
- 211 -

Dynamic Graphics and the Low Bandwidth
Communication Barrier

John Amanatides

Lniversity of Toronto

ABSTRN;T

Graphics systems that use a low bandwidth communication line to
trensmit images to a display processor suffer from slow updates when
images of moderate complexity are to be displayed. This is particularly
evident when animation is attempted. But there is often no need to
transmit an entire frame. Dynamic variables can be used to reduce the
communication traffic from the host by transmitting only the differ­
ences between frames. The animation capabilities of the display pro­
cessor can thus increase dramaticany. Also, dynamic variables provide
a :method of simplifying applications programs. These ideas are
extended to non-refresh graphics systems such as Telidon.

RESJ.JME

Les systemes graphiques qui utillsent des lignes de
communication a faible capacite pour transmettre des Images a un
processor d'affichage souffrent de la lenteur a rafraichir les images
d'une certaine complexite. Ce deviant particulierement evident dans le
cas de I'anlmatlon. Mais iI n'est souvent pas necessaire de
transmettre l' lmage entlere. Les "variables dynamiques" definies Ici
peuvent etre utillsees pour redulre le volume des communications de
I'ordlnateur hote en ne transmettant que les differences entre images.
La capacite du processeur d'afflchage a transmettre les images
s'accroit alors considerablement. De plus, les variables dynamiques
offrent le moyen de simpllfier I'ecriture des programs d'application. Les
memes idees peuvent etre etendues aux systemes sans
rafraichissement tel que Telidon.

Graphics Interface '83

- 212 -

1. Introduction

A bottleneck. facing many graphics systems is the low
bandwidth communication line connecting the display pro­
cessor to the host. Typically 9600 baud, this is too slow to
transmit complete images at anything approaching 30
frames a second. At this rate, for example, only thirty three
characters can be transmitted in real time. Modifying exIst­
ing images is also a problem. The traditional solution to the
update problem has been to divide the display file into seg­
ments. Now, only a portion of the display file need be
retransmitted. But even this approach is unsatisfactory if
real time animation" is attempted. There is simply too much
data to be transferred. To increase the speed at which ani­
mation can occur we must fmd a way of reducing further the
data that must be forwarded by the host.

2. An Observation

If we look carefully at the display file during an anima­
tion sequence we see that there is very strong frame to
frame coherence. Though there may be differences
between frames it Is usually the same image, slightly modi­
fied that is displayed. For example, if we are stretching a
tria~gle by moving a vertex, the number of lines and the
general shape will remain constant. The only difference
between frames is that the vertices of the triangle are at
different positions on the screen. If we look. at the display
file describing these frames we see that the same series of
instructions are included. Only the arguments to the graphic
primitives describing the image are different.

What is needed, therefore, is a faster way to modify
the arguments to these primitives. By only modifying the
arguments, we can hope to reduce the amount of data
transfer. The problem that immediately arises is how to per­
fonn this display file modification in a structured manner that
also removes unnecessary cognitive burden from the pro­
grammer. Any sort of pointer manipulation by the programmer
could quickly become unwieldy as segments are constantly
created and destroyed.

Suppose we introduce a new data type called Dynamic.
This data type has the property that if a variable is reas­
signed then all graphic primitives that have used th~t vari­
able are modified to reflect its new value. Its properties are
Illustrated in the example below:

" Througou t . the term animation Is intended In the genera l sense,
that Is, any dynamic behavlor on the screen that can oc cur In real
t ime.

Dynamic a;

a=1. . ,
CreateSegrner.t(1);
MoveAbs2(0,O);
UneAbs2(O,l) ;
LineAbs2(1 ,a h
UneAbs2(O,O);
CloseSegment() ;

a=10;

in t he a!Jove example we draw a triangle using calls to
CORE-like funct ions. But the result of executing the last
statememt changes r1l3 position of the third vertex from
(1,1) to (1,10). Thus, modifying the triangle only requires
reaSSigning the dynafTlic variable a. To animate the triangle
by having a vertex rrove is as simple as executing the C
statement fore a=O;a < 50i a++);.

This approac~, is conceptually simple. Changes to the
screen r.:an now easily and conveniently be made. There is
a simple one-to-one correspondence between changing the
dynamic variables and modifying the image on the screen.
But mer".! importantly. dynamic variables provide the mechan­
ism with which we clLn reduce the communication require­
ments of animation :, y sending to the graphics processor
only the dynamic variable 's new value.

3. OPAG

DPAC is a graphic.s package written at the University of
Toronto's Computer ~.ystems Research Group that encor­
por:i"!:es dynamic V'lriao:es [AMAN 83]. The host computer is
a 11/45 with the graphics processor being SPI'NRIT [BAEC
81 , MIL:_ 81 J. SPIWRIT contains a bit-splice processor w,th
a 16k display file and two 256 by 256 by 4 bit frame
buff9!"s. Every t ;, irti.gth 01 a second, SPIWRIT decodes the
display file and writ es the resulting image into the double
buffered f rame b:.Jf fer

DPAC generates the familiar segmented display file.
Dynemic variables a 'e implemented with the help of a
preprocessor. It converts assignments and expressions
containing t hem into function calls that set and get the
value of the dynamic variable. To the user, dynamic vari­
abie:. are a d!\ta t ype identical to integer except that they
have the property of modifying the display file.

Implementing dY1amic variables on SPIWRIT involved
changing the mic ~ocode that decoded the graphic primitives.
Grap tlic primitives are: now allowed to have arguments that
are addressed indirectly. A portlon of the display file is
useG to store these variables.

Graphics Interface '83

There are some disadvantages associated with imple­
menting dynamic variables. Because DPAC dynamically
alters the display file certain simplifications that are nor­
mally made by most graphics packages must be abandoned.
There can be no display file optimization for SPIWRIT. For
example, multiple MoveRel cannot be collapsed into one
MaveReI because they may be later modified by dynamic
variables. Some graphics processors do not have UneAbs
primitives. They are not required because a lineAba can be
simulated with a LineReI from the previous point. This is no
longer true with DPAC since that intermediate point can be
affected by a dynamic variable.

4. Mocification Primitives

Dynamic variables have given us the mechanism to
reduce the communication needs of transmitting animation
sequences. But we can also use them to provide the basis
for more powerful graphics primitives to further reduce the
amount at data that must be transmitted. For example, let
us introduce the Interpolate primitive. It takes as argu­
ments a dynamic variable, a starting and ending value and a
period of time. It's function is to interpolate the dynamic
variable between the two end points during the specified
time. The earlier animation sequence consisting of the mov­
ing vertex can now be encoded into this primitive. More
importantly, the communication reqUirements for this
sequence reduce to zero as this primitive can be executed
locally by the graphics processor. By using other dynamic
variables for the end points and time, complex sequences
can be specified.

Interpolate is an instance of a whole class of "modifi­
cation" primitives that can be used to reduce data transfer.
Segments containing these primitives can contain different
"scripts" of animation sequences with the appropriate script
being "performed" by the graphics processor whenever the
related segment is posted. (A more detailed discussion of
the concept at sCripts and actors is found in [REYN 82].)
Further research is required to generate a reasonable set of
these primitives.

5. Hardware Enhancements

We have described how to transmit animation
sequences in real time. But to fully utilize them we must be
able to scan out the display file in real time also. We now
discuss how to build raster graphics systems with inexpen­
sive hardware to perform the animation in the required time.

5.1. Clipping

Traditionally, a display processor has not had to per­
form clipping. Objects that are to be displayed but are off
the screen are clipped by the graphics package on the host
during display file compilation. Thus, no part of the display
file has instructions to draw otf the screen. The tracking

- 213 -

symbol however, may in fact be partially off the screen and
a simple form at clipping called scisSOring is used. The
display processor still draws the tracking symbol but the
underlying circuitry detects an attempt to write to a portion
at memory off the screen and does not allow it to occur.
The time wasted by this unnecessary drawing is small and
thus there is little motivation for including true clipping cir­
cuits.

DPAC unfortunately can have significant portions of the
display file off the screen. These objects cannot be
removed from the display file because later dynamic variable
modifications can bring these hidden objects back into view.
Simple scissoring will now waste too much time. Clipping is
required. At present this is done in software by the
microprocessor for every primitive. This process slows down
display file scan-out so that fewer objects can be displayed
In real time.

We suggest an alternative scheme to remove this bur­
den trom the microprocessor. The circuitry that detects
when scissoring is to be performed can be modified to inter­
rupt the microprocessor whenever an off-the-screen write
is attempted. In this way the processor does not have to
waste time writing off the screen or trying to clip visible
objects. This is especially important when drawing
polygons. Judicious use of this interrupt can also speed up
the clipping process for objects that are known to be on the
border of the screen.

5.2. Multiple Viewports

Having multiple viewports on the screen is useful but is
usually implemented in software on the host machine. We
propose a scheme where this can be accomplished on the
graphics processor with no increase in scan-out time. This
scheme is an extension of the clipping proposal mentioned
above. Instead of raising an interrupt when the processor
attempts to write off the screen the interrupt is now raised
when a write is attempted outside the current viewport.
This can easily be accomplished by adding four hardware
registers and comparators. These registers would contain
the extent of the viewport. Additional graphic primitives to
set these variables would be implemented. It would then be
possible to modify the viewport with dynamic variables. This
feature could be used to create novel real time animation.

5.3. Parallel Writes

The biggest bottleneck with most real time graphics
processors writing into a frame buffer is the speed at which
the processor can write to the frame buffer. For example, if
we have a 256 by 256 frame buffer and are capable of
writing to a pixel in 500 nanoseconds, it would take one
thirtieth of a second to simply set the background colour!
To build a graphics processor with a high resolution frame
buffer and still expect to have a reasonable number of

Graphics Interface '83

polygons drawn in real time is out of the question. There
must be a faster way to write into the frame buffer.

A way out of this impasse is to implement frame buffer
memory circuitry similar to that proposed by Wheian [WHEl
82]. Briefly, his approach is to design a slightly modified
memory chip to accomplish very fast frame buffer writes.
Instead of having inputs to specify a unique address the
chip inputs four numbers: the position and size of a rectan­
gle in the frame buffer. In one memory write cycle it sets
the pixels in this rectangle to the indicated colour. To
implement polygon filling with this circuitry the microproces­
sor would go down the left and right edges of the polygon,
setting a whole scan Hne in one write cycle. Thus, the scan­
ning out of polygons can occur at over an order of magni­
tude faster than at present.

The only drawback to this approach is that the pixels
written in the above manner are all set to the same colour.
Accordingly, smooth shading of polygons is not possible.
Slight modifications to the memory chip, however, would
allow simple textures to be drawn.

6. Future Applications

A good area in which dynamiC variables can be applied
is in Telidon. TeJidon is the Canadian videotext system in
which graphic primitives known as Picture Description
Instructions (PO!) are sent down low speed communication
lines to a decoder in the home [OBRI 82]' PDls were chosen
because they are structured, resolution Independent and
are very compact. Telidon suffers from slow update times
when images of moderate complexity are to be displayed
because of the low bandwidth communication lines. Dynamic
variables can be used to reduce the traffic from the central
s ite by transmitting only the differences between frames.
Also, dynamic variables provide a structured environment in
which animation can easily and effectively be expressed.
The bandwidth requirements for simple animation can be
further reduced If modification primitives are used. Now the
host need not modify the dynamic variables directly but
instead instructs the PDI decoder to perform this locally.

Since Tetidon is not a refresh system and does not
have a local display file the above techniques pose a prob­
lem. But even a small display file in the decoder would be
suffic ient to store the animation commands. Frame buffer
animation techniques [BOOT 82] can then be used to display
t he resulting animation sequence in real time. Whole anima­
tion sequences can be stored and later "performed" when
necessary without loading down the communication line.
New implementations of Telldon decoders could encorporate
the hardware enhancements outlined above to provide the
capability for real time animation.

- 214 -

7. Concluding Remarks

In conclusion, by using dynamic variables we can max­
imize the bandwidth utilization of the communication line to
the graphic:s processor. Static portions of the display file
are no longer sent to the graphics processor repeatedly.
Only the differences between frames are retr.ansmitted.
Modification primitives can further reduce transmission by
modifying dynamic variables locally.

8. Bibliography

[AMAN 83] J. Amanatides, "DPAC: A Dynamic -Graphics Pack­
age for a Real-Time Raster Device", Master's Thesis,
Department of Computer Science, University of Toronto,
Jan. 1Q83.

[BAEC 81] R. Baecker, D. Miller and W. Reeves, "Towards a
Labratory Instrument for Motion Analysis", Computer
Graphic:s VoI15(3) : pp 191-197, July 1981 .

[BERG 77] S. Bergman and A. Kaufman, "Association of
Graphic Images and Dynamic Attributes" , Computer
Graphic:s Vol 11 (2):pp. 18-23, Summer 1977.

[BOOT 82] K.S. Booth and s.A. MacKay, ' 'Techriques for
Frame Buffer Animation" , Proceedings Gnlphic Interface
'82, pp. 213-220, May 1982.

[CSUR 75] C.A. Csurl, " Computer Animation", Proc. SIGGRAPH
'75, pp. 92-101, June 1975.

[FOUR 81] A. Foumier, "A Proposal for a Four-dimensional
Graphics System" Proceedings of the Seventh Cana­
dian Man-Computer Communications Oonference, pp.
371-375, June 1981.

[MIll. 81] D.H. Milier, "A Two-Dimensional Dynamic Display
System", Technical Note CSRG-24, ColIIPuter Systems
Research Group, University of Toronto, August 1981 .

[0 SA I 82] C.D. O'Brtan et. al., "Telidon- Vldeotext Presenta­
tion level Protocol: Augmented Picture Description
Instructions" , Communications Research Centre Techni­
cal Note No. 709-E, Ottawa Canada, Feb. 1982.

[pFlS 76] G.F. Pfister, "A High Level Language Extension for
Creating and Controlling Pictures" , Computer Graphics
VoI10(1):pp. 1-9, Spring 1976.

[REEV 76] W.T. Reeves, "A Device-Independent, Generai­
Purpose Graphics System in a Minicomputer Time­
Sharing Environment", Master's Thesis, Department of
Computer Science, University of Toronto, January
1976.

[REEV 81] W.T. Reeves, "Inbetweening for Complrter Anima­
tion Utilizing Moving Point Constraints ", Computer
Graphics Vol 15(3): pp 263-269, July 1981.

[REYN 82] C.W. Reynolds, "Computer Animation with Scripts
and Actors", Computer Graphics Vol. 16(3): pp. 289-
296, July 1 982.

[WHEL 82] D.S. Whelan, "A Rectangular Area filling Display
System Architecture", Computer Graphics Vol 16(3) :
pp. 147-153, July 1982.

Graphics Interface "83

