
- 143 -

PRXiRAMM!NG LANGUAGE PIDGRAPH: YE!' ANOl'HER APPLICATICN OF GRAPHICS 

Tanasz Pietrzykowski 

Acadia University 

w:>lfville, Nova Scotia 

Stanislaw Matwin 

University of Ottawa 

Ottawa, Ontario 

Tanasz Muldner 

Acadia Uni versi ty 

w:>lfville, Nova Scotia 

The paper describes an innovative programning language PIDGRAPH. The design of PRCGRAPH is based on 
data flow ooncepts and is rreant to be a software tool for users of data flow computers. Inherent 
parallelism of programs, designed for such an enviromrent, is enhanced by graphics, used to specify 
PRCGRAPH programs. Several ex.anples of PRa;RAPH programs are presented. Briefly discussed is the 
graphics editor. This editor is a user I s tool to define programs in PIDGRAPH. 

RESUME 

L'article decrit PRCGRAPH - nouveau langage de progranmation. Le design de PRCGRAPH est fonde sur des 
ooncepts de flux de donnees et se veut tm outil de progranmation pour les utilisateurs des ordinateurs 
de cinquierre generation. Le parallelisme inherant des prograrmes ooncus pour tm tel environnerrent est 
renforce par l' utilization des graphiques, servant a specifier les prograrmes en PROGRAPH. Quelques 
exenples de prograrmes PRCGRAPH sont presentes. L'editeur des graphiques utilise par 1 'usager pour 
developper des prograrmes PRCGRAPH est brievem:mt decri t. 

KEYIDRDS: data flow, graphics editor, functional programning language 

Although the computer ccmmmity witnessed 
in recent years iIrpJrtant developrent in the 
field of programnmg languages, all the proposals 
([Ada, 79], [Backus, 78], [Ashcroft and Wadge 77] 
etc. ) share one very iIrpJrtant feature with the 
earliest oontributions: textual representation 
of programs. 

Linear texts of the program are noDMliy 
created by the user, therefore there is a danger 
that he may tmconsciously narrow his ideas atout 
problem solution and possibly even eliminate cer­
tain concepts, like parallelism, fran his oonsid­
erations. This apparently occurs not only when 
programs are created, but also when they are de­
bugged. 

The v.Drk described here addresses this pro­
blem. Roughly speaking, the user creates a graph 
representing the flow of data betvJeen operations 
of a ftmctional language. Since a graphical re­
presentation of programs is used, rather than a 
textual one, the tenn "prograph" seems to be more 
appropriate than "program". 

Full credit for the idea of a ftmctional 
programning language with pictorial output has 

to go to the group at the University of Utah, 
which first initiated research in this area. 
Their language, GPL [GPL 81], in an innovative 
way combines ftmctionality with graphical repre­
sentation of programs. If one v.Duld attenpt to 
conpare our language, PRCGRAPH, with GPL, the 
following features of PRCGRAPH are added to GPL: 
(i) provisiOns for a hierachy of user defini­

tions (" subroutines") i 
(H) recursion of definitions i 
(Hi) high level structural oontrol operations: 

WHILE and IF ••• THEN ••• EISE i 
(iv) operations allowing synchronization of con­

trol flow in a coroutine-like fashion; and 
last, but perhaps most iIrpJrtant 

(v) apparatus for data base applications. 
A preliminary implerrentation of PRCGRAPH is 

tmder way at the tirre of writing. 
We v.Duld like to stress the fact that a pro­

graph is by no rreans a flowchart. Itrepresents 
flow of data, and different specific interpre­
tations are possible, to rrention pure data flow 
[Treleaven et ai, 82b] , pure demand flow [Keller, 
80], and a whole spectrum of their mixtures 

Graphics Interface '83 



- 144 -

(Pietrzykowski et al, 82], [Treleaven et al 82a] • 
Any of those approaches attenpts to benefit from 
possible parallelism. 

wbat else is there in PRCGRAPH? Brevity of 
this text allows us to highlight only several 
iltp:>rtant concepts, without going into details. 
PRCGRAPH draws upon both applicative (functional) 
languages and traditional algorithmic languages, 
based on van Netmann paradigm. The fonrer con­
tribute with the overall perspective of carp.1t­
ational process, following "canbining fonns" 
([Backus 78]) philosophy. The latter give PRO­

GRAPH ~ control structures and flexibility 
of operational control. r.breover, PRCGRAPH pro­
vides the user with a new concept of "applicative 
updates" which to our knowledge is a novel 
feature. Applicative languages leave the state 
of ccmputation (meant as a rrerory snapshot) un­
changed except for the function result, which 
is clearly a severe limitation in a nurrber of 
applications • 

PRCGRAPH approaches this issue in an entire­
ly different way. It introduces a concept of the 
attribute which is partial multivalued functions 
defined on a set of abstract entitities (which 
correspond to the rcerrory locations) . 

PRCGRAPH provides a mechanism to find values 
of attributes as well as to define and rrodify 
them. The latter feature, referred to as update, 
is particularly iltp:>rtant. The following sirrple 
exanple will illustrate how PRCGRAPH handles it. 
Let us assurre that we ~uld like to change the 
existing value of the attribute SAlARY on an 
argtlITEIlt (corresponding to a particular errployee~ 

'Ihe tax, surrounding SAlARY, is a symbol of 
one of the applicative updates, which can be 
viewed as a combination of deletion of the attri­
bute's value foll~ by the insertion of a new 
value. While designing PRCGRAPH care has been 
taken to define the appropriate shapes of oper­
ation symbols, so that the user could easily 
associate symbol shapes with symbol rreaning. 

The following picture represents a prograph 
for binary search tree lookup. 

' Hot Found' , 
I 

WRITE 

It seems that prographs represent in a con­
cise way a good deal of infonnation about the 
structure, rrodularization and flow of data in 
the algorithm. However, the reader may ~nder 
about the effort needed to create a picture of 
that kind. Therefore, an iltp:>rtant feature of 
our system is the graphics editor to create 
graphical representation of prographs. 

Suppose that the user is about to start 
drawing the prograph of BST-SEARCH shown earliel: . 
He ~uld like to begin with the outernost box. 
[X)es he have to draw all the sides of this tax? 
Clearly, it ~uld be too tedious a job; in our 
system it is enough to enter a ~-letter cO'n­
mand which will then draw the upper left corner: 

r= 
r.breover, the user will be prompted to enter the 
narre of the tax. This narre will autanatically 
fill the heading of the box. Once the internal 
structure of the box is corcpleted, the user may 
enter another ccmnand which "closes" the box, 
i. e., extends (or contracts) the existing 
corner and draws the remaining sides. 

In order to create an IF ... THEN box the user 
enters a dedicated ccmnand and types IF as atax 
narre. The corner (with IF and THEN in i ts 
heading) is then created and the user specifi es 
contents of both IF and THEN parts using the 
appropriate editor conrnands. Afterwards, sever-

Graphics Interface '83 



- 145 -

al options are open: the b:Jx rray be closed (as 
al:xJve), or ErSE/ErSE-IF part rray follow, either 
to the right of the THEN part, or below it. 

IF ••• THEN is an example of a tax with a 
standard rectangular shape; other standard 
shapes are generated by dedicated ccmnands. 

To draw the wire which connect boxes, our 
system takes advantage of the PER;2' s m::>U.Se. 

Using the rrouse the user specifies the start 
and end points of the wire, and the wire itself 
is drawn autaratically. If the wire is "bent" 
(at a right angle), the user has to indicate 
only every other bending point. J 

One of the design objectives of the editor 
was to minimize the necessary arrount of typing. 
Cotmand rrenus can be displayed on the screen 
and the choice of ccmnands can be done with the 
rrouse. 

Yet an::>ther advantage of graphical repres­
entation of prographs is a new and attractive 
approach to debugging. '!be idea is to trace 
data flow through a selected data path by neans 
of a token, rroving along wires. Once a source 
of error has been discovered, a backtracking 
trace can be initiated. Let us also notice 
that such a "rrotion picture" of prograph exe­
cution rray be used as a teaching aid, helping 
students to understand data/demand flow rules. 
Furthentore, a specific token representation 
can be used to indicate the type of data rroving 
along the wire. 

The \\Ork described here opens a number of 
interesting research problems. To highlight a 
feN of them: 
(i) optimization of execution by deteDnini.ng 

a right mix of data-flow and demand-flow 
policy for concurrency; 

(H) selective access of parts of a prograph 
fron an::>ther prograph (security); 

(Hi) dynamic rrodification of prographs; 
(iv) efficient run-tine data structure for the 

interpreter and rrerory rranagenent. 

BIBLI(X;RApHY 

(Ashcroft and Wadge 77] - E. A. Ashcroft and 
W. W. Wadge, LOCID: A non-procedural Language 
with Iteration. Coml ACM 20, 7, July 1977, pp. 
519-526. 

[Backus, 78] - J. Backus, Can Programning be 
Liberated fron the van Neumann Style? A 
Functional Style and it's Algebra of Programs. 
Comm ACM 21, 8, August 1978, pp. 613-641. 

[Ada 79] - J. D. Ichbiah, J. C. Heliard, o. 
Roubine, J. G. P. Barnes, B. Krieg-Bruckner, 
and B. A. Wichmann. Preliminary Ada Reference 
Manual. SIGPIAN Notices 14, 6, Part A, June 
1979 . 

[GPL 81] - GPL Progranming Manual, Research 
Report, Ccxtp.lter Sci. Dept., University of Utah, 
1981. 

[Keller 80] - R. M. Keller. Semantics and 
Applications of Function Graphs. UOCS-SO-l12. 
o:tober 1980. University of Utah. 

[Pietrzykowski et al 82] - T. Pietrzykowski, S. 
Matwin, T. Mi.ildner. PRCX:;RAPH: A Picture 
Programning Language for Data Flow and Data Base 
Environment. Internal Report. 

[Treleaven et al 82a] - P. C. Treleaven, R. P. 
Ibpk:ins and P. W. Rautenbach. Ccrnbining Data 
Flow and Control Flow Ccxtp.lting. '!be Ccxtp.lter 
Journal, vcl 25, No 2, 1982. 

[Treleaven et al 82b] - P. C. Treleaven, D. R. 
Brownbridge, R. P. Ibpkins. Data-Driven and 
Demand-Driven catputer Architecture. ACM 
catputing Surveys, March 1982, vcl 15, pp. 93-
143. 

Graphics Interface '83 


