
- 83 -

ANlMENGINE AN ENGINEERING ANIMATION SYSTEM

Tsukasa Noma and Tosiyasu L. Kunii
Department of Information Science,

Faculty of Science, The University of Tokyo,

ABSTRACT

Animation for engineering is very different from
traditional animation for entertainment. We do
not require realistic images and we cannot af­
ford the cost, or the time, for their produc­
tion. At the same time, there are other require­
ments which must be met. Firstly, it must be
possible, in an engineering animation, to iden­
tify, unambiguously, each separate, mechanical
part in a scene. Secondly, the animation must be
produced quickly: ideally, in real-time.

As an attempt to satisfy these requirements, a
new engineering animation system called ANlMEN­
GINE has been implemented. To achieve clear
visual identification of objects, we mark each
of them with a unique, characteristic color or
texture. For fast production and almost real­
time display, we use a combination of on-line
video display and recording. Algorithms have
been developed for hidden surface removal with
moving objects and a special, geometric model,
the "template model" has been used to facilitate
the production of scenes using many similar ,
common parts.

KEYWORDS: engineering animation, animation sys­
tem design, interactive video, simulation, hid­
den surface removal

INTRODUCTION

Animation is one of the best ways to visu­
alize the movement of an object. It suits not
only entertainment but also flight simulation
[1] or crash simulation [2]. Moreover, in the
area of computer integrated manufacturing(CIM),
an animation is very useful for engineering
design, especially, as a means of communicating
the results of assembly simulation.

ANlMENGINE is an animation system for en­
gineering, and it aims to help designers to find
and solve, the problems encountered in the
design process with a superior man/machine in­
terface, that is, an engineering animation. In
contrast with costly and realistic image­
oriented entertainment animation, an engineering

animation system needs to meet the following re­
quirements:

1. Exact and Unambiguous Display of Objects:

Objects in engineering animation are parts,
modules, and units 'of production and assembly
machines such as robots. It must be possible
to distinguish the different objects in a
picture unambiguously. So the style of
display must make this possible. This is more
important than making the pictures realistic.
Also, the parts must look solid. Line draw­
ings do not convey the impression of solid
working parts. For an engineer to gain an
understanding of the three dimensional motion
of the animation, it is much easier if the
pictures have a solid appearance.

2. High-speed and automatic production of en­
gineering animations:

An engineering animation is also a way of
communicating between designers, engineers,
and producers. It needs to be produced as
fast as possible so as to encourage their
communication.

In addition, engineering animations are usu­
ally produced by designers who are not pro­
fessional animators. For this reason, an en­
gineering animation system should work au­
tomatically.

3. Lower Host Dependency and Cost Saving:

An engineering animation system must be con­
stantly available during the design process.
There is little point in having a fast system
if you have to wait to use it. Typically,
several work stations will share a central
host computer and these must not put too
large a load on the host. The work stations
should be inexpensive too.

THE DESIGN OF ANIMENGINE

Based on the three requirements of the pr e­
vious section, we made the following des ign de­
c i sions for ANlMENGINE.

Graphics Interface '85

1. Since a vector display works faster than a
raster display, it is better for animation.
In spite of this, we selected a raster
display because we needed to display solid
areas of color and patterns to make the com­
ponents of our pictures identifiable, re­
quirement 1 (above).

2. High-speed production of animation needs a
high-speed display. A real-time animation
system is ideal, but hardware for a real-time
raster graphics animation system is too ex­
pensive, requirement 3. Instead, we decided
to use an interactive video display combined
with a video recorder. The designer can see
his animation a frame at a time and record
each frame for later display as a smooth ani­
mation. This system configuration produces
frames fairly quickly, several frames per
minute, and the designer can get a good im­
pression of what the animation will look like
as it is produced. We call this "pseudo
real-time animation". We prefer video tapes
to film because we can see the animation play
back immediately and we do not need the very
high definition of film.

3. In order to achieve the lower host dependen­
cy, we need to utilize an intelligent graphic
device. If the device has a segment buffer
and enables us to shift, rotate, and scale
the figures up and down with simple commands,
we can construct an engineering animation
system which is practicable even if the con­
nection with the host and the graphic device
is only a low-speed serial interface, for ex­
ample : a local area network.

For the internal data of the intelligent
graphic device, three dimensional data are
preferable, but two-dimensional , intelligent
graphic devices are useful, too. This comes
from the fact that much of the motion we wish to
display is parallel motion combined with simple
rotation and this can be done with a two­
dimensional display.

If the movements of the displayed objects
are parallel and the projection is a parallel
projection or oblique projection, then we can
treat shifting (translation) of an object in the
three-dimensional object space as shifting in
the two-dimensional projected plane. The case
of parallel projection is shown in Fig. 1. The
projection of an object M which is shifted by
(x ,y, z) in the object space is the same as the
projection of M shifted xP. +yPy +zpz in the pro­
jected plane, where P. , Py , Pz are projections
of unit vectors in the object space. According­
ly , we decided to employ a two-dimensional
graphic device and to adopt parallel projection,
especially, axonometric projection. This means

- 84 -

that for parallel motion we need only transmit a
projection of an object's shape to the work sta­
tion once, and the animation can be produced lo­
cally. Of course, in the case of rotating ob­
jects we have to transmit a different projection
for each frame. As a matter of fact, most of
the rotations can be treated easily by "template
models" described later.

z

· . · . · . . .
<0,0,1) •

\ ~ \ . . .
\<0,1,0)' \ \

,0) J)"'" p& \ \ . \

,\ " \
\, \ \ \

\ ,
... Py
p" •

Fig .I. Parallel motion in the object space and
parallel motion in the projected plane

y

The hardware of ANIMENGINE is shown in Fig.
2. The host computer is VAX 750 running UNIX.
The graphic device is YAMAHA GC-lOO with 752x480
pixels. It can put out RGB signals whose timing
matches NTSC(RS-170A) signals, and with a PHO­
TRON ENCODER/DECODER ED-IOOO, we can get NTSC
video signals directly from the GC-lOO .

We are using a Japan Victor U-matic video
tape recorder . Ideally, the video tape recorder
should be controlled by the host. For the mo­
ment, we are using a MSX personal computer with
a Japan Victor time lapse unit as a video device
controller and recording each picture at re gular
intervals frame by frame.

The software of ANIMENGINE consists of
three units, called Global Controller, Display

Graphics Interface '85

Manager, and Recording Manager (Fig. 3). Global
Controller manages the whole system and it has
interfaces with other systems and users.
Display Manager is computer graphics display
software and it has interfaces with Object Data­
base, Movement Database, and Template Database.
Object Database contains the shape data of
displayed objects and Movement Database contains
data which describes their positions and motion.
In a working application these databases would
also be shared by other systems, for example, a
computer aided design system and a strength
simulation system. There is another database
called Template Database, described later.

I HOST COMPUTEIt I Vu. 750(UNIX)

I
I
I GRAPIIIC INSTRUCT I IONS
I AND DATA ,

MSX PERSONAL YAlfAHA
COMPUTER WITH GiAPHIC CONTROLLER
J~AN VICTOR GC-lOO
TIME LAl'SE UNIT

aGB SIGNALS
CONTROL
SIGNALS PHOTRON

ENCODER/DECODER
EO-1OOO

NTSC SIGNALS

I J~AlI
VIDEO

VICTOIl U-HATIC I
~E IlECOIlDER

Fig.2. ANlMENGINE hardware configuration

Fig.3 . ANlMENGINE system architecture

- 85 -

Recording Manager controls recording and
reports at the end of each frame, but because of
the restrictions of existing hardware, described
above, Recording Manager is only a time keeper.

COLORS, TEXTURES, AND SYMBOLS

As described in the first section, an en­
gineering animation must have a solid appearance
in order to help designers to recognize the
shape, position, and direction of displayed ob­
jects. ' Methods of g~v~ng computer generated
pictures a solid appearance are, for example,
ray-tracing, shading, making distant objects
darker and/or more obscure [2, 3], and the use
of texture.

Now, in our case, Ray-tracing is unsuitable
because of the amount of computation required.
Since distant objects are often important in an
engineering animation, we cannot make distant
objects darker and/or more obscure. ANIMENGINE
uses shading and texture to produce a solid ap­
pearance.

For shading, we use a diffuse reflection
model with parallel illumination [4] owing to
its simplicity. Consequently we need not change
the colors of objects while they are moving in
parallel in the object space. Colors of each
object are not the same as those in the real
world but decided from a characteristic color
unique to each object and a shading effect.
This makes identification of each object easier.
Characteristic textures are also used for the
same purpose .

ANIMENGINE can display symbolic marks
and/or additional lines. Symbolic marks are
used to express the positions of small holes or
unseen points. Additional lines can represent
the directions of movements or the center lines
of shafts.

ANIMENGINE does not support anti-aliasing.
This is because pictures of NTSC signals are
less clear than RGB signals and anti-aliasing is
unnecessary.

DRAWING EDGES

In engineering animation, it is important
to recognize the edges of displayed objects.
Edges of shaded objects are identified by sharp
changes in color. It sometimes the case that
two surfaces of different normal vectors are
painted almost the same color. Considering this
and similar cases, the designers wish to dr aw
the edges themselves.

Graphics Interface '85

Drawing edges has three advantages:

1. Edges of visible surfaces make the shape of
an object clear.

2 . Edges of hidden surfaces enable us to recog­
nize the whole shape.

3. If an object is represented as a set of po­
lygons. some of the edges form an outline of
the projection of the object. Also in this
case. drawing edges can be useful in the
identification of objects.

For this reason. ANIMENGINE has a function
for drawing edges. It is interesting to note
that when we use ordinary boundary representa­
tion. for example. winged edge data structure
[5]. it is difficult to distinguish boundary
edges worthy of being displayed from useless
ones.

A solid with a hole is shown in Fig. 4. If
the holed face ABCD-EFGH is represented as two
surfaces . that is. the hexagons ABCGFE and
AEHGCD. then drawing all the boundary edges
results in drawing two line segments AE and CG.
They are not only useless but harmful.

c

Fig . 4. A solid with a hole

Another example is given in Fig. 5. It is
clear that a number of rectangles represent the
curved surf ace. We don't have to draw edges
between such rectangles. (When wire frame
models are drawn, such edges are useful. In our
case, however, it is important to recognize
"sharp" edges.)

- 86 -

We thought that the visibility of the boun­
dary edge should depend on the angle between two
surfaces which share the edge. So we adopt the
following algorithm.

ALGORITHM EDGE_VISIBILITY_DECISION(E)
begin

(* Symbols PFACE and NFACE are used as defined
by Baumgart [5] *)
vp <- normal vector of PFACE(E);
vn <- normal vector of NFACE(E);
vp <- vpllvp I;
vu <- vnllvnl;
if(vp.vn<I-C) then

end

set E visible;
·else
set E invisible;

This can decide the visibility of each
edge. This is not enough . We need another algo­
rithm to avoid losing profile lines.

ALGORITHM MAKE_PROFILE_LINE_VISIBLE
(* El •• • •• En are all the invisible edges . *)
begin

for i-I to n
begin

vp <- normal vector of PFACE(E i) ;
vn <- normal vector of NFACE(E I) ;
vv <- normal vector of projected plane ;
if«vp.vv)*(vn .vv)<~) then

end
end

set E visible ;

Fig. 5. A so lid wi t h an ap proximated cur ved surface

Graphics Interface '85

HIDDEN SURFACE PROBLEM IN A DYNAMIC ENVIRONMENT

Hidden surface removal [6] is usually done
with a static environment and a static view­
point. If we apply it to an animation, it takes
a lot of time because it is necessary to repeat
the calculation for each picture.

A method of decreasing the amount of compu­
tation for each picture with appr'opriate prepro­
cessing has been reported [7]. It is only for a
static environment and a dynamic view-point for
such applications as flight simulation. Con­
versely we want to remove hidden surfaces in a
dynamic environment with a static view-point.
Therefore we thought that global hidden surface
removal should be done. "Global" means ' that
hidden surface removal of several frames is done
at the same time. Our algorithm is based on the
painter's algorithm [4], to make the most of the
intelligent functions of graphic devices. We
paint each scene from back to front so that hid­
den surface removal becomes a matter of deciding
in which order to draw each face. Our algorithm
deals with objects only in parallel and uniform
motion.

x

Fig . 6. Interference detection over time t

The most important point of this algorithm
is to determine whether or not the projections
of two faces intersect each other in the pro­
jected plane within a given period. Th i s is
equivalent to i nterference detection between two
oblique prisms in the three-dimensional spa ce
composed of two axes in the projected plane and

- 87 -

a time axis. In Fig. 6, two oblique prisms
represent the motiQn of the projections of two
faces over a time t. If the two oblique prisms
intersect each other then the projections of the
two faces intersect each other within the time
t. If we compute in the three-dimensional
space, we can decide whether they intersect each
other or not. This is the most general method
but inefficient for an engineering animation.

Accordingly, we want to compute in the pro­
jected plane. One of the alternative ways is to
examine the loci of the projections of the two
faces (Fig. 7). If the loci do not intersect
each other, the projections do not intersect
within the given period. The converse is not
true. The loci can intersect although the pro­
jections of the objects do not interfere. We can
use this test only for preprocessing.

y

x

Fig . 7. Interference detection by loci of two pro j ections

Now, objects of engineering animation are
mainly rigid ones. In parallel motion , faces of
rigid objects do not change the shape of their
projections. If we take a new origin of coordi­
nates from a fixed point in one of the object's
projections, the motion of the other object's
projection in the new coordinates will be a
difference of the original two motions. The
projection of the first object intersects the
locus of the projection of the second object in
the new coordinates if and only if the original

Graphics Interface '85

two loci intersect (Fig. 8). The algorithm fol­
lows.

ALGORITHM
GLOBAL_DEPTH_BUFFER_OF_TWO_SURFACES(A.B)
begin

ta <- end of the current parallel and uniform
motion of A;
tb <- end of the current parallel and uniform
motion of B;
tmin <- min(ta.tb);
split A into triangles At.Az ••••• Ak;
split B into triangles Bt .Bz ••••• Bl ;
for i-I to k

for j-l to 1
GLOBAL DEPTH BUFFER OF TWO TRlANGLES(Aj .Bj
); - -

end

ALGORITHM
GLOBAL_DEPTH_BUFFER_OF_TWO_TRlANGLES(P.Q)
begin

LQ <- locus of Q in the relative coordinate;
split LQ into triangles LQ, ••••• LQm;
for i-I to m

end

if(P and LQj intersect) then
begin

set priority between P and Q until tmin;
break;

end

y

x

Fig.8. Interference detection by loci of two projections
in the relative coordinates

This methodology can also be applied to the
interference/collision detection of moving rigid
objects in three-d imensional space [8. 9. 10].

TEMPLATEl:!Q!llib.

ANIMENGINE adopts boundary representation
as its figure model. It is a general and advan-

- 88 -

tageous model for animation. It is not always
appropriate to have boundary representation data
for all objects. For example. shafts. rings.
bolts. nuts. and screws appear quite frequently
in an engineering animation. They have the same
shape within a particular type of part and only
the sizes differ from one to another.

Just as a template is used. when drafting.
to draw figures which often appear but are hard
to draw. so ANlMENGINE enables us to specify
regular parts as "template models".

A template model consists of the the part
name and a list of numbers to specify its size.
and when the template model is drawn. drawing
information in Template Database is used . Gen­
erally. drawing information in Template Database
does not include solid models or full specifica­
tions of the shape in three-dimensional space.
It only provides rules for drawing . Therefore
invisible 'back' surfaces can be omitted .

Two examples of template rules for drawing
a cylinder are shown in Fig. 9. Fig. 9 (a) is
with shading effects on the curved surface and
Fig. 9 (b) is without shading. Note that the
back faces are not considered. Whether Fig. 9
(a) or (b) is adopted is determined by the entry
in Template Database.

,- IL

,/

A
Ju
Ju

B

(a) With shading effect

, , .
\ , , B
I , , , , , ,

(b) Without shading effect

)

begin
for i - I to 11

draw Ai;
draw B;

end

begin
draw A;
draw B;
(* A and B have
the same color
draw C;

end

Fig.9. Template rules for drawing a cylinder

*)

Template models have another advantage. for
handling object rotation. For example. when a
shaft. specified as a "template model". rotates
around its cent er line. it need neither be
redrawn nor does it require its shape data
transferred from the host computer. This is be-

Graphics Interface '85

cause its rotation does not change the way it is
drawn. Note that the way in which the template
is designed is important here. Suppose a shaft
is defined by an inappropriate boundary
representation, say a polygonal approximation,
the view of its boundary differs after rotation
(Fig. 10). So it becomes necessary to redraw
its shape repeatedly during its rotation. What
is even worse, is that in this case, the shape
data would be transmitted from the host, repeat­
edly.

(a) Before rotation (b) After rotation

Fig.IO. Rotation of a ahaft specified
by the polygonal boundary representation

EXAMPLES

Fig. 11 is a simulation of assembling a
copy machine. Each module is identified with
its characteristic colors and a robot hand and
its arm, gripping a drum module are identified
with a texture. Two sets of three red triangles
are symbolic marks. The right-hand set
represents the positions of screws on a drum
module and the left-hand set is the correspond­
ing positions on a base module. Edges of hidden
surfaces help to represent the whole shape of
each module.

Fig. 12 is a simulation of setting rings
onto a shaft. The shaft and the rings are de­
fined as a template model. Additional lines in­
dicate the cent er line of the shaft.

CONCLUSION AND FUTURE ~

ANlMENGINE satisfies our requirements for
engineering animations, that is, exact and unam­
biguous display of objects, high-speed and au­
tomatic production of engineering animation, low
host dependency and modest cost.

The presentation of colored and shaded
areas needed for easy identification of picture
components is a requirement which conflicts with
the need for fast display. We have used a novel
method for hidden surface removal which enables

- 89 -

us to produce displays of sufficient quality,
fast enough to be of practical use.

There is room for improvement in the fol­
lowing points.

1. Our method for hidden surface removal cannot
deal with cyclic overlap now. This we hope
to correct soon.

2. Engineering animation needs exact display.
When the displayed objects are too complicat­
ed, it should be possible for the system to
simplify them automatically when the detail
is not required.

3. There are some characteristics of engineering
which make the job of animation simpler than
in a more general context. We have tried to
take advantage of this by means of our "Tem­
plate model". There may be other such
characteristics which can be exploited.

4. We are now utilizing a frame-by-frame video
tape recorder, but a video tape recorder
needs several seconds for prerolling. In
order to relieve this bottle-neck, for exam­
ple, we could use a video disk recorder.

ANIMENGINE is a growing system and the
developed system will be described in a succeed­
ing paper.

ACKNOWLEDGEMENTS

This work was partially supported by Nippon
Gakki Co., Ltd., Ricoh Co., Ltd., and Japan Vic­
tor Co., Ltd. Prof. Geoff Wyvill's critical
comments and review were useful to brush up the
paper.

UNIX is a trademark of AT&T.

MSX is a trademark of MICROSOFT .

REFERENCES

1. B.J. Schachter, "Computer Image Generation
for Flight Simulation," IEEE CG&A, Vol.1,
No.4, Oct. 1981, pp.29-68.

2. N.I. Badler, J. O'Rourke, and H. Toltzis,
"A Spherical Representation of a Human Body
for Visualizing Movement," Proc. IEEE, Vol.
67, No. 10, Oct. 1979, pp. 1397-1403.

3. K. Yokokawa, and T.L.
of Neighborhood of
Processing," Computer
Processing, Vol. 14,
112-144.

Kunii, itA Definition
a Region for Picture
Graphics and Image

No . 2, Oct. 1980, pp.

Graphics Interface '85

4. S. Harrington. Computer Graphics --- A Pro­
gramming Approach. McGraw-Hill. 1983.

5. B.G. Baumgart. "A Polyhedron Representation
for Computer Vision." AFIPS Conf. Proc.,
Vol. 44. May 1975, pp. 589-596.

6. I.E. Sutherland. R.F. Sproull, and R.A.
Schumacker. "A Characterization of Ten
Hidden-Surface Algorithms." Comput. Sur­
veys, Vol. 6. No. 1. March 1974, pp. 1-55.

7. H. Fuchs. Z.M. Kedem, and B.F. Naylor. "On
Visible Surface Generation by a Priori Tree
Structures," Computer Graphics, Vol. 14,
No. 3, July 1980, pp. 124-133.

8. P.G. Comba. "A Procedure for Detecting In­
tersectioLs of Three-Dimensional Objects,"
JACM, Vol. 15, No. 3, July 1968. pp. 354-
366.

9 . J .W . B·..Iyse, "Interference De t ection Among
Solids and Surfaces." CAO!. Vol. 22, No. 1 ,
Jan. 1979 . pp. 3-9 .

10 . D.M. Esterling. and J. V~n Rosendal~ . '~n
Intersection Algorithm for Moving Parts."
Computer-Aided Geometry Modeling (NASA
Conf . Publication .2272), April 1983. pp .
129-133 .

- 90 -

Graphics Interface 'S5

Fig.ll A simulation of assembling a copy machine

Fig.12 A simulation of setting rings onto a shaft

