
- 257 -

EXPERIENCE WITH A GRAPHICAL DATA BASE SYSTEM

Mark Green, M. Burnell, H. Vrenjak, M Vrenjak
Unit for Computer Science

McMaster University
Hamilton, Ontario, Canada

L8S 4K1

ABSTRACT

Over the past few years there has been an increase in the use of data base systems and computer
graphics in scientific and engineering applications. While considerable work has been done on both
graphics and data base support very little has been done on the interaction between the two. In this
paper we discuss a graphical data base system that we have used in a number of applications. We
describe the structure of the data bases used in this system, the operations that can be performed on
these data bases and three typical applications. Emphasis is placed on the interaction between the
data base system and graphical input and output.

KEYWORDS: Graphical data bases, Interactive graphics, Computer aided design

1. Introduction

In implementing several graphical appli­
cations we encountered the following rather com­
mon problem. The data structures used by the
programs were larger than the main memory of the
computer being used (PDP 11/23). These data
structures also had to be stored on disk between
runs of the program. Typically when these prob­
lems arise a file structure is designed for the
data structures and some scheme is developed for
paging the file between disk and main memory.
Since several applications would be using this
strategy it was decided to produce one common
file structure and a library of routines to
manipulate it. The main motivation behind this
decision was to save implementation time. When
the design was finished we discovered that we
had a small data base system instead of a file
structure.

Originally, we had discarded the idea of
using a data base system for the following rea­
sons. First, the data base systems available
for the PDP11 (under UNIX) are based on the
relational model [Date 1981). While we could
encode our data in terms of the relational model
this did not seem natural to us. In the rela­
tional model data is viewed as a collection or
tables called relations. Each table has a
number of rows, called tuples, and a number of
columns, called attributes. Each entity or
object represented in the data base is stored as
one row in a table. The attributes in the table

are the properties of the object. For example,
if we were designing an electronic circuit we
might have a relation for the parts in the cir­
cuit. There would be one row in the table for
each part. The columns of the table would
represent the properties of the parts, such as
part number, value, manufacturer and rating. To
represent the topology of the circuit another
relation would be used to store the connections
between the parts. This relation would have one
row for each connection and the attributes would
be the parts being connected. In order to cross
reference the connection relation and the parts
relation we would need a unique identifier for
each part.

While the relational model is well suited
to business and a number of scientific problems,
it does not do so well when it comes to
representing designs and the design process.
The application areas we are interested in are
software, system and VLSI design. In these
application areas a design is often developed
incrementally over a period of time. When a new
component is introduced to the design quite
often all its properties are not known. This
causes problems in the relational model since
all the attributes of a tuple must be known when
it is added to a relation. So in the previous
example each time we add a part to the parts
relation we need to know its part number and
value, which is usually the case, but also its
manufacturer and rating. The values of the
last two attributes may not be known until the

Graphics Interface '83

design is finished.

Another problem with the relational model
is the way objects are represented. Each object
in the data base corresponds to one row in a
table. This has two significant implications in
a design environment. First, in order to store
all the properties of complex objects we must
either use very wide relations (a large number
of attributes) or several relations. Wide rela­
tions tend to cause storage problems in most
relational systems so they are not a viable
solution. On the other hand if we use several
relations the data base system will not support
operations on the whole object. The second
implications is, if we want to store all the
parts in one relation they must have a homogene­
ous structure. This means that all the parts
must have the same attributes. In most design
applications this is not the case so multiple
relations are required to store all the parts.
By using more than one relation to store concep­
tually similar objects we loose most of the sim­
plicity and processing power of the relational
model.

These disadvantages don't mean that rela­
tional data bases cannot be used in graphics.
Several successful systems based on the rela­
tional model have been produced, for example the
work of Weller and Williams [Weller and Williams
1976), and Garret and Foley [Garret and Foley
1982). There has also been some work on remov­
ing the above disadvantages from relational data
base systems [Lorie and Plouffe 1982).

The second problem with most data base
systems is the time required to access informa­
tion. The information in the data base will be
used for generating displays so the time
required to retrieve stored information is crit­
ical to the success of the program. In most
data base systems information retrieval is based
on searching all or part of the data base for a
record that satisfies a particular condition.
In our case the records we are looking for are
the ones that are to be displayed, and typically
these records can be retrieved without search­
ing. Therefore, search based retrieval is not
neccessary and needlessly slows down the pro­
gram.

In designing our data base system a
number of design goals were kept in mind. These
design goals are:

1) Retrieval Time - The success of most of our
applications depended upon how fast
displays could be generated. In order to
be useful the data base system must be
capable of retrieving all the information
required to generate a display in less than

- 258 -

two seconds.
2) Flexibility - The underlying data model

must be flexible enough to accommodate the
data bases produced in most design applica­
tions. This includes the ability to add
arbitrary connections between objects while
the application is running.

3) Implementable - We are not in the business
of producing data base systems so we wanted
to spend as little time as possible imple­
menting the data base system. We also
wanted the implementation to be well struc­
tured so it could be modified to handle
different types of applications at a later
time.

4) Usable - Since we are the major users of
the data base system we wanted it to be
relatively e"asy to use. Not only must the
system be relatively easy to incorporate
into programs, but it must also be easy to
produce tools based on the data base sys­
tem.

In view of the above design goals we
decided to base our data base system on a combi­
nation of the network model and the frame sys­
tems that have been used in artificial intelli­
gence [Barr and Feigenbaum 1981). Since frames
are the basic unit in our data bases we call our
system FDB, short for Frame based Oata Base sys­
tem. This approach gets around the problems
encountered with relational systems by assigning
a unique frame identifier to each data object
added to the data base. When an object is added
to the data base none of its properties need be
known. Its identifier can be used to reference
it in other places in the data base. This iden­
tifier also makes it possible to retrieve infor­
mation quickly since we no longer need to search
for particular pieces of data. In order to
decrease access time FDB also stores a portion
of the data base in main memory.

In this paper we first present a descrip­
tion of the structure of FOB data bases. Then
we describe how FOB is used in applications pro­
grams and the tools and techniques that have
been developed to make it easier to use. In the
fourth section of this paper we briefly look at
some of the applications that use FOB.

2. The Structure of FOB Data Bases

The frame is the basic organizational
unit in FDB data bases, each object is stored in
a frame. A frame is made up of a collection of
slots. Each slot is capable of storing one
piece of data. A slot has four fields: name,
visibility, type and value. The name field of a
slot contains the name used to reference that
slot. The same slot name can be used in a

Graphics Interface '83

number of frames. The visibility field of a
slot can be used either for security purposes or
grouping together similar slots. For example,
all slots dealing with graphical properties of
objects could be given the same visibility lev­
el. Then any program traversing the data base
will be able to easily separate the graphical
from the nongraphical data. The type field of a
slot specifies the type of data stored in the
slot. The type of a slot can change over time.
The value field contains the data value stored
in the slot.

There are two types of frames in FDB data
bases. Meta frames are used to represent the
structure of the data base. A meta frame con­
tains no application data, it describes the for­
mat of other frames in the data base. Ordinary
frames are used for storing the applications
data. If an ordinary frame has a Dleta frame
then all the slots in the meta frame will also
appear in the ordinary frame. Any slot values
stored in the meta frame will be the default ,
values for the corresponding slots in the ordi­
nary frame.

There are three standard slots in all
frames. The 'type' slot indicates whether the
frame is an ordinary frame of a meta frame. The
'isa' slot is used to link ordinary frames to
their meta frames. The value of the 'isa' slot
is the frame identifier of the corresponding
meta frame. The 'owner' slot stores the owner
of the frame. The owner of a frame is the user
who created the frame. This makes it possible
to share a data base amongst several users and
still keep track of who is responsible for what
parts of it.

There are four types of data that can be
stored in slots. Two of these types are for
numeric data, integer and real. The third type
is for character strings. The strings can be of
arbitrary length, the length of a string is
stored with it. The fourth data type is a
pointer to a frame. This data types allows us
to build up relationships between different
objects.

- 259 -

There are two ways in which frames can be
linked up to form networks. The first way is
through the 'isa' slot to the corresponding meta
frame. This is referred to as inheritance since
following this path gives us the default slots
for the frame (ie. the ones it inherits from its
parents). The isa network is automatically pro­
vided by FDB as long as the program fills in the
'isa' slot.

The other way in which a network can be
formed is through frame valued slots. There are
two common linking structures that occur in FDB
data bases. The first is a ring or list struc­
ture which is used to group together related
frames of equal importance. To implement a
structure of this form one slot in each frame is
set aside as a link slot. The link slot of the
first frame in the set points to the second
frame in the set. Similarly the link slot of
the second frame points to the third frame. If
a ring structure is being constructed the link
slot of t ,he last frame in the set points to the
first frame, otherwise it contains a null value.
Sometimes a header frame is used to keep track
of the first and last frames in a set. This
structure is similar to the sets found in
CODASYL DBTG data bases [Date 1981].

The other common linking structure is
based on trees. In this case a frame has one or
more frame valued slots. These slots point to
the children of the frame. This makes it easy
to model the hierarchies that occur in a number
of design problems.

To illustrate how these techniques work
we will show how a directed graph can be
represented in an FDB data base. Directed
graphs form the basis for a large number of
notations for describing processes, such as
Petri nets, PERT diagrams, transition diagrams
and the data flow diagrams used in structured
analysis. A directed graph consists of a set of
nodes and a set of arcs which are used to con­
nect the nodes. Each arc has a start node and
an end node. A typical directed graph is shown
in fig. 1. In this figure the nodes are
represented by circles and the arcs by arrows.

Fig. 1 A typical directed graph

Graphics Interface '83

- 260 -

node node node node node node
1 2 3 4 5 6

" , , , I - r-f--- - ~- - r~ - - ---- - - -
,11

if ~ ,It, if " ,I .. ~ 'V ~ , ~

arc arc arc f- arc - arc arc r-- r-- I r- I I
1 2 3 4 5 6
2 3 5 3 6 3

'if ~ 'f

arc arc - arc -I I I
1 2 4
4 4 5

Fig. 4 FDB data base for directed graph

Since there are two basic types of
objects in directed graphs we will need two meta
frames to describe the structure of the data
base. The node meta frame is shown in fig. 2.
The 'type', 'owner' and 'isa' slots will not be
shown in this example since they are not part of
the application. The 'fheader' slot indicates
that this frame is used to represent nodes. A
header slot is included in a frame so we can
tell in a traversal of a data base the purpose
of the frames we encounter. The 'name' slot is
used to record the name of the node. The spe­
cial value EMPTY is used to indicate that this
slot currently has no value. The 'next node'
slot is used as a link slot so all the- node
frames in the graph can be linked into a list.
The arcs in the graph will also be linked into
lists. There wi ll be one arc list for each node
in the graph. The arcs in the list are the ones
leaving t he node the list is attached to. The
slots 'first arc' and 'last arc' point to the
first and Tast arcs on the arc list for this
node. The special frame pointer FO is used as a
null pointer, that is it does not point to a
legal frame.

f header
name
next node
first arc
last arc

Fig. 2

node
EMPTY
FO
FO
FO

Meta frame for nodes

The meta frame for arcs is shown in fig.
3. The 'fheader' slot is again used to record
the type of object represented by the frame.
The 'next arc' slot is used to link together all
the arcs that leave the same start node. The
slots 'start node' and 'end node' point to t he
nodes at the start and end of-the arc.

fheader arc
next arc FO
start node FO
end nOde FO

Fig. 3 Meta frame for arcs

Using these two meta frames as a basis we
can construct the data base shown in fig. 4. f or
the directed graph in fig. 1. In this figure
frames are represented by rectangles with their
slot values written inside of them. Arrows are
used to represent pointers between frames,
except for the 'start node' and 'end node' slots
of the arc frames where the node name are used
to reduce clutter .

Previously we mentioned that the t i me
required to access data was important to us.
FDB solves this problem in two ways. First, it
always keeps a portion of the data base in main
memory . When the program opens the data base i t
can specify how much of the data base is to be
kept in main memory. This portion of the data
base is selected by a least recently used stra­
tegy. When a request is made for information
not in main memory , the l east recently used da t a

Graphics Interface '83

is placed back on disk i n order to make room for
the requested data. The reasoning behind this
strategy is, the user is more likely to request
displayed information than information that is
not displayed. In producing a display the
required data must be transferred to main memory
so it will form the main memory portion of the
data base. In this way response to changes in
the displayed information will usually be
instantaneous.

The use of frame pointers also helps to
reduce access time. FDB maintains an index on
frame identifiers so when a request is received
for a particular frame only an index search and
a read are required to satisfy the request. As
we will see in the next section most of the
operations performed on FDB data bases involve
frame pointer traversals, so efficient retrieval
of particular frames is very important.

3. Using FDB Data Bases

Now that we have presented the structure
of FDB data bases we will turn our attention to
the operations tha.t can be performed on them.
From the graphics and interaction points of view
there are several key operations that must be
supported. These operations are: displaying all
or part of the data base, detecting when a
displayed object has been hit and retrieving
information associated with displayed objects.
We will now see how these operations can be per-
formed in FDB. Traditional data base opera­
tions, such as the storage and retrieval of
information, are also supported by FDB.

To illustate how the display operations
work we will return to the directed graph exam­
ple of section 2. If we want to display a
directed graph the first thi ng we need to know
is the positions of the nodes. There are
several ways in which these positions could be
determined. They could be calculated by a pro­
gram that traverses the data base or they could
be entered interactively by a graph editor. We
will assume that the positions already exist and
two slots, 'x' and 'y', are used to store them.
The new meta frame for nodes is shown in fig. S.

fheader node
name EMPTY
next node , . FO
first arc FO
last arc FO
x 0
Y 0

Fi g . 5 Extended meta frame for nodes

- 261 -

With this information displaying the
graph reduces to performing a traversal of the
data base. This traversal consists of visiting
each node frame in the data base and drawing a
circle to represent the node. Then the ar.c list
for the node is followed and an arrow is pro-
duced for each arc. The end points of the arrow
can be found by accessing the node frames at
each end of the arc. The outline of a procedure
to perform this traversal is shown in fig. 6.

procedure draw_graph(start frame);
var

current : frame;
start node, end node : frame;
x, y 7 integer;-
xl, yl, x2, y2 : integer;

begin
current :- start;
while current + FO do

end;

begin
x s getvalue(current,x);
y - getvalue(current,y);
draw circle(x,y,radius);
arcs-:- getvalue(current,first arc);
while arcs + FO do -

begin
start node :- getvalue(arcs,

- start_node);

end node :- getvalue(arcs , end node);
xl 7- getvalue(start_node,x);-
yl 'S getvalue(start node,y) ;
x2 'S getvalue(end node,x) ;
y2 , - getvalue(end-node,y) ;
intersect(xl,y2,x2~y2,radius);
intersect(x2,y2,xl,yl,radius);
draw arrow(xl,yl,x2,y2) ;
arcs-:- getvalue(arcs,next arc);

end; -
current '2 getvalue(current,next_node);

end;

Fig. 6 Procedure to draw directed graphs

In this procedure the function 'getvalue' is
used to retrieve the value of a slot within a
f rame. The first parameter to getvalue is the
identifier of the frame and the second parameter
is the name of the slot. The procedure 'inter­
sect' intersects a line with a circle and
returns the point of intersection in the f irst
two parameters. It is assumed that the circle
is centered on the first end point of the line .
This proc edure is used t o find where the arrow
for the arc will intersect the c ircles
representing the nodes so the resulting image
will look better.

The nraw graph procedure il l ustrates t he
basic t echnique used to convert FDB data bases
to images , In sect i on 2 we showed tha t there

Graphics Interface '83

are two basic linking schemes, sets and hierar­
chies. In displaying a data base we enumerate
the elements of a set by following the next slot
for the set. At each frame in the set we follow
the hierarchy pointers to traverse the parts of
the data base below it. In this way the parent
node can set the display parameters for its
children. This basic scheme is incorporated
into the procedure 'traverse' shown in fig. 7.

procedure traverse(start : frame; next : slot;
down : slot);

var
current frame;
below : frame;

begin
current :- start;
while current ~ FO do

begin

end ;

draw(current) ;
if gettype(current,down) • FRAME then

begin
set parms(current);
below :- getvalue(current,down);
traverse(below,next slot(below),

down_slot (below));
reset params();

end; -
current .- getvalue(current,next);

end;

Fig. 7 General display procedure

The traverse procedure has three parameters, the
identifier of the frame where the traversal
starts, and the names of the slots used for set
and hierarchy pointers. In order to use this
procedure the programmer must supply three pro­
cedures; draw, next slot and down slot. Given
the identifier of a trame the draw procedure
produces the image corresponding to that frame.
The draw procedure does not produce the images
of the frames pointed at by this frame. The
next slot and down slot - procedures return the
names of the slots used for set and hierarchy
pointers in the type of frame given by their
parameter. All three of these procedures essen­
tially consist of a case statement on the
'fheader' slot and the code required to perform
the operation for each type of frame in the data
base. For our directed graph example the draw,
next slot and down slot procedures are shown in
fig.-a.

Each time a hierarchy pointer is followed
the display parameters can be changed. This is
the purpose of the calls to 'set parms' and
'reset parms' in the traverse procedure. The
user can either supply his own version of these
procedures or use the standard ones. An example
of how this works is included in section 4 .

- 262 -

function next_slot(f
var

frame) slot;

ftype : integer;
begin

ftype :- getvalue(f,fheader);
case ftype of

node : next slot :a next_node;
arc next-slot:- next_arc;

end;
end;

function down_slot(f
var

frame) slot;

ftype : integer;
begin

ftype :a getvalue(f,fheader);
case ftype of

node down slot :- first arc;
arc down-slot·- NULL;-

end;
end;

procedure draw(f : frame);
var

ftype : integer;
x, y : integer;
xl, yl, x2, y2 : integer;
start node, end node : frame;

begin - -
ftype :- getvalue(f,fheader);
case ftype of

node : begin
x :- getvalue(f,x);
y :- getvalue(f,y);
draw_circle(x,y,radius);

end;
arc begin

end;
end;

start node :- getvalue(f,
- start node);

end node :- getvalue(f,end node);
xl 7. getvalue(start_node,x);
yl : - getvalue(start node,y);
x2 :- getvalue(end_node,x);
y2 :- getvalue(end node,y);
intersect(xl,yl,x2~y2,radius);
intersect(x2,y2,xl,yl,radius);
draw_arrow(xl,yl,x2,y2);

end;

Fig. 8 Next_slot, down slot and draw procedures

In most interactive applications the user
interacts with displayed data. The most common
form of this interaction is called a hit, which
occurs when the user points at an object on the
screen and signals his selection, usually
through the use of a button. In order to handle
this type of interaction we must keep track of
the position of each ob j ect on the display. The

Graphics Interface '83

- 263 -

standard way of doing this is a correlation
table or map [Foley and Van Dam 1982]. A corre­
lation table has one entry for each user select­
able object on the screen. This entry contains
the screen area occupied by the object and the
identity of the object. In our case the screen
area is represented by the bounding rectangle
for the object (the smallest rectangle that com­
pletely contains the object) and the object is
identified by its frame identifier. The frame
type is also stored in the correlation table.

When the user indicates he has selected
something on the screen the correlation table is
searched for an entry that contains the speci­
fied point. The result of this search is the
frame corresponding to the selected object.

There are two problems that must be
addressed when using this technique. The first
problem is that bounding rectangles ' can overlap
so the point specified by the user may
correspond to several frames. There are several
ways in which this problem can be solved. The
first is to use the context of the action to
determine the type of frame the user should be
selecting. If only one frame of this type
corresponds to the position pointed at, then it
is the most likely choice. For example, if the
operand to the command the user entered must be
a node, then only frames representing nodes
would be considered in a search of the correla­
tion table. Another solution is to construct a
precedence ordering on the frame types. A frame
with higher precedence will be selected over one
with lower precedence. A third solution is to
report to the program that more than one frame
has been selected and let the applications pro­
gram decide which of the selected frames it will
use. We have incorporated the first and third
solutions into our correlation table routines.
For each user hit the applications program can
request the number of frames that satisfy the
hit. If only one frame satisfies the hit there
are no conflicts and the identifier and type of
the frame are returned. If more than one frame
satisfies the hit the number of frames satisfy­
ing the hit and the identifier and type of the
first frame are returned. The applications pro­
gram can then ask for the rest of the frames or
make the request more specific by including a
frame type.

The other problem with correlation tables
is maintaining the table while the displayed
information changes. Each time an object is
removed from the screen it must also be removed
from the correlation table. Similarly when a
new object is displayed it must be added to the
table. The obvious place to add entries to the
table is the draw procedure that is called from
traverse. At the end of each case in the case

statement the procedure 'add entry' is called to
create a correlation table entry for the frame
that was just drawn. The parameters to
add entry are two opposing corners of the bound­
ing- rectangle and the identifier for the frame.
To remove an entry from the table the procedure
'remove_entry' is used. This procedure has one
parameter, the identifier of the frame to be
removed. Remove_entry must be called each time
a frame is removed from the screen. In order to
handle batch updates to the screen the procedure
'clear table' can be used to clear the entire
correlation table and 'remove range' to remove a
range of entries. The proced~res 'begin range'
and 'end range' are used to delimit the range of
table entries defined by the intervening calls
to add_entry.

Over the past few years a number of tools
have been produced to aid in the construction
and maintenance of FDB data bases. One useful
tool is a program, called listdb, that produces
a simple formatted listing of the contents of a
data base. This listing is divided into two
sections. The first section contains the meta
frames and the second section the ordinary
trames. In each section the frames are listed
in frame identifier order. For each frame all
the slots are listed along with their values.
This program is used to check data bases that
are produced or modified by applications pro­
grams.

Another useful tool is an interactive
data base editor called fedit. Fedit allows the
user to create a new data base or modify an
existing one. This editor uses a standard ASCII
terminal and a bit pad for selecting commands
and arguments. A command menu is displayed at
the bottom of the terminal screen. Above this
menu is a work area containing either the con­
tents of one frame or a list of the available
slot names in the data base. To the right of
the work area is a status area showing the size
of the data base and the values of default argu­
ments. All operations are performed by either
selecting a command from the menu or pointing at
parts of the frame shown in the work area. The
menu includes commands for creating frames,
adding slots, listing available slot names,
removing frames, removing a slot from a frame
and finding a particular frame. The slot values
are changed by pointing (with the bit pad) at
the slot to be changed and entering the new
value on the keyboard. The syntax of the value
determines its type. This simple command struc­
ture facilitates learning to use the editor .
Fedit is mainly used to create the meta frames
for a data base and enter the first few ordinary
frames. It is rarely used to enter the entire

Graphics Interface '83

data base.

Another useful tool is a set of programs
that have been produced over the past few years
to recover trashed data bases. Unlike commer­
cial data base systems, FOB has no recovery
mechanisms. When an application program crashes
during testing it often leaves the data base in
a bad state. Since most programmers assume
their programs will work correctly the first
time they rarely make a backup copy of their
data base so recovery programs are a natural aid
to program development. The current implementa­
tion of FOB does not overwrite deleted informa­
tion on the disk. This means that old informa­
tion can be recovered by adjusting some pointers
and disk addresses. The recovery programs
return the data base to a consistent state and
recover as much data as possible. The program­
mer can then use fedit to restore the rest.

Most of our
the applications
we look at new
approaches suggest

tools have been motivated
we have tackled with FOB.
applications new tools
themselves.

4. So.e Typical Applications

by
As

and

4.1. A Retrieval and Oisplay System for well­
defined Graphical Data Bases

We have noted that the FOB System is
ideally suited for the representation of graphi­
eal and non-graphical information. We use this
knowledge as a basis for the development of a
display system for graphical/non-graphical
data bases.

As this is one of the first attempts at
applying the FOB System to the graphical medium
some modification of the FOB System itself is a
requirement for the success of the project. The
modification deals only with extending the types
of data that can be stored in frame slots. The
complete set of types of data after this exten­
sion now include: the original types for
integers, reals, character strings, and frame
pointers, the types explicitly for graphical
interpretation (point, line, and circle types),
and the array types (for integer, real, and
character string arrays). The value of having an
explicit type to define, for example, an integer
point or a line with real end-points or an array
of all possible factory part names is obvious.
The alternative is to painstakingly define and
use many frame slots to fake what should other­
wise be one logical data item.

Now that we have implemented these new
data types in the FOB System we must consider
how the user will enter the values corresponding
to these types into a frame data base. This

- 264 -

depends only on the agreed upon method of
interaction between the user and the FOB System.
If we are using FOB system calls either the
value or a pointer to the value or a pointer to
an array of pointers to values is passed .as a
parameter in the call. If an interaction tool
such as "fedit" is used the value is entered in
the same manner as it will appear in the screen
representation of the slot and its value. We
mention this simply as an assurance that the
methods of interaction have been updated to be
consistent with the extensions made to the types
of data.

The input of large amounts of graphical
and non-graphical data into the frame data base
will have little meaning unless it is entered in
some well-defined manner. The scheme used to
enter, and then retrieve and display the
acquired information forms the main scope of
this chapter. However, first we should explain
what we mean by "well-defined". A data base of
one or more display items is well-defined if it
has the following properties:

- A unique starting frame exists for every
distinct display item in the data base.
- Only one starting frame is active at anyone
time (more on this later).
- Complicated display items are modelled using
a tree based linking structure.

Thus the root of the tree corresponds to the
start frame, the leaves hold the actual values,
and each internal node has some organizational
effect on its children. If we have such a data
base then an interpreter can be implemented to
scan the data base, retrieve a particular item,
and display a visual representation of that item
on some output device.

We have designed a scheme that is per­
tinent both to the user who is entering data
into the frame data base and to the interpreter
which retrieves and displays the data. Our
scheme has two levels: an organizational level
and an informational level. The organizational
level concerns itself with the environment in
which the constituent parts (figures) of the
display item are found. Such factors as coordi­
nate systems, colouring schemes, and orientation
of figures are considered here. The informa­
tional level can be compared to a sub-tree of
our tree, where the sub-tree describes some fig­
ure which cannot be broken down further without
losing its meaning. The switch between the two
levels is somewhat blurred in that each logical­
ly distinct figure of the display item is usual­
ly composed ·of more primitive building block
figures and thus subject to some method of
organization. For example, a 2 - dimensional box
is a distinct informational figure which is com-

Graphics Interface '83

posed of 4 line segments arranged in a certain
fashion.

A core' data base exists which is intended
as an aid to the user in creating his frame data
base. The core data base is a collection of meta
frames which is used to format a well-defined
graphical data base. The key meta frame is the
organizational '·worldframe". Its main function
is to define a coordinate system for the figures
that it identifies. The coordinate system speci­
fies the area of the display in which the fig­
ores are located. The figures themselves are
either primitive figures (the frame slot for the
figure holds the actual value) or complex fig­
ures (the frame slot for the figure holds a
frame pointer).

If a figure is complex the frame pointed
to by the slot is modelled on one of two meta
frame types. The new frame may be another
"world frame" or it may be a "pseudoprimitive"
frame. If it is a "worldframe" then the coordi­
nate system of that frame can also be specified.
In this case the new coordinate system will be
positioned relative to both the new system and
the parent system. The figures in the new frame
are also positioned accordingly. With this for­
mat we can define very complex figures quite
quickly. We can also create "ord models" for
complex figures. By this we refer to complex
figures which will be used as logically discrete
display values. These values may be used many
times but with different orientation parameters
and colouring schemes. This allows us to produce
almost identical copies of a complex figure
(which leads us to an interesting side-track:
the application of moving pictures).

If the new frame is based on the "pseu­
doprimitive" frame type a very specific interac­
tion between user and data base is required. The
"pseudoprimitive'· frame models a special purpose
figure. Most of the frame slots are already
designated with default values. The user only
has to supply a minimal amount of information to
complete the figure. Examples of such figures
are the pie chart figure, the bar graph figure,
and the business form figure (each requires a
different "pseudoprimitive" meta model). It
should be noted that the "pseudoprimitive" frame
is both an informational and organizational
frame. It is informational in that it represents
one logically complete figure but it is also
organizational in that complicated "pseudoprimi­
tive" formats may include the use of "world­
frame" types.

We now have a data base composed of
organizational and informational frames which we
want to display. The display interpreter . is
designed to have a specific action for each meta

- 265 -

frame defined in the original core data base. If
the user ~odels his data base on the provided
meta frames or if a library of "ord models"
exist and are accessed by frame pointers the
interpreter will display the data base item. If
the user wants to add a new "pseudoprimitive"
frame then he will also have to add a new action
to the interpreter before the interpreter can
display the data base item.

The interpreter begins by searching the
data base for the active starting frame. The
active starting frame is just a "worldframe'·
that has been labelled to identify it as the
root starting frame for that display item. Hav­
ing found the starting frame the interpreter
initiates the "world frame" action for that
frame's slot values. The action is:

1) Define the coordinate system.
2) Set different colouring schemes.
3) Transform (scale, rotate, and translate)
figures according to the coordinate system
specifications (non-commutative transforma­
tions are required if more than one coordinate
system level is specified).
4) Display the figures.

This is a recursive procedure where step 4)
leads to further "worldframe" actions or pseu­
doprimitive" frame actions. When the figures
themselves are actual slot values (point, line,
circle, character string, etc.) then the action
is complete. The only terminal dependent opera­
tion made by the interpreter is in providing
routines to display the final slot values.

Our system is still under development at
this stage. But its design allows extensions to
be made qui te quickly. New "pseudoprimi ti ve"
frames require matching interpreter actions. New
slot value types can be faked by creating "ord
models" or by directly modifying the FOB System.

4.2. MSF : A Menu Selection System for use with
FDB

MSF is a menu selection system, intended
for use as a man-machine interface, which has
been partially implemented on the POP 11/23.
The design of this system is based heavily on
that of ZOG, a rapid response, large network,
menu selection system that has been under study
at Carnegie Mellon University for several years
[Newell,1977J [Robertson,McCracken,and
Newell,1980j. ~F facilitates access to and
manipulation of frames stoTed in an FOB data­
base. Although future plans for the system
include its use to display graphical infor~ation
and perform actions specified by the user and
stored in frames, at the present time MSF is
only capable of handling frames containing tex-

Graphics Interface '83

tual information.

While using the MSF system the user faces
a terminal upon which is displayed a frame of
information. Before leaving the terminal the
user will probably view several such frames,
called DISPLAY frames, all of the same general
format. A typical MSF DISPLAY frame is shown in
figure 9. Every frame contains a title at the
top, possibly followed by a number of lines of
text and/or options, and a line of global pads
at the bottom. The upper right hand corner of
the screen holds the frame number of the frame
currently on display. There may also be a
column of local pads along the right hand side
of the screen, beside the options. As the user
switches from one frame to another the format
will remain the same but, with the exception of
' the global pads at the bottom, the content of
the frame will change. Due to space constraints
(a 24 line by 80 column screen is being used)
the number of text and for option lines is res­
tricted to 17. The text is always displayed
first followed by the options which are double
spaced for easy assimilation and selection.
Therefore, if there are no options, up to 17
lines of text can be displayed and, if there is
no text, up to 9 options can be offered.

The MSF System

- 266 -

the keyboard to enter the character or digit
associated with the desired item in response to
a prompt in the lower left hand corner of the
screen. The actions associated with the choice
of a frame specific selection and a local pad
are similar in that they are specified by the
user who created the frame and/or local pads
MSF simply does what it is told. In contrast,
the actions associated with the selection of a
global pad are programmed into the MSF system
and the user has no control over them.

Each option (or selection) of a DISPLAY
frame has an action associated with it. This
action is actually another frame number. When a
frame specific selection is chosen by the user
the MSF system accesses the associated frame
number and examines the frame to see what should
be done next. If this new frsme is a DISPLAY
frame then the old information disappears from
the screen and the information in the new frame
is displayed. As well as frame specific selec­
tions, any DISPLAY frame may have a LOCALPAD
frame associated with it. This LOCALPAD frame
contains information on what pads should be
displayed and what actions should be taken if
one is chosen.

F-4

Welcome to the menu selection system, MSF, designed for use with FDB.
MSF facilitates access to frames of information which have been created
specifically for use with this system. More information is available
on the topics listed below.

1. How to use the system

2. How the system works

3. How to set up your own database for use with MSF

4. Who is working on MSF

5. What subjects are currently available for viewing

P-print

?

e-edit b-back n-next h-help m-mark r-return d-display g-goto x-exit

Fig. 9 A typical MSF DISPLAY frame

The global and local pads and the frame
options (called frame specific selections) all
constitute items which the user can choose from.
Selection is accomplished either by using a bit
pad to position the cursor over the item of
choice and depressing the z button or by using

Each local pad has an action (a frame number)
associated with it and functions in exactly the
same way as discussed for a frame specific
selection. The purpose of having a separate
LOCAL PAD frame, instead of just including local
pad information in a DISPLAY frame, is to allow
several DISPLAY frames to share the same local
pads. An examination of the meta structures of

Graphics Interface '83

the DISPLAY and LOCALPAD frames (see Figure 10)
will perhaps clarify this discussion.

owner
type
isa

fheader
textlines

selections
title

text 0
text-1

text 16
select 0
action-O
select-1
action-1

select 8
action-8

local pads
marked

0
META
0
DISPLAY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

EMPTY
EMPTY
EMPTY
ID>lPTY

owner
type
isa

fheader
numpads

lpad_O
lact 0

0
META
0
LOCAL PAD
EMPTY
EMPTY
EMPTY

EMPTY
EMPTY

Fig. 10 The DISPLAY and LOCALPAD meta frames

The structure of the DISPLAY meta frame.
as seen in figure 2. is fairly self explanatory.
The slots for the title. text
(text 0 •.•• , text 16), and options
(select O ••••• select 8) contain. in an ordinary
frame ot this type,-the character strings which
constitute the information display of the frame.
The textlines and selections slots store the
number of lines of text and options. respective­
ly, that a frame contains. As can be seen. each
select slot is accompanied by an action slot.
Generally. this action slot is of type FRAME and
contains the frame number of the action associ­
ated with the particular selection. Finally,
the local pads slot holds the frame number of a
LOCAL PAD frame if that DISPLAY frame is to have
local pads displayed with it. The meta structure
of the LOCAL PAD frame is similar to that of the
DISPLAY frame. The lpad slots hold the charac­
ter strings which are displayed as the pads. As
for the select and action slots of the DISPLAY
frame, each Ipad slot has an lact slot associat­
ed with it which contains the number of the
frame to be accessed if that pad is chosen. The
numpads slot holds the number of pads. maximum
four. which the LOCAL PAD frame contains.

There are no restrictions on the frames
associated with a local pad or frame specific
selection aside from the fact that their meta
type must be one recognised by the MSF system.
(There will, however. generally be a logical
connection between the information in the

- 267 -

current frame and the contents of those accessi­
ble through selections from it.) In this way the
user may establish a very complex network or
directed graph of frames. Although at the
present time the MSF system can only be used to
display another frame as the response to a user
defined selection, the groundwork has been laid
for having a frame specific or localpad selec­
tion perform some other activity.

The global pads , which appear at the bot­
tom of the display screen offer the user a
variety of options . Choosing the "help" pad
will route the user to a network of frames which
explain the MSF system and how to use it. As
mentioned earlier, the network of frames a user
may have access to can be very large and com­
plex. Because of this several orientation aids
have been provided. A user may "mark" frames
which are important to him. As well as actually
physically marking the frame by inserting the
string "M-n" (for the nth marked frame) in the
upper right hand corner of the display, this
selection adds the frame to a list of frames
which may be retrieved later. "Back" will
return the user to the frame he was viewing pri­
or to the one currently on display. When view­
ing a frame with several frame specific selec­
tions a user may decide he would like to go
through all of them. In this case all he has to
do is choose the first option and from there the
global pad "next" can be used to switch to the
second, third, etc.. The ··return" option routes
the user to a collection of frames which contain
information on which frames he has recently seen
and also those frames that he specifically
marked. When "goto·· is chosen the user is
prompted for a frame number and if this frame
exists and is a DISPLAY frame it will replace
the frame currently on display. "Display'· is
useful for redisplaying the information in the
current frame if for some reason the screen
becomes garbled. The choice of "edit" puts the
l1ser into editor mode, a new set of global pads
is displayed, and the user may add, remove, and
alter frames as desired. When the user is fin­
ished with the MSF system, the choice of "exit"
will return him to normal command mode.

5. FDB and a VLSI Design System

We are currently involved in the design
and development of a system to support the com­
puter aided design of VLSI circuits. Our
approach to the design of such a system reflects
the needs of current VLSI design systems [Mead
and Conway 1980), [Losleben 1982), [Muroga 1982)
and CAD systems in general [Goos and Hartmanis
1982].

Graphics Interface '83

USER
PROCESS

I/O
DEV ICES

GRAPHICS
ROUT INES

YID

Fig. 11 Overview of VIO

SYSTEM
TOOLS

An overview of our VLSI interactive
design system (VIO) is shown in figure 11. We
are implementing VIO on a PDP 11/23 using an AEO
512 raster graphics terminal. We are using a
keyboard, a joy stick, and a bit pad as input
devices. We have shown the system interacting
with three FDB databases: SEDB, our system
environment database representing a dynamic menu
driven environment used to interface with the
system, the chip database and various tools;
CHIPDB, a database to store the various
representations of the VLSI circuit during its
design; and LIBDB, a library database to store
references to other chips being designed, fabri­
cation technology dependent information, and VID
system data. We have grouped all possible tools
under system tools. These include various tools
for editing and viewing the chip, design rule
checking, simulation, modifying the system
environment and so on. This list is kept open
to permit the addition of various tools as they
are developed or acquired.

FDB plays an important role in the design
of our system environment and the chip database.
SEDB is important in storing the representation
of different system interfaces. CHIPDB is
important in storing the representation of the
VLSI circuit through all phases of design.
LIBOB provides a means of generality f or system
tools. We wish to present the design and imple­
mentation of the chip database to il lustrate the
application of FDB to VLSI design.

- 268 -

5.l'. The VLSI Chip Database - CHIPDB

We are using a structured approach [Mead
and Conway 1980J to VLSI design. This method is
hierarchical in nature. The design proceeds in
two stages: top-down and bottom-up. The initial
design starts with a global view of the chip and
subdivides this view until the basic primitives
are to be defined. From here the design
proceeds from the bottom up by implementation of
the basic components of the cell. This lower
level design propagates its effects through the
higher levels of the hierarchy.

We will also base our model of the VLSI
chip on a hierarchy. This structure has become
popular in VLSI design and is described as a
connective structure [Oakes 1979J, a separate
hierarchy (Trimberger 1981J, and a deciduous
tree [Daniel and Gwyn 1982J. We will refer to
this structure as a nested cell model and will
use it to model VLSI circuits.

Our nested cell structure will have three
different types of nodes: the root node,
representing the entIre cell; composite nodes,
representing information at the subcell level;
and the leaf nodes which will hold all primi­
tives necessary to describe the different
representations of the chip.

This structure is basically a tree. There
will exist only on root node per chip database.
The root node will identify the fabrication pro­
cess, describe its dimensions, and contain a
list of subcells. A subcell contains the extent
of the subcell, where it is to be placed in the
parent cell, a reference to a cell definition,
and a list of connectivity information. A cell
definition can either be a composite or leaf
node. A connectivity list displays the connec­
tions of a particular subcell to other subcells
at the same level of the hierarchy. A composite
node contains a description of its extent and a
list of the subcells that comprise it. A leaf
node contains its extent, placement infor.Dat ion,
and references to t he different kinds of primi­
tives used to describe the VLSI chips. This
information will be graphical or textua l in
nature. We will represent symbolic or s t i ck
diagrams , mask layout geometry, and documenta­
tion at this level. Additional t ypes of i nfor­
ma tion can ·be added as needed . The roo t and
composite node should contain at least one
reference to a leaf subcell. This particular
leaf subcell expresses t he inter-connectivity of
that particular node.

The root node meta frame is shown in f i g­
ure 12. The N~~E s lot Is used to give a name to
the cell . The X MAX and Y MAX slots are used t o
give t he dimensions, i n microns, of the c hi p .

Graphics Interface '83

SCALE will contain the scale the chip was
defined in. Technological information are stored
in the TECH and LAMBDA slots. These are used to
identify the technological dependent information
that would be residing within the library data­
base The SUBCELL# slot indicates the number of
subcell references. A maximum of 20 subcells
can be defined within this frame. However, an
OVERFLOW slot which points to a frame is used if
the number is exceeded. This frame contains a
list of additional subcells. Each SUBCELL slot
points to a frame containing a reference to a
composite node or leaf node.

FHEADER
NAME
X MA){

Y-MAX
SCALE
TECH
LAHBDA
SUBCELLD
SUBCELLO

SUBCELL19

·root·
·CHIPXX·
4800.
4800.
.01
NMOS
3.
o

OVERFLOW FO

Fig. 12 Root node meta frame

The subcell meta frame is shown in figure
13. Here the EXTENT slot describes the bounding
box of the subcell. The TRANSFORH slot is used
to store a transformation matrix. This matrix
describes the placement of the subcell within
its parent cell. The CELL_DEF slot is a pointer
to either a leaf node frame or a composite node
frame. The CONNECT LIST slot is used to point
to a list of frames. This list is comprised of
subcells that interconnect with the subcell.

FHEADER ·subcell·
NAME ·CELLXX·
EXTENT a
TRANSFORH a
CELL DEF FO
CONNECT LIST FO

Fig. 13 Subcell meta frame

The composite node meta frame is set up
similar to the root node. This frame will only
contain an EXTENT slot and a list of SUBCELL
slots. The SUBCELL slots are set up the same as
those in the root node meta frame.

The leaf node meta frame is very simple.
It has an EXTENT slot to describe the area it
occupies and a list of slots which are set up to
contain pointers to a particular representation.
In our meta frame we have a STICKS slot fot a

269 -

symbolic representation of a cell, a MASK slot
for mask layout geometry, and a DOC slot for the
cell·s documentation.

We will present one final meta frame to
illustrate how we represent these primitives.
Figure 14 shows the meta frame for the mask
representation. Essentially, we have a list of
slots for each layer in our technology. The
slots shown are those used in NMOS which was
declared as the fabrication technology in the
root. Each of these slots points to a layer
primitive frame that contains a list of all the
shapes of a particular component defined within
the boundaries of the leaf node.

FHEADER ·mask·
POLY! . . FO
POLY2 FO
DIFF FO
METAL FO
CONTACT FO

Fig. 14 Hask meta frame

We have found it very natural to
represent the nested cell model with FDB. The
frames described describe the minimum structure
necessary to implement this model within the
system. One nice feature of FDB is the ability
to modify or make additions to frames without
any high overhead with respect to time or
effort. This flexibility will allow the addi­
tion of other features we may wish to add to the
cell or leaf descriptions. In addition, the use
of the library makes our model more general in
nature. This will allow designs of various
technologies to be produced along with a general
set of tools to operate on these designs.

6. Summary

base
tines
data

In this paper we have shown how a data
system can be combined with graphics rou­
to provide a complete support system for
and display management. We have described

the structure of the data bases we have been
using and the precedures used to produce
displays from these data bases. We have been
using this graphical data base system for a
number of years mainly in design oriented appli­
cations.

References

[Barr and Feigenbaum 1981J Barr A., E. Feigen­
baum, The Handbook of Artificial Intelli­
gence, Vol. !, William Kaufmann Inc., Los

Graphics Interface '83

Altos, Ca., 1981.

[Daniel and Gwynn 1982] Daniel M.E., C.W. Gwyn,
CAD Systems for IC Design", IEEE Trans.

CAD/ICAS, CAD-I, p.2, January, 1982.

[Date 1981] Date C.J., ~ Introduction to ~
base s~stems, Addison-Wesley, Reading
MiSS., 1 81.

[Foley and Van Dam 1982] Foley J.D., A. Van
Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley, Reading Mass.,
1982.

[Garret and Foley 1982] Garret M.T., J.D.
Foley, "Graphics Programming Using a Data­
base System with Dependency Declarations",
AGM Transactions on Graphics, vol.l, no.2,
p.l09, 1982.

[Goos and Hartmanis]
Computer Aided
Engineering, CAD
1980.

Goos G., J. Hartmanis,
Design Modelling, Systems
Systems, Springer Verlag,

[Lorie and Plouffe 1982] Lorie R., W. Plouffe,
"Complex Objects and Their Use in Design
Transactions", Research Report RJ 3706, IBM
Research Laboratory, San Jose, Ca, 1982.

[Losleben 1982] "Losleben P., "Computer Aided
Design for VLSI", in VLSI: Fundamentals and
Applications, Springer-Verlag, 1982.

[Mead and Conway 1980] Mead C.A., L.
Introduction to VLSI Systems,
Welsesly Publishing Company, 1980.

[Maruga 1982] Maruga 5., VLSI System
John Wiley and Sons, Inc. 1982.

Conway,
Addison-

[Newell 1977] Newell A., "Notes for a Model of
Human Performance in ZOG, Carnegie-Mellon
University Technical Report, 1977.

[Oakes 1979] Oakes M.F., "The Complete VLSI
Design System", Proceedings, 16th Design
Automation Conference, June 1979.

[Robertson, McCracken and Newell 1981] Robert­
son G., D. McCracken, A. Newell, "The ZOG
Approach to Man-Machine Communication" ,
International Journal of Man-Machine Stu­
dies, vol. 14, p.461-488.

[Trimberger 1981] Trimberger S., J.A. Rowson,
C.R. Lang, J.P. Gray, "A Structural Design
Methodology and Associated Software Tools",

- 270 -

IEEE Trans. CAS-28, p.618, July 1981.

[Weller and Williams 1976] Weller D., R. Willi­
ailS, "Graphic and Relational Data Base Sup­
port for Problem Solving", Computer Graph­
ica, vol.l0, no.2, p.183, 1976.

Graphics Interface '83

