
- 91 -

3D COMPUTER ANIMATION: MORE AN EVOLUTION PROBLEM THAN A MOTION PROBLEM 

N. Magnenat-Thalmann, D. Thalmann 

MIRA Lab. HEC/IRO, University of Montreal, Montreal, Canada. 

ABSTRACT 

3D computer animation is too often restricted 
to very simple motions: e.g. logo rotations 
or camera motions around a 3D reconstructed 
object. Enormous effort is devoted to image 
rendering, but little to the motion itself. 
In fact, research in computer animation needs 
to look beyond the mere creation of motion 
towards the evolution of state variables over 
time according to appropriate laws. We call 
this "the evolution problem". In this paper, 
we show how new evolution laws may be intro
duced into an animation system. Several exam
ples are discussed: collisions, brownian 
motions, chaotic attractors and models based 
on simultaneous differential equations. All 
examples are presented using the ex tensible 
director-oriented animation system MIRANIM. 

RESUME 

L'animation tridimensionnelle par ordinateur 
se limite trop souvent a des mouvements tres 
simples comme des rotations de logos ou des 
mouvements de cameras autour d'objets cons
truits par digitalisation. Un effort consi
derable est investi pour rendre les images 
realistes, mais peu d'effort est cons acre au 
mouvement proprement dit. En fait, la recher
che en animation par ordinateur a besoin de 
depasser le simple stade de creation de mouve
ments pour mieux etudier l'evolution dans le 
temps des variables d'etat; ce que nous appe
Ions "le probleme de l'evolution". Dans cet 
a rt i cle, on montre comment de nouvelles lois 
d'evolution peuvent etre i ntroduite s dans un 
systeme d'animation . Plusieurs exemples sont 
pres entes : collisions, mouvements browniens, 
a ttracteurs chaotiques e t modeles bases sur 
de s s ystemes d'equations differentielles. 
Tous les exemples sont formules a l'aide du 
sys t eme d'animation ex t ens ible HIRANIM qui 
es t ded ie au realis ateur . 

INTRODUCTION 

Three-dimensional computer animation has 
become more and more popular. Every com
puter-generated film or sequence is considered 
as very exciting and innovative. In fact, 
computer animation is an innovative technique 
based on old-fashioned methods, especially 
kinematic laws. Most of the special effects 
used in advertisements are centred on combi
nations of translations, rotations and other 
matrix-based operations. Other effects, 
generally considered as spectacular, are 
based on the so-called interpolation technique. 
In fact, three-dimensional computer animation 
systems can be divided into two categories: 

1. scripted systems 

These systems are mainly based on the 
Mudur and Syngh [1] axiom, although some were 
designed before this theory was developed . 
They consist of the description of objects 
with a list of associated transformations '. 
Animation is often limited to trivial trans
formations: i.e. rotations and translations 
of objects; however, some interesting effects 
may be generated using procedural models con
trolled by a few external parameters. Typ i 
cal systems of this kind are ANIMA 11 [2] , 
ASAS [3] , MIRA [4], CINEMIRA [5 ] , and the 
SKELETON ANIMATION SYSTEM [6]. 

2. key-frame systems 

Although mainly devoted to 2D compute r
assisted animation, key-frame systems may 
also play an important role in 3D a s dis cussed 
by Sturman [7]; typical 3D key-frame s ystems 
are BBOP [8] and MUTAN [9] . 

In our view, it is unfortunate that mo s t 
computer animation is limited to the s e two 
main areas. The spectacular effec ts of com
puter-generated scene s is not due to the ir 
animation but to the image r ende ring phase . 
This i s no t surpris i ng . because the image 
r e nde ring phase has been the focus o f mo r e 

Graphics Interface '85 



than 10 years of research; every year, new 
image synthesis algorithms are presented and 
a high degree of realism can be achieved, 
although the methods used are still very expen
sive (e.g. ray-tracing techniques). However, 
one may ask whether the rotation of a virtual 
camera around a 3D reconstructed object with 
several light sources, texture and shadows is 
worthy of the term computer animation. Is 
computer animation merely able to show a metal
lic logo moving across the screen with two 
rotation movements? 3D computer animation is 
generally described [10] as composed of three 
phases: 

object modelling 

object and camera motion 

image rendering 

The second step should be the most impor
tant. If only the first and third steps are 
considered, we should not call this computer 
animation. There is a great deal of litera
ture on object modelling, and image synthesis 
is a major area of research. But papers on 
object and camera motion are very rare. Of 
course, papers describing computer animation 
systems and languages may be easely found [11]. 
However, most of them do not introduce any new 
theoretical ideas on motion. Many of them 
discuss shading and shadow problems. One 
significant paper which is for us the most 
important paper on computer animation in the 
last five years should be noted however. 
This paper is not very innovative in terms of 
the image synthesis technique which is quite 
simple, but it describes motion and transforma
tions based on evolution laws. This is the 
Reeves [12] paper on particle systems . It 
should also be mentioned that several authors 
[13, 14] suggest taking forces into account 
in computer animation. This is certainly a 
step in the right direction, but the approach 
is still very classical and may be assimilated 
into a list of transformations applied to 
objects. 

We believe there is a paradox here: 
computer animation is more popular than ever; 
but computer animation research is in a blind 
alley. 

We believe that the main reason for the 
relative weakness of computer animation theory 
is that animation is defined as the essence 
of movement. Animation is therefore viewed 
as a problem of creating motion. This is not 
wrong i n itself. However, motion implies more 

- 92 -

than a single list of image transformations 
or a concatenation of matrices. What is im
portant in a rotation is not so much the 
rotation itself, but how the angle of rotation 
evolves over time. It is true that linear 
and cosinusoidal variations are often ade
quate. The fact that so many effects may be 
generated with these simple laws partly ex
plains why innovations in animation are so 
rare. 

HOW CAN NEW LAWS OF EVOLUTION BE INTRODUCED 

We shall use some examples based on our 
extensible director-oriented system MlRANIM 
[15] to explain how new laws of ev~lution can 
be introduced into computer animation. The 
system is mainly based on three components: 

1. The object modelling and image synthesis 
system body-building . 

2. The director-oriented animation editor 
ANIMEDIT. 

3. The actor-based sub language CINB1IRA-2. 

ANIMEDIT, when used by non-programmer anima
tors is basically a scripted system based on 
the Mudur and Syngh approach. The director 
designs a scene with actors, cameras and mul
tiple lights. Each of these entities is 
driven by animated variables, which are in 
fact, state variables following evolution laws. 
These laws are predefined and may be chosen 
from among a linear law, cosinusoidal accel
eration and deceleration, circular motion, 
gravity etc •.. Although we have introduced 
less common laws like fuzzy laws, this is 
still limitative for the creator . CINEMlRA-2 
allows the director to use programmers to 
extend the system. The great advantage of 
this is that the system is extended in a user
friendly way. This means that the director 
may immediately use the new possibilities . 

It is essential that any new evolution 
law be defined in such a way that it may be 
applied to any state variable as follows: 

in CINEMlRA-2: 

law INNOVATIVE(Pl,P2 :T):VECTOR; 

begin 

INNOVATIVE:=f(Pl,P2,CLOCK) 

end; 

Graphics Interface '85 



in ANIMEDIT: 

VECTOR VAR,A,O,O,O 

LAW PROCEDURAL, INNOVATIVE 

EVOLUTION VAR,INNOVATIVE,O,lO 

A STRATEGY FOR DESIGNING EVOLUTION LAWS 

The problem in the design of evolution 
laws is to find a way of expressing them ana
lytically: 

e.g. INNOVATIVE:=f(Pl,P2,CLOCK) 

Our strategy in CINEMIRA-2 is based on the 
following principle: if laws may be expressed 
analytically, we program a single law. If the 
evolution law is only expressed as a function 
of a previous state, we merely store values 
as global variables and the evolution law then 
gives a value computed from the global varia
bles. The more general case occurs when evolu
tion laws are modified during the animation 
process. This is generally not possible in 
current animation systems. We implement this 
as follows: 

1. We initialize the animation system in the 
main CINEMIRA-2 program. 

2. We define procedural objects, to initialize 
global state variables. 

3. We define animation blocks which modify 
these global state variables at each frame. 

4. We define evolution laws which depend on 
the global state variables. They compute 
values that depend on the value of the 
state variables which are accessed by the 
blocks during the animation process. 

With this strategy, an evolution law may 
be completely changed at any time (and conse
quently at any frame). 

EXAMPLES 

1. Collision of bodies 

Assume we have two moving objects with 
masses M1 and M2. We may describe this by 
defining two actors BODYl and BODY2. A single 
movement is assigned to each one by using: 

ACTOR BODY1, OBJ1 

ACTOR BODY2, OBJ2 

MOVE BODY1, POS1 

MOVE BODY2, POS2 

- 93 -

A very simple way of defining POSl and 
POS2 is to use a linear law. For example: 

VECTOR POSl,A,-lOO,-lOO,O 

LAW LIN,2 

EVOLUTION POS1,LIN,0,10 

We now take into account the law of con
servation of momentum and compute the colli
sion if this occurs. We do not change the 
transformations associated with the actors 
BODYl and BODY2. But a COLLISION law must be 
programmed. In fact, this law is not easy to 
implement and it consists (at present) of 400 
lines of CINEMIRA-2 source code. The law 
heading is: 

law COLLISION(M1,M2:REAL;P1,P2,SPl,SP2: 

VECTOR;COLLITYPE:INTEGER):VECTOR ; 

begin 

end; 

This law returns the position of the second ~ 

body at any time before or after a collision; .,:' 
Ml and M2 are the two masses, PI and P2 are "' 
the two initial positions and SPl and SP2 the 
two initial speeds; COLLITYPE allows the type 
of the collision to be selected as elastic or 
inelastic. 

This law must then be applied to the 
animated variables driving the motion of both 
bodies: 

LAW COLLIl,COLLISION 

3,1,-100,-100,0,141.4,0,0,25,25,0,-35.3 , 0,0,1 

LAW COLLI2,COLLISION 

1,3,141.4,0,0,-100,-100,0,-35.3,0,0,25,25,0,1 

EVOLUTION POS1, COLLIl,0,10 

EVOLUTION POS2,COLLI2,0,10 

where 

Ml=3, M2=1, P1=< -100,-100,0> 

P2=<141.4,0,0> SPl=<25 ,25,0> 

SP2=<-35.3,0,0> COLLITYPE=l (Elastic) 

This law functions well, as we have 
checked using the real-time play-back imple
mented in our animation system [15]. 

Graphics Interface '85 



2. The Henon chaotic attractor 

The Henon chaotic attractor [16) has re
cently been made more popular because of its 
relationship with fractal measures [17). The 
Henon map is defined as: 

2 
xi+l 1 + Yi - axi 

Yi+l bXi 

Xo and Yo may be chosen independently. 

This means that the map is two dimensional. 
However, when the map is iterated, the se
quence of iterations appears to lie on what 
looks like a very tangled curve. The attrac
tor is apparently thicker than a curve, but 
not thick enough to be two dimensional. It is 
then a fractal as defined by Mandelbrot [18). 

Such a chaotic attractor may be defined 
as a law in CINEMIRA-2, which could for exam
ple be applied to a particle system. The law 
is defined by the following program: 

program CHAOTIC : 

var VCURR:VECTOR; 

FLAG: BOOLEAN; 

law HENON(A,B:REAL; VO:VECTOR): VECTOR; 

var HEN:VECTOR; 

begin 

if FLAG then 

begin 

end 

HEN: =«PROJY(VCURR)+1 

-A*SQR(PROJX(VCURR)), 

B*PROJX(VCURR»> 

VCURR:=HEN; 

HENON:=HEN 

else 

begin 

HENON:=VO; 

VCURR:=VO; 

FLAG:=TRUE 

end 

end ; 

begin 

FLAG:=FALS E 
end. 

- 94 -

3. Simple brownian motion 

A very simple model of brownian motion 
[19) may be described as follows: 

When a small particle is immersed in a liquid, 
it can be seen under a microscope to move in 
a zig-zag motion. In our model we assume that 
a particle moves along three one-dimensional 
lines (along the axes X,Y and Z) where it may 
hop from one point to one of its two neighbor
ing points with equal probability. To obtain 
a law which gives the position at any time of 
a particle with such a motion, we have to 
store a global state variable for each parti
cle. These variables are modified by an 
animation block and the law then merely gives 
the current position by accessing the state 
variables. In CINEMIRA-2, this takes the 
following structure: 

program BRMOTION; 

~ STATE:array[l •. MAXPART) of 

record 

POSITION:VECTOR; 

end; 

law BROWNIAN(PARTN:INTEGER) :VECTOR; 

begin 

BROWNIAN:=STATE[PARTN) . POSITION 

end ; 

block UPDATE; 

begin 

(* updates the particle position *) 

end; 

begin 

(* initialize t he particle position *) 

end. 

4. Evolution laws based on differential 
equations. 

Many complex motions are exactly des
cribed by simultaneous differential equations. 
An analytical solution is generally impossible 
to obtain. Instead of approximating the 
motion by a series of rotations and transla
tions, which may be very difficult to find, 
it is better to use the original equations. 
For example, consider the classical pilot
ejec tion problem [20). We have to dete rmine 
comb i nations of aircraft velocity and air 
density which will enable an ej ec ted pilot to 

Graphics Interface '85 



miss his aircraft's vertical stabilizer; high 
aircraft velocity and low altitude will pre
vent successful ejection. The equations are: 

dX/dt 
dY/dt 
dV/dt 

v cos(theta)-VA 
V sin(theta) 
o for 0 s Y < YI 
-D/M-G sin(theta) for Y ~ YI 

d(theta)/dt 0 for 0 ~ Y ~ YI 

D 

= -(G cos(theta»/V 
for Y ~ YI 

(RHO*CD*V)/2 

where VA is the aircraft velocity 
M is the mass of pilot plus seat 
G is the gravitational constant 
D is the drag force 
CD is the drag constant 
Yl is the length of ejection rails 
RHO is the air density 
X,Y are the trajectory coordinates to be 
obtained and theta is the angle to the 
vertical. 

To solve such a problem and obtain the 
solution in the form of analytical evolution 
laws, we have designed a general CINEMlRA~2 
program which solves differential equations 
using three methods: Euler, modified Euler 
and Runge-Kutta (order 4). The program looks 
like this: 

program CONTINUOUS; 
const 

MAXSTATE=20; 
MAXPAR=20; 
MAXDERIV=20; 
~ 

STATE=array[I •• MAXSTATE] of REAL; 
PARAM=array[l. .MAXPAR] of REAL; 
DERIV=array[I •. MAXDERIV] of REAL; 

var 
Y:STATE; (*state variables*) 
P:PARAM; (*equation parameters*) 
G:DERIV; (*differential equations*) 

procedure DIFFEQ; 
(*defines the differential equations 

under the form: G[I] :=f(Y[J] ,P[K]) 
should be provided by the user *) 

end; 

procedure INITSIMULATION; 
(* defines the values of the parameters P[K] 

and the initial values of the state 
variables Y[J], the integration method, 
the time scale *) 

end; 
pr;cedure EULER; 
end 
~cedure EULERMODIFIED; 
end 
pr;cedure RUNGEKUTTA; 

- 95 -

end; 
block SIMULATION; 
--z;responsible for the integration of the 

equations and for calculating the values 
of state variables at the current time*) 

end; 
law RESULT:VECTOR; 

(*several laws may be defined by the user 
in order to obtain the values of state 
variables*) 

end; 

begin 
INITSIMULATION 

end. 

When the user has defined the equations, 
the initial conditions and the laws required, 
the extended ANIMEDIT system is used as follows: 

LAW NEW,RESULT 
EVOLUTION VAR,NEW,O,IO 

BLOCK SIMULATION,O,IO 

OTHER EXPERIMENTS 

We are also attempting to use this strat
egy to add particle systems to our MlRANIM 
system. Systems may be initialized by proce
dural objects and are then updated by animati~n 
blocks, and the laws may return any state 
variables. For example, we may obtain the 
position of the center of a particle system 
and consider it as the interest point for the 
camera. The only problem is that we cannot 
use the normal display algorithm. One way of 
solving the problem is to invoke a special 
display procedure in the animation block; 
however this solution is not very satisfactory , 
because it cannot be combined with other 
objects . 

Other projects involve the modeling of an 
explosion; positions of any part of an object 
destroyed by an explosion will be accessed by 
an evolution law; this will allow, for exam
ple, the possibility of viewing an explosion 
from a part of the exploded object . 

CONCLUSION 

The possibility of defining any evolution 
law within an animation system may provide 
many new possibilities for motion, thus break
ing with the traditional approach using only 
matrix operations. We are at an experimental 
stage with such capabilities. However, we 
believe that far more complex motions may be 
generated with this approach. 

Graphics Interface '85 



ACKNOWLEDGMENTS 

The authors are grateful to Ann Laporte 
who has revised the English text. This work 
was sponsored by the Natural Sciences and 
Engineering Council of Canada. 

REFERENCES 

[1] Mudur, S.P. and Singh, J.H., "A Notation 
for Computer Animation", IEEE Transac
tions on Systems, Man and Cybernetics, 
Vol. SMC-8, No. 4, 1978, pp. 308-311. 

[2 ] Hackathorn, R., .. ANIMAII: a 3-D Color 
Animation System", Proc. SIGGRAPH '77, 
pp. 54-64 . 

[3] Reynolds, C.W., "Computer Animation with 
Scripts and Actors", Proc. SIGGRAPH'82, 
pp. 289-296. 

[4] Magnenat-Thalmann, N. and Thalmann, D., 
"The Use of 3D High-level Graphical 
Types in the MIRA Animation System", 
IEEE Computer Graphics and Applica
tions, Vol. 3, No. 9, pp. 9-16. 

[5] Thalmann, D. and Magnenat-Thalmann, N., 
"Actor and Camera Data Types in 
Computer Animation", Proc. Graphics 
Interface '83, pp. 203-210. 

[6 ] Zeltzer, D., "Representation of Complex 
Animated Figures", Proc. Graphics 
Interface '82, pp. 205-211. 

[7 ] Sturman, D., "Interactive Keyframe 
Animation of 3-D Articulated Models ", 
Proc . Graphics Interface '83, 
pp. 35-40. 

[8] Stern, G., "Bbop- a System for 3D Key
frame Figure Animation", SIGGRAPH'83 
Tutorial Notes on Computer Animation, 
Vol. 7, 1983, pp. 240-243. 

[9] Fortin, D., Lamy, J.F. and Thalmann, D., 
"A Multiple Track Animator System for 
Motion Synchronization", Proc. ACM 
SIGGRAPH/SIGART Interdisciplinary 
\.[orkshop on Motion, Toronto, 1983, 
pp. 180-186. 

[10 1 Magnenat-Thalmann, N. and Thalmann, D., 
Computer Animation , Theory and 
Pract ice , Springer-Verlag , Tokyo, 1985 . 

- 96 -

[11] Magnenat-Thalmann, N. and Thalmann, D. , 
"An Indexed Bibliography on Computer 
Animation", (submitted for publication) . 

[12] Reeves, W., "Particle Systems : a 
Technique for Modelling a Class of 
Fuzzy Objects", ACM Transactions on 
Graphics, Vol . 2, 1983, pp. 91-108. 

[13] Wilhelms, J. and Barsky, B.A., "Using 
Dynamic Analysis for the Animation of 
Articulated Bodies as Humans and 
Robots", Proc. Graphics Interface '85 , 
(These proceedings). 

[14] Armstrong, W.W. and Green, M., "The 
Dynamics of Articulated Rigid Bodies 
for Purposes of Animation", Proc . 
Graphics Interface '85, (These proceed
ings) . 

[15] Magnenat-Thalmann, N. , Thalmann , D. and 
Fortin , M. , "MIRANIM: An Extensible 
Director-oriented System for the 
Animation of Realistic Images" , 
IEEE Computer Graphics and Applications , 
Vol. 4, No. 3, March 1985 . 

[16] Henon, M., Comm. Math. Phys., 
Vol. 53, 1976. 

[17] Doyne Farmer, J ., "Dimensi on , Fractal 
Measures and Chaotic Dynamics" , Evolu
tion of Order and Chaos , Spri nger:--
Verlag, 1982, pp . 228-246 . 

[18] Mandelbrot, B., The Fractal Geometry of 
Nature, W. H. Freeman, 1982 . 

[19 ] Haken , H. , Synergetics, Springer-Verl ag, 
1977 , p . 69 . 

[20] Korn, G. A. and Wait, J.V. , Digital 
Continuous System Simulation , 
Prentice-Hall, 1978, pp . 98-103. 

Graphics Interface '85 


