- 179 -

EXPLOITING PARALLELISM IN IMAGE SYNTHESIS APPLICATIONS

Gerald Leitner
Department of Computer Science
Columbia University, New York, NY 10027

ABSTRACT

The generation of digital images and
computer animated sequences is a very
computation-intensive process which can
be partitioned into different phases.
Logically, many phases can be executed
concurrently. Appropriate environments
for concurrent execution are a single-
processor system with multiprogramming,
or a multi-processor system, or a local
area network. This paper addresses basic
mechanisms to utilize concurrency.
First, a structure called "production
net" is introduced to specify the process
of generating an image (or a sequence of
frames) and the parallelism inherent in
this process. Then, the execution of a
production net in a distributed system is
analyzed and a form of dynamic task
distribution based on "contract nets" is

proposed.
KEYWORDS: image synthesis, parallel
processing, distributed application,

production net, contract net.

SUMMARY

The generation of high-quality digital images
and computer-animated films is a very
computation-intensive application. As an

alternative to using a Cray computer it is well
worth exploiting parallelism to increase the
speed and efficency of the image synthesis
process.

Parallelism can be exploited in many different
hardware envirorments. On a single-processor
system, concurrent processes speed up the
execution of an application if processes perform
frequent 1/0 operations. This is definitely the
case for image generation applications, because
many functions involve I/0 to & raphic

raph

1cs
ics Interface '84

processor (e.g. a frame buffer system), to disk
(e.g. for large files in a paging system), or to
a user terminal. In a multi-processor system,
shared memory and high communication bandwidth
permit tightly coupled concurrent execution. The
development of "supercomputers" containing
thousands or hundreds of thousands of processing
nodes permits massive parallelism. Local area
networks consisting of powerful workstations and
fast communication lines are an especially
interesting environment because of their
widespread existence today.

In order to exploit the above environments,
the programs for the generation of digital images
and animated sequences have to be partitioned and
executed as concurrent communicating processes.
This partitioning can occur at different levels.
At a low 1level, massive parallelism can be
achieved by partitioning functions at the level
of individual pixels or groups of pixels (e.g.
for ray tracing algorithms) or at the level of
individual polygons in a polygon-based scene
database. At a medium level, different non-
intersecting groups of objects in a scene can be
processed separately (after the appropriate pre-
processing, see e.g.'). At a high level,
different planes are overlayed or otherwise
processed to form the final image; in animated
sequences, different frames or different parts_of
frames can be generated in parallel (see e.g.<).
(Computer-generated frames in the film Star Trek
II: The Wrath of Khan consist of a sky as a
background image and of several layers - mountain
ranges, a lake, etc. - sandwiched on top of it.
The generation of some frames involved the use of
up to‘?o different programs and took up to five
hours.?)

Our research concentrates on two fundamental
problems: (1) how to specify the parallelism
inherent in an application; (2) how to execute
the subtasks of a program efficently in a given
hardware environment, i.e. hﬂw to map individual
tasks to available resources.

It is highly desirable to separate the
specification of the parallelism from the details
of the underlying system, because hardware
environments change and programs should be

~ 180~

portable. We introduce the formal structure of a
"production hnet" to specify the parallelism
inherent in an image synthesis application. A
production net is a directed graph whose nodes
are "objects" and "modules". An object is a well-
defined data structure that belongs to a specific
"object class" and has a unique ID. Examples of
objects are data structures defining groups of
polygons, data structures defining viewing
parameters, pixel arrays, etc. A module is a
procedure activation which implements a partial
function of the image synthesis application. A
module takes instances of well-defined object
classes as inputs and produces instances of well-
defined object classes as output. Examples of
modules are "transformation modules" which
transform a 3D scene and given viewing parameters
into a '"rendered scene", or a module that
overlays two pixel arrays, etc.

The nodes in the directed graph are connected
by "arrows". An arrow from an object to a module
means that the object is an input to a function;
thus, it has to be generated before the function
can be applied. An arrow from a module to an
object means that the object is a result of
executing the module function. The final result
are the objects which have no outgoing arrows.

Such a production net constitutes an exact
specification of how to create an image or a
sequence of frames. The second part of our

research 1is «concerned with the distributed
execution of production nets, i.e. with the

distribution of tasks (= execution of modules)
among available resources and the flow of objects
through the system. The execution takes into
consideration both the static configuration of
the underlying system and dynamic (run-time)
parameters, e.g. the current system load.

The execution of a production net is based on
the concepts of "contract nets" and "goal—drigen"
processing. In the "contract net" paradigm”, a
"manager" process is responsible for the
completion of a certain task. The manager can
"contract" other processes for "subtasks". The
connection between the "manager" process and the
"contract" processes is established dynamically
at run-time. Furthermore, this process 1is
iterative, i.e. a "contract" process can become a
"manager" process for its own subtask.

Tasks are initiated in a "goal-driven" order,
where the "goal" is the creation of the final
image or sequence of images. Let us assume that
the final image is an object x. If x is the
result of applying a module M to objects y and z,
then the generation of y and z are subtasks to be
contracted. By applying this principle
recursively, the primitive already existing

objects are reached, which will then be applied
to modules to generate intermediate objects,
etc., until the final image(s) are complete.

The major advantages of the system described
above are the provision of a formal framework to
specify the parallelism inherent in a task which
is independent of the underlying system, and the
efficient distributed execution of the
specification. Production nets provide a high-
level specification language which supports
modular design and provides the basis for
concurrent execution; the distributed execution
of production nets take into consideration the
actual system environment at run-time and
optimizes its utilization.

REFERENCES
1. Crow, F.C,, ‘A More Flexible Image
Generation Environment,'' ACM SIGGRAPH '82
Conference Proceedings, July 1982, .
2. Reynolds, C.W., °‘Computer Animation with
Scripts and Actors,'' ACM SIGGRAPH '82
Conference Proceedings, July 1982, .

3 Christian, K., The UNIX Operating System,
John Wiley & Sons, 1983.

y, Leitner, G., ‘'A Distributed System for
Digital Image Production,'' submitted for

publication, 1984, .

5. Davis,R. and R.G. Smith, "‘Negotiation as a
Metaphor for Distributed Problem Solving,''
Tech. report 624, Massachusetts Institute
of Technology, Artificial Intelligence
Laboratory, May 1981.

Graphics Interface '84

