam is the circular counter-clockwise list of rays forming the outside contour of the beam followed by a list of circular clockwise ray lists defining holes within the beam
c~ntour. A standard rectangular viewing screen would be modeled here as 4 rays leaving the viewer position and defining a truncated viewing pyramid.

Our definition of beam is extremely general. The beam could be regarded as defining an entire graphics viewing window which after hidden-line removal could used as input to a vector d i splay. At the other extreme, the beam window could be regarded as a single pixel (picture element) . Thus the extraction of values fer all pixels could be used to generate a raster scan image.

3.0 Hierarchical Processing

Given a particular geometric model, we
wish to be able to quickly identify all faces or portions of faces visible within any beam with arbitrary position and direction.

The brute force algorithm would test all faces exhaustively for containment within the beam window. A more intelligent approach might be to form rough clusters of faces and to test the beams against these clusters. The review paper by 5utherland et al explains and categorizes ten hidden surface elimination algorithms and
general techniques for solving typical associated subproblems [555,74]. The uninitiated reader is directed to that
survey.

Our desire is to trade search time for preprocessing time. Our approach is to use a hierarchical approximating structure as an alternate representation of the scene. This structure 1S organized so that questions about the original scene can be answered quickly by referring to this approximation. It
is composed of polyhedral elements, each of which contains a portion of the
structure to be approximated, arranged into a hierarchy. The root of this

51

hierarchy is the largest element and
contains the entire scene; the levels below the root are formed by splitting
the scene into segments. The segments are further subdivided until the leaves
are formed. Each leaf is a 2D convex approximation of one of the planar face elements making up the scene.

The processing involved in solving this problem must include the work reauired to massaQe the input data into an- acceptable form. Thus a general outline might be:

1) take as 1nput some unstructured
scenp. representation .

2) ex~rac t from this initial
representation the necessary plane
equat i ons and face adjacency
information .

3) partition this representation into a
segmented hierarchy .

4) replace each segment in the
hiera r chy with a containing
polyhedral element.

5) Input a viewing (source) po sition
and delimiting rays defin i ng a beam.

6) proceed with searching and cl tpptng
algortthms .

Items 1-4 refer to preprocessing the structure which is performed once; 5-6 refer to the hierarchical search which
is to be performed many times. Items 1-4 are dealt with in the next subsection; items 5-6 are examined thereafter.

3.1 Preprocessing

What type of input data might a potential user have available to work with? On one hand, Rubin and Whitted assumed a "point or surface representation [not] aggregated into any hierarchical form"
[RW,80,p.113]. At the other end of the spect·rum, according to Walsh: "a hierarchy of walls (and/or wall
elements) , planar faces, [edges,] and vertices" [W,79,p.236]. This
representation was intended to be the output of a CAAD system and thus already
has much of the structure we need associated with it.

Obviously with this range of potential users, little in the way of predefined
structure can be assumed. Different users may be able to step into the stream in various places according to
how their data is initially structured but most users will require some 'massaging' of data into appropriate

Graphics Interface '82

forms. All of this could be done
manually us i ng structure editors as
Rub~n did. However, the potential
tedIum of such an exercise combined with
the desire to optimize various aspects
of the final structure leads us to
isolat;&Portions ?f the preprocessing
and o~~ e~ suggestIons as to ho~ to deal
with each. figure 1 identifies the
appropriate portions and labels the
necessary transformations.

. With the multitude of re pre sentations
In gene~a l use [R,6 0] , the first
transformation (a) may be into a
geometric vertex boundary surface
representation. Some of the associated
object structure from some
re~r~s~ntation~ (for example, the
prImItIve . obJect descriptions in
Constructive Solid Geometry) can be used
to guide some of the hierarchical
segmentation later on. In some cases, a
non-planar surface may have to be
approximated by planar faces.

Somehow, edge and face descriptions
have to be specified and it seems
unlikely that much of this could be
automated if the data was in the form of
~igitize: input. . ~h~ face adjacency
InformatIon could InItIally be specified
locally as edge / face relations and the
dua l adjacency graph could be derived
from this by using a depth first search.

The extent of the next transformation
depends on the complexity of the
environment being structured.
Transformation (b) involves the
recursive partitioning of the faces and
edges, in the scene into segment
groupIngs. The connected components of
the adjacency graph can be used as a
first slice into the segmentation. The
seg~ents can be further decomposed using
varIou~ , heuristics depending on the
C?mposltlon of the scene. Obviously, a
cItyscape description has a different
funda~ental description from a digital
terraIn model of a mountainous scene and

Fig . Preprocessing Requ ired

52

its segmentation will use
heuristics.

different

The adjacency graph can also be used
in several other ways. An articulation
point in a graph is one which when
removed causes the graph to become
d i sconnected. These points i n t he
adjacency graph may be used to identify
objects sitting on single faces. In a
similar way, high degree vertices can be
used as "clus t er pcint~· for segment i ng .
Th i s can be combi ned wi th schemes usina
edge ang l es, surface area we ights;
and / or statistical clustering of
significant features. The segmentation
can be driven by a reduction in the
overall volume or the sizes of point
sets. The segmentation may also try to
provide separable clusterings for use in
later node versus node priority testing.
This is how the Schumacker priority list
algorithm used clusters [SSS, 74].

The last preprocessing transformation
(c) from segmented structure into actual
approx i mation hierarchy depends on the
appro ximation being used. This can most
often be done automatically and will be
discussed later.

3.2 Hierarchy Search Algorithms

The general outline of the routines
used to search through the hierarchy and
aggregate the appropriate material is
displayed in Fig. 2. The algorithms are
written in a pseudo-Pascal with
liberties taken for conceptual
simplicity. The system uses the
preprocessed hierarchy elements as
"packages" and manipulates them as
units. The expansion of these elements
is done in as "lazy" a way as possible.

The top level routine constructs the
hierarchy as discussed in the last
section. This routine then takes a list
of beams/ viewing windows into the
environment and applies the h i dden
surface removal to each one in turn. In
our application, the list of beams

raw a plane/ fa ce b segment c hierarc hical
representation ---> adj info - - -> groupings --- > s tructure

Graphics Interface '82

corresponds to a list of sound beams to
be traced. The reflections generated
are simply new input beams inserted into
the list. In a pure graphics
application, the beam list could be a
succession of frames for a moving
viewDoint (such as in an aviation
simuiator) or the succession of pixel
windows for a raster display (as in
[RW, 80]) •

Our own application includes e special
nooe def i ning ~he receiver which is
projected and c l i pped wi th the
environment nodes. The detection of the
receiver node in 5 v iewina window is
noted (along with other s tatistic s) as a
strike on the receiver position. We
also incorporate heuristics for the beam
tracing to further eliminate extraneous
beams whenever possible. For example, a
beam (original or image) so~rce which
has a greater distance to the receiver
position than the p rede termin ed maximum
=race length ca n be d i scarded.

The routine examine is used to perform
a recursive descent search into the
hierarchy to produce a ' clip list' of
nodes which are partially contained
within tbe beam. The routin~ intersect
tests the given beam for intersection
against the current node. This routine
depends strongly on the approx imation
elements used in the hierarchy and will
be discussed in the next section.
Examine ignores entirely excluded nodes,
and continues expanding and examining
partially included nodes. In order to
resolve circular overlap properly the
clipping routine requires separable
collections of planar faces; therefore
examine will not expand nodes containing
only planar faces. It records these and
all entirely included nodes for passing
to the clipping control routine.

The clipping control routine is used
to control the "laziness" of the
expansion in producing a list of visible
polygons. It performs a rough ordering
by depth on the nodes and coalesces
those which cannot have their relative
depth resolved. It then calls a
clipping routine based on that by Weiler
and Atherton [WA,??) with the current
beam and the node to be expanded and
clipped. The clip routine will return
the visible portions of the polygonal
faces and the (possibly segmented)
remainder of the beam. If the beam has
been segmented, recursive calls to

53

Fig. 2 Hierarchy search algorithms

i) Top level;

VAR
ROOT root node of hierarchy.

contains entire scene

beam_list list of beams / viewing windows

list of hierarchy nodes which are
either ent irely contained In current
beam or are planar

polygon list
- (list of clipped visible pol ygons

in the scene

BEGIN
c onst ructlon(raw_input. ROOT);

FOR all beams in beam_ list DD
BE GIN

END .

polygon list <--- nil;
cl lp_ l ist <--- nil;

examlne(beam. ROO T. clip 1 ist);
cl ipplng(beam . clip list~ polygon list) ;

(reflectlons(beam. pol ygon_list . beam_list»
END

2) PROCEDURE examine(beam. node. clip list) ;
VAR status (returns the result of i ntersecting

the given beam and node) ;

BEGIN
intersect(beam. node. status);

CASE status OF
entirely_ excluded: (Ignore) ;

) ;

) :

) :

) :

entirel y Included: Insert(node. cl ip_llst) ;
partially Included:

IF all subnodes of node are planar
THEN Insert(node. clip_list)
ELSE

END
END:

FOR all subnodes of node DO
examine(beam. subnode. clip_list)

3) PROCEDURE cllpping(beam . clip_list. polygon_list);

BEGIN
depth_sort(cllp_list) ;

WHILE area(beam} > epsilon
AND NOT empty(clip_llst) DO

BEGIN

node_list c--- nil ;
node <--- head(cllp list);
clip_list <--- tail(cllp_llst);

IF all subnodes of node are planar THEN
BEGIN

cl ip(beam . node. polygon list);
IF beam Is segmented THEN

FOR all subbeams of beam DO
clipping(subbeam. clip list.

polygon_list)
END

ELSE
BE GIN

END
END;

FOR all subnodes in node 00
insert(subnode.node 1 ist);

cl ipplng(beam . node_list. pol ygon_list)
END

Graphics Interface '82

clipping (one for each beam segment)
along with the current occluding node
list serve to deal with each segment as
a new beam.

Note that the i teration in the
clipoing routine is tied to a threshold
(epsilon) on the beam area. This does
not cause problems in the general case;
a complete solution can be formed by
settiilg epsilon to zero. However, in
the acoustics modeling, the epsilon can
be used to elim i nate unnecessary
pro~essing when all but an insiQnificant
po, tion of the beam has bee il -clipped.
This epsilon can also come in useful in
a raster scan pixel calculation where
only one value is to be returned for the
entire window. Processing of the window
could stop at 50 or 60 per cent of the
area of the original window (for
exampl e) and a weighted area value could
be returned possibly providing sub-pixel
resol ution effects. This i s related to
th e resolution clipp i ng suggest i on of
Clark. In the event that the scene i s
unbounded in some directions, the
clip-list will be exhausted before the
beam area is and the unassigned portions
of the window can be assigned some
background value.

Weiler's algorithm for clipping is an
extension of Sutherland's reentrant
polygon clipping algorithm [SH,?4J. The
algorithm performs a rough depth sort on
the polygonal elements and then
repeatedly slices the visible section of
the closest polygon out of the beam
until the beam area or the list of
polygonal elements is exhausted. It
operates by intersecting all segments in
the "clip" polygon with all the segments
in the "subject" polygon and in two
passes uses the intersection points and
the original points to trace out the
clipped polygon and the remaining beam
window. If so desired, a backface test
can be incorporated to eliminate even
more planar candidates.

The structure of the algorithms is
such that many computations can be done
independently of others. This could
lend itself nicely to a parallel
implementation of the window processing.

4.0 Comparison of Bounding box and
Convex Hull Approximations

The polyhedral elements we examine as
candidates for approximation elements in

54

the hierarchy are minimum bounding boxes
and convex hulls as defined earlier.
The tradeoffs between them as outlined
below indicate that there is no
clear-cut winner.

As a further aid to computational
efficiency, we approximate the beam by
its convex hu l l. In constructing the
convex hull of the beam, the holes need
not be considered. Since the k rays
defining the ma i n contour of the beam
are specified i~ order, the hull can be
constructed i n O{k) time. Si nce a ll
approxima tion s considered here are
convey.~ ?relim i narY,intersect i on t es ti ng
~o elImInate , non-Intersections always
Involves ~estlng two convex objects, a
problem whlch has been well studied in
the computational geometry literature
[CO,80J [OK,8l) [MP,??) [ShP.,76].

We first compare the time f or
co~struction o f a hierarchy element of n
pOlnts. The construction of the convex
hull of a set of n points can be done in
time O{n log n) [PH,7?J. It appears
that even if the h points on the convex
hull are given, it is necessary to use
time O(h 2) to compute the minimum volume
bound~n~ box. This may seem initially
surprlslng because the bounding box is a
"cruder" approximation than the convex
hull. The reason that the same "divide
and conquer" strategy used in
constructing the convex hull can't be
used for the bounding box is that
subresults cannot be easily combined.
The bounding box of a given point set
may not properly contain the bounding
boxes of all subsets of that set. Note
that a good approximation to the minimum
volume bounding box can probably be
constructed in linear time.

The space required for storage of the
conve~ hull (as hull points and
assocIated edges and faces) is linear in
n, the number of input points. The
space required for storage of a bounding
box above is constant (the
transformation matrix and the x, y, z
offsets) regardless of the size of the
input set.

Chazelle and Oobkin [CO,80J were the
first to describe convex body
intersection detection algorithms which
operate in sublinear time. Oobkin and
Kirkpatrick [OK,8I] unify and extend
their results by presenting a general
approach to convex intersections which

Graphic. Interface '82

produces a set of sublinear algorithms.
The key to their approach is the
localization of the intersection
testing. A convex polygon of p points
is preprocessed into a sequence of
successively simpler convex
approximations in O(p) time. Each
pol yg on in the sequence strictly
contains its successor. Consequently,
an intersection with any member of the
sequence im~l ie s an intersection with
the ori9ina~ polygon. A sequence of
this :orm ~i~ h log p e l emen~s can be
constructed giving ri se to a
straigh~for~ar d O(log p) intersectior.
detection algorithm.

The 3D case is almost identical.
Given a convex polyhedron with p points
a sequence of inner approximations is
constructed. A vector or plane is
teste6 for i ntersection ~ith the
sequenc e by perf orming l oca l tests on
each element in the sequence,
essentia l l y growing the polyhedron
towards the testing object. There are a
logarithmic number of elements and
performing a local test against each (in
c~nstant time) produces the O(log p)
tlme result. Using this hierarchical
representation for·two polyhedra of p
and q points respectively makes possible
an O(log p * log q) polyhedron against
polyhedron intersection detection
algorithm. Thus the convex
approximation of a beam with k rays can
be tested for intersection with a convex
polyhedron of p points in 0(109 k *
log p) time. Note that a standard
4-sided window can be tested against a
convex polyhedron in O(log p) time.

The intersection - of a vector with a
bounding box can be detected in constant
time by projecting the 8 points defining
the box onto a backplane and testing the
vector's intersection with that
backplane for containment within the
projected shadow of the box. This
combined with the Dobkin/Kirkpatrick 2D
convex intersection result can be used
to determine a beam-box intersection in
O(log k) time. Note that a standard
4-sided window can be tested against a
bounding box in constant time.

The convex hull approximation is
always contained within the bounding box
approximation for a given set of points.
Since the convex hull is a "tighter" fit
than the bounding box, it is less likely
to result in beams which intersect the

55

Fig . 3 Elemert Summary Table

constrllcti on

storage

intersection
wi th beam

intersection
wi th 4 - sided
window

Convex Hull

OCn l og n)

O(n)

O(log k • log n)

O(log n)

Note s : n - number of input pOints

Bounding Box

2
O(h)

constant

O(log k)

constant

h - number of pOints in convex hull
k - number of ra ys in hull of beam

All logarithms are base 2

approximation structure but which miss
the underlying structure. The convex
hull is easier to compute (exactly) than
the bounding box. Convex hulls of
several structures can be easily
aggregated into one large containing
hull. However, the bounding box
approximation can be stored in constant
space regardless of the complexity of
the underlying structure. A bounding
box also adm it s to a more efficient
intersection algorithm. FiQure 3
summarizes the convex huil / boundIng box
compar i son of this section.

Our ap~l i cation is space constrained,
due to the typically large nature of
architectural databases. It i s also
time constrained due to the potentially
exponential growth of beam reflections.
Therefore, neither scheme has an obvious
superiority.

A way to obtain some o f the benefits
of both i s to use a hybrid nlerarcnv.
This -hybrid could use bounding box~s
n~ar the root where the space savings
wlll be the greatest and spurious
inter~ections~ although more probable,
are lnexpenslve. Convex hulls could be
used further down in the hierarchy for
their "tighter" fit approximation to
decrease the amount of work passed to
the clipping routines.

Graphics Interface '82

5.0 Summary

Section introduces the motivation
for the problem and discusses previous
work related to geometric hierarchies.
Section 2 defines our input requirements
and the entities we deal with. Section
3 states the general problem in terms of
these definitions. Section 3 then
discusses the construction and use of
hierarchical structures to solve the
problem. Section 4 examines the
complexities of using different
geometric structures as hierarchy
elements. It also presents methods of
efficiently using convex approximations
to improve intersection times.

Our work is continuing in applying
computational geometry results to
computer graphics problems [0,82) both
in our application and in a general
setting. We are proceeding with a
Pascal implementation of the algorithms
discussed in this paper. A more
deta i led assessment of our results will
be presented elsewhere.

[BEIl,79]
8aer . A . . Eastman, C .. & Henrton. M. "Geometric
Modeling : A Survey" in CAD 11, No .5. 1979 .
pp . 253-272 .

[CD,80j
Chazelle, B ., & Dobkin , D .
Than Computat i on " , Proc .
Theory of Computing , Los
pp . 146 - 153 .

[C, 76]

"Detection Is Easier
ACM Symposium on

Angeles, May 1980,

Clark, J . H . "Hierarch i ca l Geometric Mode l s for
Visible Surface Al gori thms ", Comm . ACM 19 .
No . ID, 1976, pp . 547-55,1,

[0 , 82]
U~doun . N . "Hi erarchi c al Approac hes to Hidden
Surfac e Elimination ". M. Sc . Thesis , UBC .
for thcoming 1982 .

[UK.8 I]
Dobk In, 0 . P . , & Klr k patrick , D . G . "Fast
Detection of Pol yhedral Intersections" ,
manuscript to appear .

[MP . 78j
Mul ler, D . E ., & Preparata, F . P . " F inding the
Intersection of 'rwo Convpx Pol yhedra",
Tect1nical Report, Universit y o f Illinois, Oc t .
1977 .

[PH , 77]
Preparata, F . P ., & Hong, S.J. "Convex Hulls of
Finite Sets of Points In Two and Three
Dimensions", Comm . ACM 20 , No . 2 , 19 77 ,
pp . 87-93 .

56

[RR,78]
Reddy, D . R . , & Rub in, S . "Representation of
Three Dimensional Ob jects", Carnegie - Mell on
Un iversit y Technical Report CMU-CS - 78 - 1 13 .
1978 .

[R,80]
Requtcha . A. A. G. "Representa tions of Rigid

Systems" ,
437-464

Solids : Theory, Methods , and
Computing Sur veys 12 , No . 4, 1980 . pp .

[RW,80]
Rub In, S . M. , &
Representation
Sc enes", Proc .
14, No . 3, Jul y

Wh itted, T . " A 3 - Dimensl onal
for Fast Rendering of Com,-,lp
SIGGR APH 80, Computer Gr~phi c~

1980 , pp . 110- 1 16 .

[Sh, 78]
Shamos , M. I. "Computation~l Geometr y" ,
Ph . D . Thesi s, Ya le , M~y 1978 .

[StoH , 76]
Shamos , M. I . , & Hoey. O . "Geome t r t c

17th Annual IEEE
Computer Science.

Intersection Problems", Proc.
Symposium on Foundations of
1976 , pp . 208-215 .

[SuH, 74)
Sutherland , I . E . , & Hodgman . G . W. " Reentrant
Pol y gon Cli pp i ng " , Comm. ACM 17, No . l, 19 74,
pp. 32 -42 .

[SSS,74]
Suthe r I and , I . E . , Sproull, R . F, & Schumacker .
R . A. HA Charac terization of Ten Htdde" - Surf~cp
Algori thms ", Comput ing Surveys 6, No . I, March
1974. pp . 1- 55 .

[WA, 77 J
Weller', K .. & Atherton , P .
Removal Using Po lygon A,·ea
SIGGRAPH 77 , Computer Graphics
1977, pp . 214-222.

[W ,79]

"Hidden SU I f;t c e
Sor ting" , PI' OC .
11. No . 2 . Summer

Walsh, J . "The Simulation of Directional Sound
Sources i n Rooms b y Mean s o f a Digit~l
Computer" . M. Mus . TheSis. Un ivers i ty of
Western On tario. Londo n , C anad~. 1979 .

[W . 80]
W~l sh, J . " The Design of Godo t : A Sy stem fo r
Room Acoustics Model 1ng and SimlJlat1on", paper
EI5 . 3. Proc . 10th International Congress on
Acoustics. Sydney. July . 1980 .

[WD . 8i]
Wa ls h . J. & Dadoun, N. " The Design and
Development of Godot : A System for Room
Acoustics Mode l1ng and Simulation" , presented
at the 101st meeting of the Acou s tical SOCiet y
of Ameri c a. Ott a wa. Ma y 1981 .

[WD , 82)
Wa lsh . J . And Oadoun. N . "What AI 'e We Waiting
for? The Development of Godot . TI . " Presented
at the 103rd meeting of the Ac oustical Societ y
of America. Chicago, Apr i l 1982 .

Graphic. Interface '82

