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ABSTRACT 
An app:oxima~ing hierarchical representation is presented for 
performlng hldden surface e l imination in complex scenes. 
Methods fo: constructing and using this hierarchy are discussed. 
Convex bodles are used as elements in this hierarchy. Recent 
results from computational geometry are applied to element 
construction and intersection processing. 
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1.0 Introduction 

In this paper we discuss ways of 
structuring environment descriptions 
hierarchically to efficiently solve the 
hidden line / surface elimination problem . 
Our algorithms operate in object space 
[555,74] and can be used to operate on 
scenes of considerable complexity. 

Our interest in this area did not come 
out of conventional work in computer 
graphics but arose from an ongoing 
research project involving computer 
simulation of concert hall acoustics 
[W,79] [W,80] [WD,81] [WO,82]. The 
simulation uses a geometric model of a 
room or concert hall which has been 
generated by a Computer Aided 
Architectural Design (CAAD) system 
[BEH,79]. Using this model, given a 
source position and a receiver position, 
we simulate the acoustics encountered at 
the receiver position. This is achieved 
by 'beam-tracing': a sound beam (modeled 
as a solid angle with a simple polygonal 
cross-section) emanates from the source 
position and is traced through the room 
(along with reflection, diffraction, 
absorption, and related effects) to 
determine whether or not the beam will 
impinge on the defined receiver position 
within a given trace length. 

The underlying geometrical problem, 
testing intersections related to the 
beam tracing, can be regarded as a 
variant of the well-known hidden surface 
elimination problem with several 
additional constraints. A solution to 
the problem must answer the question: 
From a give n source position, which 
surfaces in the room being modeled can 
be 'seen' within the limitations of this 
beam? The traditional hidden surface 
problem can be cons i dered static with 
one viewer position and one viewing 
window. Our problem can be considered 
dynamic in that we have many viewing 
positions a nd many viewing windows. In 
our simulation, a single beam striking 
across several surfaces is 'split' into 
a number of reflections each of which 
must also be traced as a 'new' source 
position. With several hundred primary 
(pre-reflection) source beams and 
potentially exponential growth in the 
number of secondary (reflected) beams, 
our efforts have concentrated on 
segmenting and preprocessing the 
geometric model to facilitate the 
beam/ surface testing. 

The use of geometric h i erarchies in 
structuring domain information for 
computer graphics was first suggested by 
Clark [C,76 ] . He proposed using 
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hierarchies to limit the amount of 
information under consideration at any 
particular time (the "working set") and 
also discussed generalizing the idea of 
clipping to include resolution clipping 
and other optical effects. He suggested 
that search algorithms take the form of 
a recursive descent through the 
hierarchy. 

Independently, Rubin and Reddy (RR,7S] 
deve~opec the idea of a hierarchical 
rep~esentation for 3-dimensional objects 
for use in artificial intellioence 
app licati ons. This was later refined 
and applied to computer graph i cs in a 
paper by Rubin and Whitted [RW,80]. 
They used a hierarchy of arbitrarily 
oriented parallelepipeds (referred to as 
bounding boxes in the following 
discussion) to segment their 
environments and used image space 
scan- li ne algorithms to renoer complex 
shaded scenes. Their hi e r archy elements 
were creat ed manually using a structure 
editor with no attempt to optimize 
systematically the volume or orientation 
of their bounding boxes. 

Our work further explores the notion 
of a hierarchical representation by 
considering other canqidates for 
hierarchy elements, examining the 
complexity of automatically segmenting 
the space and constructing the hierarchy 
elements, and applying recent results in 
the field of computational geometry to 
the construction, search and clipping 
processes. We have attempted to 
describe our results in as general a way 
as possible. A beam here can be 
considered a sound beam in our 
application or a viewing window in a 
typical graphics application. 

2.0 Definitions 

The two-dimensional convex hull of a 
planar set of points p is the--unique 
minimum area convex polygon which 
contains p. The most natural 
representation is a circular list of 
vertices describing the outer contour of 
the hull. The three-dimensional convex 
hull of a set of points in three-space 
rs--the minimum volume convex polyhedron 
which contains that set of points. 
There are several options for 
representing the 3D hull. The simplest 
is a graph whose vertices are the 
extreme points of the convex set and 
whose edges denote adjacency on the 
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convex hull. Convex hulls are 
approximations of objects which have 
nice computational properties due to 
their convexity. In recent years, a 
wealth of efficient algorithms for 
constructing and using these structures 
has been devised by researchers in 
computationa! geometry [ DK,Sl) [MP,77] 
[ PH, 77] [Sh, 78]. 

A bounding box is a cruder 
approximat ion -wIth a simpler 
representation. Given a set of points 
p, a bountiing box is the mi nimum volume 
arb itrari ly oriented parallelepiped 
which contains p. :t car. be spec ifi ed 
as a 4x4 transformation matrix (into 
local 'box' coordinates) and x, y, and z 
offsets to define the limit of the box. 
Rubin and Whitted used a related 
approximation element in their hierarchy 
although they a l a not attempt to 
minimize the volume of their 'boxes' . 
Construction and use of these convex 
elements is di scusse~ in Section 4. 

Our environment description is a 
boundary representation [R,SO) which 
uses planar faces to describe the 
boundaries of the scene being modeled. 
We assume as input vertices, edges and 
planar faces, along with face adjacency 
information. Edges are specif i ed as 
pairs of vertices. A face is specified 
as an edge ring from which the face 
plane equation can be derived. 

Face adjacency information can be 
specified locally by having a pointer 
from each each edge to its two adjoining 
faces or globally as a graph relation by 
defining a dual graph with nodes 
relating to faces, and edges relating to 
adjacencies. The global graph relation 
of adjacency information can be derived 
from the edge information by using a 
depth-first search to extract the 
connected components. 

Although object coherence is not 
required in the description of elements 
in the given environment, face 
orientation may be incorporated to 
describe the 'outside' of a wall or 
object. I t may also be used to 
eliminate back faces (faces oriented 
away from the viewer) from 
consideration. 

Within a geometric model of a scene as 
described above, a viewing window is 
defined as a viewing (source) position 
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and rays leaving this viewing position 
delimiting a beam. This beam could have an arbitrary--polygonal cross-section (non-convex with holes). By definition, beams have contiguous cross-sections. A beam with disconnected components can be 
treated as several beams. The representation of a beam is the circular counter-clockwise list of rays forming the outside contour of the beam followed by a list of circular clockwise ray lists defining holes within the beam 
c~ntour. A standard rectangular viewing screen would be modeled here as 4 rays leaving the viewer position and defining a truncated viewing pyramid. 

Our definition of beam is extremely general. The beam could be regarded as defining an entire graphics viewing window which after hidden-line removal could used as input to a vector d i splay. At the other extreme, the beam window could be regarded as a single pixel (picture element ) . Thus the extraction of values fer all pixels could be used to generate a raster scan image. 

3.0 Hierarchical Processing 

Given a particular geometric model, we 
wish to be able to quickly identify all faces or portions of faces visible within any beam with arbitrary position and direction. 

The brute force algorithm would test all faces exhaustively for containment within the beam window. A more intelligent approach might be to form rough clusters of faces and to test the beams against these clusters. The review paper by 5utherland et al explains and categorizes ten hidden surface elimination algorithms and 
general techniques for solving typical associated subproblems [555,74]. The uninitiated reader is directed to that 
survey. 

Our desire is to trade search time for preprocessing time. Our approach is to use a hierarchical approximating structure as an alternate representation of the scene. This structure 1S organized so that questions about the original scene can be answered quickly by referring to this approximation. It 
is composed of polyhedral elements, each of which contains a portion of the 
structure to be approximated, arranged into a hierarchy. The root of this 
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hierarchy is the largest element and 
contains the entire scene; the levels below the root are formed by splitting 
the scene into segments. The segments are further subdivided until the leaves 
are formed. Each leaf is a 2D convex approximation of one of the planar face elements making up the scene. 

The processing involved in solving this problem must include the work reauired to massaQe the input data into an- acceptable form. Thus a general outline might be: 

1) take as 1nput some unstructured 
scenp. representation . 

2) ex~rac t from this initial 
representation the necessary plane 
equat i ons and face adjacency 
information . 

3) partition this representation into a 
segmented hierarchy . 

4) replace each segment in the 
hiera r chy with a containing 
polyhedral element. 

5) Input a viewing (source) po sition 
and delimiting rays defin i ng a beam. 

6) proceed with searching and cl tpptng 
algortthms . 

Items 1-4 refer to preprocessing the structure which is performed once; 5-6 refer to the hierarchical search which 
is to be performed many times. Items 1-4 are dealt with in the next subsection; items 5-6 are examined thereafter. 

3.1 Preprocessing 

What type of input data might a potential user have available to work with? On one hand, Rubin and Whitted assumed a "point or surface representation [not] aggregated into any hierarchical form" 
[RW,80,p.113]. At the other end of the spect·rum, according to Walsh: "a hierarchy of walls (and/or wall 
elements) , planar faces, [edges,] and vertices" [W,79,p.236]. This 
representation was intended to be the output of a CAAD system and thus already 
has much of the structure we need associated with it. 

Obviously with this range of potential users, little in the way of predefined 
structure can be assumed. Different users may be able to step into the stream in various places according to 
how their data is initially structured but most users will require some 'massaging' of data into appropriate 
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forms. All of this could be done 
manually us i ng structure editors as 
Rub~n did. However, the potential 
tedIum of such an exercise combined with 
the desire to optimize various aspects 
of the final structure leads us to 
isolat;&Portions ?f the preprocessing 
and o~~ e~ suggestIons as to ho~ to deal 
with each. figure 1 identifies the 
appropriate portions and labels the 
necessary transformations. 

. With the multitude of re pre sentations 
In gene~a l use [R,6 0] , the first 
transformation (a) may be into a 
geometric vertex boundary surface 
representation. Some of the associated 
object structure from some 
re~r~s~ntation~ (for example, the 
prImItIve . obJect descriptions in 
Constructive Solid Geometry) can be used 
to guide some of the hierarchical 
segmentation later on. In some cases, a 
non-planar surface may have to be 
approximated by planar faces. 

Somehow, edge and face descriptions 
have to be specified and it seems 
unlikely that much of this could be 
automated if the data was in the form of 
~igitize: input. . ~h~ face adjacency 
InformatIon could InItIally be specified 
locally as edge / face relations and the 
dua l adjacency graph could be derived 
from this by using a depth first search. 

The extent of the next transformation 
depends on the complexity of the 
environment being structured. 
Transformation (b) involves the 
recursive partitioning of the faces and 
edges, in the scene into segment 
groupIngs. The connected components of 
the adjacency graph can be used as a 
first slice into the segmentation. The 
seg~ents can be further decomposed using 
varIou~ , heuristics depending on the 
C?mposltlon of the scene. Obviously, a 
cItyscape description has a different 
funda~ental description from a digital 
terraIn model of a mountainous scene and 

Fig . Preprocessing Requ ired 
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its segmentation will use 
heuristics. 

different 

The adjacency graph can also be used 
in several other ways. An articulation 
point in a graph is one which when 
removed causes the graph to become 
d i sconnected. These points i n t he 
adjacency graph may be used to identify 
objects sitting on single faces. In a 
similar way, high degree vertices can be 
used as "clus t er pcint~· for segment i ng . 
Th i s can be combi ned wi th schemes usina 
edge ang l es, surface area we ights; 
and / or statistical clustering of 
significant features. The segmentation 
can be driven by a reduction in the 
overall volume or the sizes of point 
sets. The segmentation may also try to 
provide separable clusterings for use in 
later node versus node priority testing. 
This is how the Schumacker priority list 
algorithm used clusters [SSS, 74]. 

The last preprocessing transformation 
(c) from segmented structure into actual 
approx i mation hierarchy depends on the 
appro ximation being used. This can most 
often be done automatically and will be 
discussed later. 

3.2 Hierarchy Search Algorithms 

The general outline of the routines 
used to search through the hierarchy and 
aggregate the appropriate material is 
displayed in Fig. 2. The algorithms are 
written in a pseudo-Pascal with 
liberties taken for conceptual 
simplicity. The system uses the 
preprocessed hierarchy elements as 
"packages" and manipulates them as 
units. The expansion of these elements 
is done in as "lazy" a way as possible. 

The top level routine constructs the 
hierarchy as discussed in the last 
section. This routine then takes a list 
of beams/ viewing windows into the 
environment and applies the h i dden 
surface removal to each one in turn. In 
our application, the list of beams 

raw a plane/ fa ce b segment c hierarc hical 
representation ---> adj info - - -> groupings --- > s tructure 
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corresponds to a list of sound beams to 
be traced. The reflections generated 
are simply new input beams inserted into 
the list. In a pure graphics 
application, the beam list could be a 
succession of frames for a moving 
viewDoint (such as in an aviation 
simuiator ) or the succession of pixel 
windows for a raster display (as in 
[RW, 80]) • 

Our own application includes e special 
nooe def i ning ~he receiver which is 
projected and c l i pped wi th the 
environment nodes. The detection of the 
receiver node in 5 v iewina window is 
noted (along with other s tatistic s) as a 
strike on the receiver position. We 
also incorporate heuristics for the beam 
tracing to further eliminate extraneous 
beams whenever possible. For example, a 
beam (original or image) so~rce which 
has a greater distance to the receiver 
position than the p rede termin ed maximum 
=race length ca n be d i scarded. 

The routine examine is used to perform 
a recursive descent search into the 
hierarchy to produce a ' clip list' of 
nodes which are partially contained 
within tbe beam. The routin~ intersect 
tests the given beam for intersection 
against the current node. This routine 
depends strongly on the approx imation 
elements used in the hierarchy and will 
be discussed in the next section. 
Examine ignores entirely excluded nodes, 
and continues expanding and examining 
partially included nodes. In order to 
resolve circular overlap properly the 
clipping routine requires separable 
collections of planar faces; therefore 
examine will not expand nodes containing 
only planar faces. It records these and 
all entirely included nodes for passing 
to the clipping control routine. 

The clipping control routine is used 
to control the "laziness" of the 
expansion in producing a list of visible 
polygons. It performs a rough ordering 
by depth on the nodes and coalesces 
those which cannot have their relative 
depth resolved. It then calls a 
clipping routine based on that by Weiler 
and Atherton [WA,??) with the current 
beam and the node to be expanded and 
clipped. The clip routine will return 
the visible portions of the polygonal 
faces and the (possibly segmented) 
remainder of the beam. If the beam has 
been segmented, recursive calls to 
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Fig. 2 Hierarchy search algorithms 

i) Top level; 

VAR 
ROOT root node of hierarchy. 

contains entire scene 

beam_list list of beams / viewing windows 

list of hierarchy nodes which are 
either ent irely contained In current 
beam or are planar 

polygon list 
- (list of clipped visible pol ygons 

in the scene 

BEGIN 
c onst ructlon(raw_input. ROOT); 

FOR all beams in beam_ list DD 
BE GIN 

END . 

polygon list <--- nil; 
cl lp_ l ist <--- nil; 

examlne(beam. ROO T. clip 1 ist); 
cl ipplng(beam . clip list~ polygon list) ; 

(reflectlons(beam. pol ygon_list . beam_list» 
END 

2) PROCEDURE examine(beam. node. clip list) ; 
VAR status (returns the result of i ntersecting 

the given beam and node ) ; 

BEGIN 
intersect(beam. node. status); 

CASE status OF 
entirely_ excluded: (Ignore) ; 

) ; 

) : 

) : 

) : 

entirel y Included: Insert(node. cl ip_llst) ; 
partially Included: 

IF all subnodes of node are planar 
THEN Insert(node. clip_list) 
ELSE 

END 
END: 

FOR all subnodes of node DO 
examine(beam. subnode. clip_list) 

3) PROCEDURE cllpping(beam . clip_list. polygon_list); 

BEGIN 
depth_sort(cllp_list) ; 

WHILE area(beam} > epsilon 
AND NOT empty(clip_llst) DO 

BEGIN 

node_list c--- nil ; 
node <--- head(cllp list); 
clip_list <--- tail(cllp_llst); 

IF all subnodes of node are planar THEN 
BEGIN 

cl ip(beam . node. polygon list); 
IF beam Is segmented THEN 

FOR all subbeams of beam DO 
clipping(subbeam. clip list. 

polygon_list) 
END 

ELSE 
BE GIN 

END 
END; 

FOR all subnodes in node 00 
insert(subnode.node 1 ist); 

cl ipplng( beam . node_list. pol ygon_list) 
END 
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clipping (one for each beam segment) 
along with the current occluding node 
list serve to deal with each segment as 
a new beam. 

Note that the i teration in the 
clipoing routine is tied to a threshold 
(epsilon) on the beam area. This does 
not cause problems in the general case; 
a complete solution can be formed by 
settiilg epsilon to zero. However, in 
the acoustics modeling, the epsilon can 
be used to elim i nate unnecessary 
pro~essing when all but an insiQnificant 
po, tion of the beam has bee il -clipped. 
This epsilon can also come in useful in 
a raster scan pixel calculation where 
only one value is to be returned for the 
entire window. Processing of the window 
could stop at 50 or 60 per cent of the 
area of the original window (for 
exampl e ) and a weighted area value could 
be returned possibly providing sub-pixel 
resol ution effects. This i s related to 
th e resolution clipp i ng suggest i on of 
Clark. In the event that the scene i s 
unbounded in some directions, the 
clip-list will be exhausted before the 
beam area is and the unassigned portions 
of the window can be assigned some 
background value. 

Weiler's algorithm for clipping is an 
extension of Sutherland's reentrant 
polygon clipping algorithm [SH,?4J. The 
algorithm performs a rough depth sort on 
the polygonal elements and then 
repeatedly slices the visible section of 
the closest polygon out of the beam 
until the beam area or the list of 
polygonal elements is exhausted. It 
operates by intersecting all segments in 
the "clip" polygon with all the segments 
in the "subject" polygon and in two 
passes uses the intersection points and 
the original points to trace out the 
clipped polygon and the remaining beam 
window. If so desired, a backface test 
can be incorporated to eliminate even 
more planar candidates. 

The structure of the algorithms is 
such that many computations can be done 
independently of others. This could 
lend itself nicely to a parallel 
implementation of the window processing. 

4.0 Comparison of Bounding box and 
Convex Hull Approximations 

The polyhedral elements we examine as 
candidates for approximation elements in 
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the hierarchy are minimum bounding boxes 
and convex hulls as defined earlier. 
The tradeoffs between them as outlined 
below indicate that there is no 
clear-cut winner. 

As a further aid to computational 
efficiency, we approximate the beam by 
its convex hu l l. In constructing the 
convex hull of the beam, the holes need 
not be considered. Since the k rays 
defining the ma i n contour of the beam 
are specified i~ order, the hull can be 
constructed i n O{k ) time. Si nce a ll 
approxima tion s considered here are 
convey.~ ?relim i narY,intersect i on t es ti ng 
~o elImInate , non-Intersections always 
Involves ~estlng two convex objects, a 
problem whlch has been well studied in 
the computational geometry literature 
[CO,80J [OK,8l) [MP,??) [ShP.,76]. 

We first compare the time f or 
co~struction o f a hierarchy element of n 
pOlnts. The construction of the convex 
hull of a set of n points can be done in 
time O{n log n) [PH,7?J. It appears 
that even if the h points on the convex 
hull are given, it is necessary to use 
time O(h 2 ) to compute the minimum volume 
bound~n~ box. This may seem initially 
surprlslng because the bounding box is a 
"cruder" approximation than the convex 
hull. The reason that the same "divide 
and conquer" strategy used in 
constructing the convex hull can't be 
used for the bounding box is that 
subresults cannot be easily combined. 
The bounding box of a given point set 
may not properly contain the bounding 
boxes of all subsets of that set. Note 
that a good approximation to the minimum 
volume bounding box can probably be 
constructed in linear time. 

The space required for storage of the 
conve~ hull (as hull points and 
assocIated edges and faces) is linear in 
n, the number of input points. The 
space required for storage of a bounding 
box above is constant (the 
transformation matrix and the x, y, z 
offsets) regardless of the size of the 
input set. 

Chazelle and Oobkin [CO,80J were the 
first to describe convex body 
intersection detection algorithms which 
operate in sublinear time. Oobkin and 
Kirkpatrick [OK,8I] unify and extend 
their results by presenting a general 
approach to convex intersections which 
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produces a set of sublinear algorithms. 
The key to their approach is the 
localization of the intersection 
testing. A convex polygon of p points 
is preprocessed into a sequence of 
successively simpler convex 
approximations in O(p) time. Each 
pol yg on in the sequence strictly 
contains its successor. Consequently, 
an intersection with any member of the 
sequence im~l ie s an intersection with 
the ori9ina~ polygon. A sequence of 
this :orm ~i~ h log p e l emen~s can be 
constructed giving ri se to a 
straigh~for~ar d O(log p ) intersectior. 
detection algorithm. 

The 3D case is almost identical. 
Given a convex polyhedron with p points 
a sequence of inner approximations is 
constructed. A vector or plane is 
teste6 for i ntersection ~ith the 
sequenc e by perf orming l oca l tests on 
each element in the sequence, 
essentia l l y growing the polyhedron 
towards the testing object. There are a 
logarithmic number of elements and 
performing a local test against each (in 
c~nstant time) produces the O(log p) 
tlme result. Using this hierarchical 
representation for·two polyhedra of p 
and q points respectively makes possible 
an O(log p * log q) polyhedron against 
polyhedron intersection detection 
algorithm. Thus the convex 
approximation of a beam with k rays can 
be tested for intersection with a convex 
polyhedron of p points in 0(109 k * 
log p) time. Note that a standard 
4-sided window can be tested against a 
convex polyhedron in O(log p) time. 

The intersection - of a vector with a 
bounding box can be detected in constant 
time by projecting the 8 points defining 
the box onto a backplane and testing the 
vector's intersection with that 
backplane for containment within the 
projected shadow of the box. This 
combined with the Dobkin/Kirkpatrick 2D 
convex intersection result can be used 
to determine a beam-box intersection in 
O(log k) time. Note that a standard 
4-sided window can be tested against a 
bounding box in constant time. 

The convex hull approximation is 
always contained within the bounding box 
approximation for a given set of points. 
Since the convex hull is a "tighter" fit 
than the bounding box, it is less likely 
to result in beams which intersect the 
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Fig . 3 Elemert Summary Table 

constrllcti on 

storage 

intersection 
wi th beam 

intersection 
wi th 4 - sided 
window 

Convex Hull 

OCn l og n) 

O(n) 

O(log k • log n) 

O(log n) 

Note s : n - number of input pOints 

Bounding Box 

2 
O(h ) 

constant 

O( log k) 

constant 

h - number of pOints in convex hull 
k - number of ra ys in hull of beam 

All logarithms are base 2 

approximation structure but which miss 
the underlying structure. The convex 
hull is easier to compute (exactly) than 
the bounding box. Convex hulls of 
several structures can be easily 
aggregated into one large containing 
hull. However, the bounding box 
approximation can be stored in constant 
space regardless of the complexity of 
the underlying structure. A bounding 
box also adm it s to a more efficient 
intersection algorithm. FiQure 3 
summarizes the convex huil / boundIng box 
compar i son of this section. 

Our ap~l i cation is space constrained, 
due to the typically large nature of 
architectural databases. It i s also 
time constrained due to the potentially 
exponential growth of beam reflections. 
Therefore, neither scheme has an obvious 
superiority. 

A way to obtain some o f the benefits 
of both i s to use a hybrid nlerarcnv. 
This -hybrid could use bounding box~s 
n~ar the root where the space savings 
wlll be the greatest and spurious 
inter~ections~ although more probable, 
are lnexpenslve. Convex hulls could be 
used further down in the hierarchy for 
their "tighter" fit approximation to 
decrease the amount of work passed to 
the clipping routines. 
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5.0 Summary 

Section introduces the motivation 
for the problem and discusses previous 
work related to geometric hierarchies. 
Section 2 defines our input requirements 
and the entities we deal with. Section 
3 states the general problem in terms of 
these definitions. Section 3 then 
discusses the construction and use of 
hierarchical structures to solve the 
problem. Section 4 examines the 
complexities of using different 
geometric structures as hierarchy 
elements. It also presents methods of 
efficiently using convex approximations 
to improve intersection times. 

Our work is continuing in applying 
computational geometry results to 
computer graphics problems [0,82) both 
in our application and in a general 
setting. We are proceeding with a 
Pascal implementation of the algorithms 
discussed in this paper. A more 
deta i led assessment of our results will 
be presented elsewhere. 
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