
- 243 -

Programming Facilities forUser
Modification of Solid Modeling Systems

Gregory John Glass

I nstitute of Building Science

Carncgie-Metton University

Abstract: A proposal is presented for reducing the disparity

between the types of operations provided in most solid modeling

systems and the operations available in the real world for the

elements that are being modeled. The solution centers around the

use of a "programmable" user interface that will permit the

definition of higher level meta commands. These meta commands

should tailor the actions available in a system to conform to the

practices of a specific profession such as mechanical engineering or

architecture. They may also provide a set of basic primitive parts

that is appropriate for the needs of a specific group of users.

Knowledgeable individual users will also be able to customize their

working environment The facilities for the interactive definition

and use of these meta command are outlined along with an example

of how they may be used.

1 Introduction

Most solid modeling systems are organized to deal effectively with

the characteristics of solids in general, but most design discip)ines

have specific methods that are based on knowledge of the nature of

the types of solids that are manipulated. For example if a particular

rectangular solid represents a wall the architect can restrict the types

of compositions that may be generated using that rectangular solid to

those that are possible with walls. Restriction of the possibilities that

may be mode led during the design of an artifact makes the design

task faster [2]. In order for a design system to speed the task of the

designer it must take advantage of these practices. Also the designers

conceptualization is cleaner because he is modeling not only the

physical geometry of the design elements but also the manipulation

operation are models of that which may take place on the Original

artifact

In (Arbab et al. [ID a related idea was proposed which consisted of

a user interface that restricted the design operations to those that may

take place during the manufacturing process. This might be fine for

the design of machined parts but for some design products this places

Sujct:une approche est presentee pour reduire la disparite entre les

operations disponibles sur la plupart des systemes et les operations

reellement effectuees par I'utilisateur sur les objets representes. La
principale idee est I'utilisation d'un interface programmable qui

permet la definition de macro-commandes d'un plus haut niveau.

Ces macro-commandes doivent adapter les operations foumies par le

systeme aux besoins specifiques de professions comme la Mccanique

ou I' Architecture. Elles doivent aussi foumir un ensemble de

primitives communes pour les besoins d'un groupe d 'utilisateurs.

Les utilisateurs individuels potentiels doivent a~ssi pouvoiT adapter

leur cadre de travail. Les possibilites de definition interacti,ve et

d'utilisation de ces commandes seront eclairees par des exemples.

an unreal restriction on the design process because it would force the

designer to develop the design in an opposite order from that which

is required to come up with a successful solution. For example when

designing a ship: first the accommodations, the holds and the

machinery spaces must be laid out in order to determine their overall

size. Then the hull and the keel may be designed. But in

manufacruring the ship the first thing that is laid down is the keel. It

would be very difficult for a navel architect to design a ship if first he

had to design the keel then the hull and then the interior spaces. In

order to change the size of the engine room he would have to have a

cutting torch operator and dismantle pan of his design.

It is clear that special knowledge, not only of the modeled

elements but also of the operations, is a useful thing to embed into a

design system. This paper proposes that a programming capabili ty

be incorporated into solid modeling systems that would pern:it the

modification of the system to accommodate different design

practices. Presented is an example of how a user would define a new

method. This will illustrate the methodology used in the system and

Graphics Interface '83

- 244 -

Side View

Orlhograrhic View

, l'er.o[lCClive View

O1g. View E1ev
O1g. View Plan
Olange V. Cone
Olange Center
Olange Eye Loc
Enter Strimz

Figure 1: Typical Screen During Interaction

the character of the interaction This capability is currently being

added to a solid modeling system that has been developed at

Carnegie-Mellon University. An overview of the purpose of this

system which is known as VEGA and its organization may be found

in [10]. More information of the details of the implementation of the

system's programming facilities beyond those that are presented here

may be found in [3). A view of what the screen looks like -during a

typical interaction session for the current system is shown in figure 1.

2 Requi rements of a Design Prog ramming

Envi ronment

Most integrated programming environments [9, 4, 6,7] have been

implemented to support an existing programming language such as

Lisp or Pascal. These languages are text based and therefore require

an environment that is appropriate for that medium. Because the

purpose of our programming environment was to add extensions and

make modifications to a menu based interactive design system we

wanted to develop a new language syntax that foll owed the style of

interaction that is used in the design system. It was thought that by

careful design of the interaction command language it could be the

same as the programming language. In doing this we wanted to

decrease the amount of typing in of information and commands that

is required of the user. Since we tailered the language to fit the

interaction environment the system design and implementation was

simplified.

A design programming environment must be simple for

users/designers to generate definitions and it must possess sufficient

power to permit construction of a rich set of operators. In this

proposed environment simplicity is insured by having the

programming operations closely follow the syntax of the design

operations. When the user is creating a new command definition he

interactively performs the sequence of design operations that make

up the command and these are remembered by the system. The

power of the programming language comes about from three factors:

having a complete set of control operators, being able to define

functions with parameters and the ability to define structured

variables.

There are three parts to a project such as this: the syntax of the

language, the semantics of the operations and the character of the

user interaction. In the current system the syntax closely fallows that

of the FORTH programming language with the addition of several

pre-defined types that that are useful for modeling. As in FORTH,

argument passing is done using a stack. The primary virtue of having

the stack is that the interactive user is presented with a simple

environment for doing operations without having to name elements.

For example, the current top shape or the current top value closely

corresponds to the word at the current location used in EMACS [5]

or the current class and current object of the Smalltalk80 system.

These promote the use of modeless interaction and nieve users seem

to find this to be a natural way of relating to design programs [8].

Observations of students learning programming languages seems to

confirm that when variables are introduced the students confusion is

increased.

There are three alternative ways to structure the argument stack:

have one stack that is used for all elements without type information

stored with the data, or there can be one stack with the type of

information stored also, or there may be multiple stacks, each of

which contain only elements of the same type. Each of the

Graphics Interface '83

- 245 -

techniques that incorporate type information may be used to

facilitate run time error chccking. The VEGA system was

implemented using a system of multiple stacks. There are two

reasons for introducing the extra complication of having more than

one stack. With the use of only one stack in designing meta

commands the user must m'anage the data for every operation. The

order that the different information is entered becomes very

important and during hand simulation required information was

often buried in the stack requiring separate operations to restore

order. As users organize their information conceptually based on

type. The other advantage of multiple stacks is that it provides a

level of abstraction that parallels this concept. Operations may then

take place based on this information.

In a language that the user may interactively extend it is difficult

to definitively state the semantics but pre-defined are all of the

normal geometric operators such as union and intersection of shapes.

This system e'ncourages programming using an example-based

strategy that is similer to that used for the definition of keyboard

macros in EMACS. The difference is that as a command is added to

the definition not only is the current stat of the process displayed as it

is effected by that command but also that content of the new

definition is displayed. The design of this system was heavily

influenced by the Tinker system [4] which is a environment for

defining Lisp programs by example and the Small talk system. The

differents between Tinker and our system are accounted for mainly

because we wanted the programming system to be as close a possible

to the interaction environment and our desire to deal with the

problems of working in 3· D space.

As was previously stated the user intercation utilizes menus for

selections of commands. It is beyond the scope of this paper to go

into much detail on the workings of these parts but presentation of a

example should clarify the way that they work together.

3 The Example

For an example we will define a procedure that will create a roller

that is placed next to an existing roller and is centered about a given

point. This situation is shown in figure 2.

1------ -- ---
i

OORoller 1"

l.ocation 2
o

OO Roller2OO

Figure 2: Diagram of the Task

As input this operation requires the location of the new roller here

known as location 2 and the name of the existing roller, "Roller 1",

that this one is to touch and the name that is to be assigned to the

new roller, "roller 2". This will utilize an existing function, called

Make-Roller, that makes a roller given a name for the new roller, a

center location and the radius. Performance of the task requires

finding the center of the existing roller and its radius, then finding

the distance between the existing roller's center and the new location.

Then by subtracting the existing roller's radius from this distance the

radius is found that is required to define the new roller.

Figure 3: Start a New Definition

The first task in defining this procedure would be to supply some

example date that may be used as test input during the definition

phase. Then the user selects the Begin Definilion command from a

menu of existing definitions. As is shown in figure 3 this displays a

new window that will be used to contain the display of the

component definitions as they are added to the new definition.

Graphics Interface '83

- 246 -

Then the user executes the sequence of actions that are to be

added to the new definition. As each action is selected from the

menus they are executed and they are also added to the new

definition as is shown in figure 4. In this case the code that is

required to define the new roller in the syntax of our language is

shown below:

Duplicate-hltanc.

Duplicate-locatioa
C.nur-location

01 stlnc.

PUSh-ConJt-String "Radiul'"
Oupl1clt.-tnltlnc.
Attr i but.-V.lut
Pop-Instlnc.
Oiff,r.nCI

Makt-Roller

fetch the i nstanct who's nam. i .
on top of string stack and PUI"
onto instanct Stlcic.

duplicate the top .ntry
on the i nstanei' stick

duplicate th' lac . (or · ' o lle r Z·
Finds ~n. center of tne shiP' of th,

top insunce
find ttl. distance Detwe,n t hl top

t ..,o loc at io ns and push
trlis onto value stick
pop the l ocations

push t h is string
dupl1cate ros 1nsUnce
get thl '1.1 u. of tile rad; us
don ' t nlld "rol1,r one" any mora
find diff,renc. b,twlt" distance and

rad1 us
al., & rolltr giv.n ~hlS' par-am.",rs

As can be seen the structure of the language requires the

specification of a sequence of instruction that utilize the stack for all

arguments. The stack conditions after each of these component

operations are:
VEG' cODE Str i ng

Gi ven Stac k Cond i tio ns "Ro l ler 1-
" Ro l le r 2'"

CoJ p 1; c IU-!n stlnc. "!lo l 1er Zoo

-Roller Z"

Center-Loc at 10n '"Ro l ler Z"

Of ~Unc.

Push - Co n st -5 tr i ng "Rid t us" .. R ad; us"
"Roller 2"

Du p 1 i ca It- In stlnc,

Attr i bute-Valu.

Pop- I r.s Un:.

Di fference

Maltt-Rc 11 er

'"Rad i us"
"Roller z·

'"Rol l ,,. 2"

Valu. Instanc. Locat i on

Locat 10n2

;lo l l LQ~at l on2

Ra i 1 LoCI: i on2
Ro i 1

Ro l l loclt ~ on2

~o 11 lo c a : ; onZ

Ro 11 LOCal ion 1
LOCH i on2
LOCI t i o n2

Dl st Roll Loc at ion2

o t st Rc 11 Loclt t on2

Di U itoll locat i on2
$1011

Rad Roll locat ion2
0 1 st

Rid
Df st

$lad 2

Roll

Locit 1on2

Loeat ion2

When all of the operations are added to the new definition the

End Definition operation is selected. This makes the new definition

the currently defined definition. This current definition may be

executed like any other operation by the Execute Current De/.

command.

Penpective View

Duplicate Instance

Push Const. String

Attribute Value

Duplicate Instance

Attribute Value

Find Distance

Pop Top Instance

Push a String

Figure 4: Add Commands to Definition

Figure 5: End the Definition

It is thought that many procedures will be defined and used for a

short period of time and not used any more. The current definition

concept deals with that case but if the user would like to save this

procedure then a name for it must first be pushed onto the string

stack as is shown in figure 6.

When the string that will become the name of the operation is

defined on top of the string stack then the user selects the Name

Current De/. operation which will add this name to the list of

definitions and it will remove the window that shows the current

definition from the screen as is shown in figure 7.

Graphics Interface '83

- 247 -

Strings
Make Touching Roller

LocationinX

Location in Y

Locations

(80.3.100.0)

(100.0. 60.0)

Figure 6: Push a Suing for the Name

Figure 7: Save the Definition

One stack that is not used in this example but is used quite a bit is

the boolean stack. This is used for conditional execution of code.

There is no block structuring in this language so each collection of

components that would be in a block if expressed in a language such

as pascal must be defined as a separate definition. For an example of

block structuring and conditional execution we might take the

following simple operation in pascal:

r ead(a);
read(b);
if a = b then begin

a .= a • a;
a := a + b

end;

In our language we would first have to define the instructions that

are here found inside the begin end block as a new definition. In this

case it might be called actiotr.

Duplicate Value
Multiply Value
Add Value

Notice that since the operations are selected from a menu it is not an

advantage to use short names for identifiers.

The next part of the code is the entry of the data, the expression

evaluation and the conditional execution of action. The code for that

section in our language is:

Enter Value
Enter Value
Equal Value
Push Const String "action"
If True

The Equal Value test takes the top two values on the value stack,

finds if they are equal and if so ·pushes True onto the boolean stack

else False is pushed. Then the two values are removed from the

stack. The If True operation executes the definition named by the

top of the string stack if the top of the boolean stack is true.

4 Execution environment for meta commands

First some terms that we will use must be defined. Execution time

is the time during which user specified actions are being executed.

Methods are actions that may be initiated by the user at execution

time l
. There are two types of methods: primitive, those that are

pre-defined within the system, and secondary, those that the user has

defined2
. Provided with each method, be it a primitive or a

secondary, is a unique identifier which we call a method identifier.

The execution package must maintain a directory that contains the

method identifiers. During execution we will have to search through

our list of methods matching on the identifiers. This will be a source

of execution time slow down.

Because secondaries may call other secondaries there must be a

Return Method Slack - RMS that will contain a pointer to a directory

entry for the next method that is to be executed at the end of the

currently executing one. The depth of this stack corresponds to the

level of nesting of the meta command calls. Since a method might

detect an error during its execution and we want to be able to modify

~e use of the word method for this comes from the Smalltallr. systems

~ese two terms come from the Forth language

Graphlc8 Interface '83

- 248 -

values at this time and then resume execution we also need an Error

Method Stack. This will contain a pointer to the method that

contained the error. At this location execution will start again after

the correction of a definition or the data on a stack.

The heart of the execution environment is the inner interpreter.

The inner interpreter contains the procedures that get the next action

and call the correct function. If a secondary is being executed then

the interpreter will take the next command from the definition of

that secondary rather then try to get one from the user as it would for

a primitive. This code is organized as a loop. Normally when

primitives are being executed the loop will try to get the next

command from the user. This will continue until execution of a

secondary is requested then the loop will take its commands from the

secondary's definition rather then from the user. At the end of the

secondary's definition the method that is pointed to by the RMS will

provide the command. The RMS will also be popped by one. If the

RMS is empty then the interpreter will again take its commands from

the user.

By the use of this simple approach the user may define new

commands while using the system. The commands are not stored in

a file and then executed by reading the file as ' in some systems but

they may be stored in filcs as a whole to be read back in and used at a

later time. We may do this using the string that the user specifies to

be the identifier for this meta command. The identifying string is

what is used as the label on the menu selection button for this meta

command.

5 Conclusion

Adding a programming capability to a solid modcling system

permits the modeling of the operations that are relevant for design

elements as well as their geometry and attributes. This also allows

the designer to customize his working environment to facilitate his

design task. In this way also the systcm may be adapted for a new

class of user. In the system presented attempts to simplify the

programming task by having the programming language be the same

as the user interaction language. The requirement of having the user

type in names fo r identifiers was minimized by having a menu based

systcm.

Acknowledgements

Thanks are due to Chuck Eastman and the other members of the

CAD-Graphics Laboratory of IBS at CMU for many constructive

suggestions during the development of this system.

[1]

[2]

[3]

[4]

[5]

[6)

[7]

Arbab, F ., Lichten, L., Melkanoff, M.

Toward CAM - Oriented CAD.

In Proceedings of the 19th Design Automation Conference.
Sigda, 1982.

Glass, G. 1.

Automated Part Location in the Design of Assemblies_
Technical Report CSL-83-4, Institute of Building Science,

Carnegie-Mellon Univ., January, 1983.

Glass, G. J.

Programming Facilitiesfor User Modification of VEGA..
Technical Report CSL-83-11, Institute of Building Sciences,

Carnegie-Mellon Univ., April, 1983.

Lieberman, H.

Constructing Graphical User Interfaces By Example.

In Proceedings Graphics Inter/ace '82, pages 295-302.

Canadian Man-Computer Communications Society,

Toronto, Ontario, May, 1982.

Meyrowitz, N., van Dam, A.

Interactive Editing Systems: Part 1 and Part 2.

Computing Surveys 14(3):321-415, September, 1982.

Sandewall, E.

Programming in an Interactive Environment: The LISP

Experience.

Computing Surveys 10(1):35-71, 1978.

Shapiro, E., Collins, G., Johnson, L., Ruttenberg, 1.

Pases: A Programming Eilvironment for Pascal.

ACM Sigplan Notices 16(8):50-57, 1981.

[8] The Learning Research Group.

The Smalltalk-80 System.

Byte 6(8):36-48, August, 1981.

The whole issue is devoted to Smalltalk-80.

[9] Tesler, L.

The Small talk Environment

BYTE 6(8):90, August, 1981.

(10) Woodbury, R. , Glass, G.

The VEG A Solid Modeling System.

In Proceedings Graphics In terface '83. Canadian Man­

Computer Communications Society, May, 1983.

Graphics Interface '83

