
- 105 -

Towards an Inteqrated View of 3-D Computer Character Animation

David Zeltzer
The Media Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

To automate character animation and extend it

to 3-D we need to create and manipulate three­

dimensional models of articulated figures.

Abstraction and wadaptive motion are key
mechanisms for dealing with the degrees of

freedom problem, which refers to the sheer
volume of control information necessary for

coordinating the motion of an articulated

figure when the number of links is large. A

three level hierarchy of control modes for

animation is proposed: guiding, animator-level,
and task-level systems . Guiding is best suited

for specifying fine details but unsuited for

controlling complex motion. Animator-level

programming is powerful but difficult.

Task-level systems give us facile control over

complex motions and tasks by trading off

explicit control over the details of motion.

The integration of these three control levels

is discussed.

1. Animation as Simulation

Currently there is much controversy about the

nature of 3-D computer animation. Should such

systems by based on Simulation, keyframing, or

an animation programming language? Should the

interface be through graphical input devices,

or through the keyboard? It is my purpose here

to provide a conceptual framework for 3-D
computer animation in general, and character

animation in particular.

Automatic inbetweening has been the focus of

attention in moving from conventional to

computer-assisted 2-D animation [6,9]. From

this point of View, it seems a natural
extension to apply automatic inbetweening to

3-D animation, and in fact, a number of such

systems have been developed [10,18,25]. Here I

will argue that 3-D key framing belongs to the

lowest level of a three level hierarchy of

control regimes for animating articulated
figures.

In order to produce convincing character

animation, conventional 2-D animators refer

constantly to living models, or study motion

pictures of living models, on draw directly

from still frames of such motion pictures

(rotoscoping). That is, character animation is

not a process of transforming lines and shapes

on 2-D surface, nor is it simply the art of

squashing, stretching, or otherwise

exaggerating and caricaturing motion. Thomas

and Johnston [41] make quite clear that the

great success of the Disney animators was due

in large part to the long hours they devoted to

studying and observing the movements of humans

and animals in preparing for a particular

sequence. A character was successful preCisely

in proportion to how well the animator

understood the kinematics of the figure, the

structure and timing of a movement, and the

effects of a movement on soft tissue and

clothing. Once these elements were mastered

only then could the animator develop a '

character's personality by the judicious

exaggeration or de-emphasis of particular
attributes.

As long as animation requires the generation of

many drawings by hand, SimpliCity and economy

will be essential elements . 3-D computer

animation, however, is an entirely different

medium. The animator's energy is no longer

invested in drawing and the tedium of
inbetweening. Instead, the focus is on
creating an environment -- deSigning
microworlds and populating them with

interesting characters. 3-D computer animation

is thus a process of simulation in its most

general sense : the specification of objects

and transformations on objects. In this paper

we will look at the specification and

coordination of the behavior of the objects we

wish to animate. There are three basic
approaches.

(1) We can explicitly describe the behaviors

we are interested in. This is the guiding
mode.

(2) We can describe behaviors algorithmically,

~n some programming notaion. This is the
animator level.

Graphics Interface '85

Lastly, we can describe behavior
implicitly, in terms of events and
relationships. This is the ~ level.

- 106 -

For our purposes we can consider the domain of
3-D computer character animation to be the
control and coordination of the motion of
articulated structures made up of rigid links.
Differential scaling and other shape
transformations. In the next section I examine
the fundamental problem we face in trying to
coordinate the motion of articulated figures,
and we will look at mechanisms for dealing with
the complexities of figure animation. Later
we will see that the graded implementation of
these mechanisms gives the above three-tiered
hierarchy of control modes.

~ The Degrees of Freedom Problem

The essential problem of coordinating the
motion of an articulated figure is to generate
appropriate values of the joint variables that
control the positions and orientation of each
link. Joints may be modeled as lower pairs
[11], such as rotary or sliding jOints, or they
may be more complex, as in a detailed model of
the human knee. For a figure with n joints, we
can think of an n-dimensional pose space, where
we assign a coordinate axis to each of n
degrees of freedom; and an n-component pose
vector, which completely specifies a particular
configuration. To animate the motion of a
jointed figure, a pose vector must be specified
for each frame of the sequence. To animate a
minute of complex motion for a reasonably
detailed figure, say , with 30 links, tens of
thousands of values will need to be specified
for the jOint variables to display a new
configuration each frame. Even if the sequence
is keyframed, with a keyframe every two
seconds , 30 pose vecors -- nearly a thousand
values -- need to be specified . This is an
example of the degrees of freedom (DOF) problem
[42], which refers to the sheer volume of
control information necessary for coordinating
the motion of an articulated figure when the
number of links is large, as in a human figure.
It is the reason why animators find 3-D
character animation so tedious.

Of course we are not interested in random
mot i on; the movements of a figure must be
"correct" in some sense to be of any use -- the
robot programmer may wish to optimize energy
expenditure, for example, and the animator will
want the f i gure to move in some expressive
manner. Viewed in this way, character
animation is problem of search. Not only do
we have to generate pose vectOrs, we need to

find a particular set of variables out.Of an
immense pose space -- if each of 30 Jo~nts has
only 3 possible positions, there are over a
billion potential configurations!

To complicate the problem, many figures of
interest are kinematically redundant,
possessing "extra" degrees of freedom that
allow multiple solutions -- perhaps an infinity
of pose vectors -- all of which satisfy a
particular movement problem. The human arm,
for example is redundant -- you can reach for
an object with the elbow held high, low, or in
between. That is, there are many arm
configurations that will position the hand at
some fixed location in space. This redundancy
gives us the extra flexibility we need to reach
around and over objects, and, in general, to
maneuver in a cluttered environment. And it is
why individuals can develop characteristic and
expressive "styles" of movement .

For animation, of course, we are not interested
in a single configuration, but a sequence of
pose vectors -- a "hyper-path" through a
many-dimensional pose space . So it is not
surprising that even when the main features of
a motion are known, it may take an animator
many iteratiOns to get the movement "just
right" .

In the next sections we look at two important
techniques for feeling with the degrees of
freedom problem.

~ Adaptive Motion

By adaptive motion I mean the abil i ty of a
figure controllor to use information about the
environment and the figure itself i n the
control process . That is , feedback can be used
to guide the search through the huge space of
potential configurations. To do this, at leas t
the location and orientation of objects and
their surfaces must be available to the
animation software, and not just to the
rendering programs, as is usually the case .
Physical interactions between figures and
objects are so ubiquitous in the real world
touching, grasping, pushing, not to mention
locomotion over a wide variety of surfaces -­
that automatic collision detection, long of
interest in CAD/CAM and robotics, should become
an integral part of the animation environment.

Adaptive motion makes possible goal-di rected
and constrained behavior , since i t allows the
animator to describe movement in t erms of
relations among objects and figures. It lends
generality to animation sequences, since
animation software can adjust motion sequences

Graphics Interface '85

- 107 -

for different scenes. This helps to hide
unnecessary detail from the animator, since the
burden of generating much of the control
information can be left to the animation
software.

Reynolds [32] has suggested that it would be
desirable if an animator could establish "rules
of behavior" for objects and characters in some
imagined microworld. After establishing the
initial conditions of this simulated universe,
the animator would sit back and let the
animation system generate the sequence. This
amounts to a 3-D, computerized extension of the
straight ahead style of 2-D animation [4].
Adaptive motion makes possible the extension of
this technique to 3-D computer animation.

.!:.. Abstraction

The importance of abstraction in dealing with
the intellectual complexity of computer
programming is well-known [36] and it is a
basic tool for dealing with the kinematic and
behavioral complexities of articulated motion
as well.

There are five kinds of abstraction useful for
controlling character animation: structural,
procedural, functional , character and world
modeling.

~ Structural Abstraction

A structural abstraction describes the
kinematic properties of a figure, i.e., the
transformation hierarchy, the nature of the
allowable joint motions, and whether links are
rigid or non-rigid (although we will deal only
with rigid motion here). The notion of a
transformation hierarchy is a generalization to
3-D of the familiar 2-D instancing systems
described in graphics text. Most 3-D animation
sytems provide some means of represent ing
transformation hierarchies, e.g., Crow's
scn assmblr [12], Blinn's artic [5], and
Reynold's ASAS [32]. In these systems, joint
transformations are represented as simple
rotations and translations, sometimes including
scaling, although more general representations
for articulated motion have long been used in
the field of mechanism design [13], and more
recently, robotics [29]. sdI, the skeleton
description language, is t~tool for
specifying structural abstractions for use in
s a, an articulated motion system described in
[46] . At the M.I.T. Arts and Media Laboratory
we are developing a set of graphical tools,
i mplemented on a Symbolics 3600 Lisp machine,
for designing and editing kinematic
descriptions of jointed figures.

4.2. World Modeling

In the physical world objects and figures
interact in complex ways at many levels of
detail. Just as we need mechanisms for
representing figures, we need some means of
describing the physical and functional
properties of objects in the environment.
Adaptive motion requires at least efficient
geometric representations for collision testing
and path planning; goal-directed animation
control requires in addition sophisticated
machanisms for knowledge representation .

Part of the problem involves structuring
high-density graphical data bases to avoid
exhaustive searches through long lists of
surface elements to do, say, collision testing.
Rather, we want to consider only those objects
in the scene that are "near" the figure. This
means that the data base must be carefully
organized spatially so that searches always
proceed at the appropriate level of detail.
Various hierarchical methods of structuring
data to speed up occlusion testing have been
reported, e.g., [11,16,35]. Franklin [15]
describes a set of algorithms which are useful
for intersection testing as well.

Another problem is to represent attributes,
functionality, and relationships of objects in
a scene, so that the animation system can plan
motion sequences in complicated environments .
If a script specifies, say, that a character i s
to "leave the room", the animation system
should be able to infer, among other things,
that

To leave a room, use the door .
The current room has a door at (x,y,z).
To open the door, move to (x,y,z) and
invoke skill S.

The problem of knowledge representation is
currently a major area of research in
artificial intelligence. At The Media
Laboratory we are developing a set of design
goals and specifications for a knowledge-based
animation system capable of common sense
planning and problem solving in simple
environments. For a discussion of knowledge
representation issues in computer animation,
see [47].

4.3. Procedural Abstraction

A procedural abstraction [39] is the
representation of a movement algorithm
i ndependent of the structure of the figure it
controls .

Graphics Interface '85

- 108 -

For example, the DOF problem is not so severe
in the case of a robot manipulator with six or
seven jOints. Even so, humans are not good at
calculating the ncessary joint angles for
controlling even a simple manipulaor, and
resolved motion [20,44] is generally used.
That is, the position and orientation of a
target location are input, and the manipulator
controller automatically computes the pose
vector necessary to reach it.

Resolved motion control is an example of the
use of procedural abstraction in the solution
of the DOF problem: a computation is specified
that will transform the input parameter, i.e.,
the position and orientation of the target,
into the output object, here the set of joint
angles that will position and orient the end
effect or at the desired location in the
workspace, if possible. Resolved motion
control is independent of a particular
kinematic structure, and can be applied to
figures of 6, 8 or more links, and for, say, a
human figure, can be applied equally well to
control either arms or legs [33]. Other
examples of procedural abstraction are the
computation of trajectories for falling
objects, the computation of the paths of
colliding objects, or the use of spline curves
for generating smooth motion. Such facilities
are often provided for the animator ready-made ,
but may be constructed by the animator in
animation systems embedded in high-level
programmming languages.

4.4. Functional Abstraction

For the robot arm the number of links is small
and the arm is treated as a single kinematic
entity. But for a figure with many links, we
want to be able to group together both the
structural elements and the procedures that are
necessary to effect a particular class of
motions. Alternatively, we can impose
constraints on the movements of a set of
joints. We call such a grouping a functional
abstraction.

Functional abstractions are important because
they allow the animator to factor the pose
space into motor skills. If we already know
the general "shape" of a motion, we need only
consider a subregion of the total pose space.
Say we want a figure's hand to grasp an object
-- we already know which jOints need to move,
roughly how they should move, and moreover, we
know this is a useful motion that we want to
repeat often. We can cluster this group of
joint movements around the task "to grasp", and
attach one or more procedures to implement it

(perhaps resolved motion). Once this motor
skill has been defined, the details of its
execution can be suppressed. That is , we need
only supply the appropriate parameters, e.g . ,
target location, fast or slow, hard or soft, to
the motor program for the grasping skill. By
specifying functional abstractions for grasping
and other tasks, the animator is spared the
burden of generating pose vectors and can
instead think of the figure motion at a higher
level -- in terms of the tasks and events that
are to be performed.

Functional abstractions allow us to attach
implicit goals to figure motion. By
decomposing a figure's potential movements into
a repertoire of skills we can associate the
events and relationships the animator specifies
with the skills (implemented as functional
abstractions) that the figure controller
"knows" about. Moreover, if we allow
functional abstractions to refer to other
functional abstractions, it is possible to
construct behaviors as compositions of simplier
movements.

~ Character Abstraction

We would like to abstract a step further from
these structural and functional descriptions,
so that we could define, say, a generic human
figure and a repertOire of "standard" skills.
The animator could then instance on or more
"customized" human figures appropriate to a
particular animated sequence. At the same
time, we need to instance the skills defined
for the generic figure so that we can customize
the behaviors of the instantiated characters as
well . Object-oriented programming systems such
as Small talk [40] and Loops [37] explicitly
support the creation and manipulation of
classes of objects and their instances. For
example, a class of human figures could be
specified with a particular structural
description and a set of default dimensions
specifying limb lengths and rotational
constraints at the jOints. By altering these
defaults the user could instantiate a
particular human character, or even create
subclasses of special figures, e . g., dwarves or
giants. Motor skills also need to have a
uniform representation, including preconditions
that must be true prior to execution, pOinters
to other skills to invoke in order to satisfy
necessary preconditions, rules for executing
under special Circumstances , postconditions
that will be true after execution, and so on.
I have oulined one representation scheme for
motor skills in [47]; the development of
techniques for representing and manipulating

Graphics Interface '85

characters and behaviors is an ongoing area of
research.

4.6. Text-Mediated and Device-Mediated
Interaction

- 109 -

The power of an animation system derives
ultimately from its available abstraction
mechanisms and the implementation of adaptive
movement, not simply be providing the animator
with joysticks, knobs and dials. Huch has been
made of device-mediated interaction in computer
graphics, especially in early work (e.g.
[3,38]), begun at a time when Fortran or
assembly code may have been the only
alternative means of human-machine
communication. However, language will probably
remain the medium of choice for describing
algorithms and complicated spatial, temporal,
and behavioral relationships. Huch of the
objection to text-mediated interaction really
is an objection to typing. Progress in
improving the ergonomics of the typewriter
keyboard and ultimately, developments in speech
recognition will go a long way towards
ameliorating this this aspect of the
human-machine interface.

At the same time, there are many functions,
e.g., picking, locating, and sketching, for
which the graphical gesture clearly is the
preferred mode of interaction. Perhaps the
ultimate example of graphical interaction is
that of flying a simulated airplane, or steering
the six-legged walk of a science fiction robot
ant with a joystick. But these are large
simulation programs built on a complex set of
procedures. The user interacts with the top
level of a hierarchy of abstractions, and it is
this organization that allows small movements
of the operator's hand on a joystick to be
amplified into a complex of meaningful control
signals with such a powerful result.

In the following sections, we will see how
three levels of control result from the graded
implementation of adaptive motion and
abstraction mechanisms.

~ A Three Level Hierarchy for Character
Animation

We can classify animation systems as being
either guiding, animator level, or task level
systems. (For a similar classification of
robot programming systems, see [23]).

2.:..1..:.. Guiding

Guiding systems are those with no mechanisms
for user-defined abstraction or adaptive motion.
There are a wide range of guiding systems,
including motion recording [7,17], shape interpo­
lation [18], key-transformation systems [10,18,45]
and notation-based systems [8,43].

In ~ recording, various devices are used
to acquire kinematic data from a moving figure.
The kinematic data is then used to control an
animated figure. Such systems are usually
limited to measurements of a restricted range
of human movement in a laboratory setting, but
offer a potentially rich source of data on
human motion. Shape-interpolation (also known
as "metamorphosis") is the 3-D analog of 2-D
keyframing. Where there is a one-to-one
correspondnce between the pOints and faces of
separate objects, inbetween frames can be
computed by interpolating between the data
points ' of the two objects. In
key-transformation systems, whole objects are
manipulated by affine transformations.
Inbetween frames are generated by interpolating
the transformation parameters and transforming
the objects. Such systems usually allow the
specification of transformation hierarchies,
making articulated motion possible. In such
key pose systems, e.g., BBOP, a p-curve
facility [3] is provided so that the user can
graphically specify velocities. Notation-based
systems are an example of text-mediated guiding
in which the user describes a movement in a
choreographic notation or an alphanumeric
equivalent (i.e. [7]) .

5 . 1.1. Limitations of Guiding Systems

In guiding systems, the animator must specify
in advance the details of motion. This is
reasonable only in a relatively featureless
environment. Suppose a human character is t o
walk over rough terrain. Walk cycles are not
difficult to generate using keyframing or shape
interpolation, but in this case, the walk cycl e
changes with each step, requiring a large
number of intermediate configurations to ensure
that the motion looks right. This is because
the inbetween frames are computed without
regard for other objects in the scene. If a
foot goes through the floor, or the figure
walks right through a wall, so be it. What is
worse, if the character is to walk in another
direction over different terrain, none of the
earlier key configurations can be used.

In guiding, the animator has nearly complete
control over the motion of a figure. Because

Graphics Interface '85

- 110 -

of the nature of the DOF problem, this is both
a blessing and a curse. The animator is free
to design an expressive motion sequence in
toto, but for complicated figures or intricate
mechanisms this is a demanding or perhaps an
impossible task, even with a well-designed
device-mediated interface [24].

Host guiding systems include predefined
procedural abstractions for smoothing motion
based on one or several spline techniques [34].
Often these tools allow the animator to
interactively adjust the spline parameters
until some desired trajectory is achieved.
Splining allow the animator to more closely
simulate the dynamics of rigid bodies, e.g.,
acceleration and deceleration due to inertia,
friction, or gravity, since motion that is
linear and jerky doesn't look right and is
often unpleasant to view. (In conventional
animation acceleration and deceleration are
referred to as ease in and ease out
respectively, and must be calculated by hand
and from tables). In general, splining
provides convenient control over the velocity
of many kinds of transformations, including
changes in size, shape and color, in addition
to changes in positiOns and orientation. The
value of using parameterized curves to control
animation was recognized early on [3] and the
refi nement of these techniques remains an
active area of interest (see e.g., [21]). While
the use of spline curves is a powerful
s i mulation mechanism, spline techniques alone
are not a general solution to the DOF problem,
since the control of many transformations
requires the generation and refinement of many
splines .

To date, a number of interesting animation
sequences have been produced using guiding
systems at various commercial production houses
and university laboratories . However, since
powerful abstraction mechanisms are not
provided, and because adaptive motion is not
possible at all, guiding systems do not scale
up well for use with complicated figures, and
their utility for controlling animation in
complicated environments is limited .

~ Animator-Level Systems

A number of ani mator level systems have been
desi gned to allow the ani mator to specify
motion algorithmi cally. A few of these
sys tems, while not specificall y deSigned as
character ani mation sys tems, do provide some
measure of one or both adaptive motion and
abstracti on.

~ GRAHPS, ASAS, and HIRA

GRAHPS [27] has no facility for adaptive
motion, but does allow the construction of
motion macros based on functional abstraction.
Joints can be grouped together and their input
derived from dials, and the motion at the
joints can be explicitly constrained to lie
within some range of values. This is a good
example of the interaction of a guiding
mechanism (dials) and a functional abstraction
(motion macros). While not desi gned as a
character animation system, GRAHPS has been
used to generate interesting animation of a
human figure.

Craig Reynolds's ASAS [32] provides a set of
low-level mechanisms for both abstraction and
adaptive motion. The actor paradigm expl i citl y
provides a general abstraction mechanism
allowing the definition of transformation
hierarchies (structural abstraction) and
behaviors (procedural and functional
abstractions). The message passing mechanism
makes it possible to implement adaptive motion ,
since animated entities can report aspects of
their physical attributes or their internal
states.

Another animation system, MlRA [25], i s based
on a programming paradigm closely related to
actor-based systems, namely, the data
abstraction [36] MlRA provides a set of
important abstraction facilities nearly
identical to those of ASAS. Whil e MlRA is not
a message-passing system, the animator can se t
and examine the values of variables (of various
data types) , so that attributes of f i gures and
objects can be used to influence the generation
of movement .

The group led by Norman Badler at the
University of Pennsylvania has long been
involved in research on representing and
portraying human movement. They have developed
TEMPUS [2,22], a system for analyzing and
displaying the movements of realistic human
figures in a workspace. While not a
general-purpose animation system, TEMPUS has
sophisticated features for defining and
modifying human figures, and for resolved
moti on control .

Because the domain of TEMPUS i s r estricted
unl i ke MlRA and ASAS , t o pos iti oning and '
ori enting human figures, TEMPUS can be largely
device-mediated. Users pick actions from a
graphically displayed menu, and control motions

Graphics Interface '85

using displays of simulated potentiometers.
Available movements are rotation and
translation of the whole figure, rotations at
selected jOints, and resolved motion of the
limbs.

TEMPUS has no facilities for adaptive motion,
and abstraction mechanisms available to the
animator are limited to a parameterless macro
facility which allows the user to group
movement commands. The implementation of a
flexible resolved motion algorithm for
positioning the limbs of a human figure is an
important step towards task-level animation.

~ Discussion

Because it is possible to implement adaptive
motion, and to define structural, functional
and procedural abstractions, animator level
systems provide significant improvements over
guiding in terms of the DOF problem. But as
usual, there is a trade-off. Guiding systems
are relatively easy to learn and use, but lack
the power to control complicated animation.
Animator level systems, on the other hand,
provide the computational power of a general
programming language but at the same time
saddle the user with all the problems so

- 111 -

closely associated with software development.
Thalman et al. (25] note that "it took 14 months
to produce (a] 13-minute film," certainly
highlighting the problem. That is, while it is
possible to develop complex motion in either
ASAS or MlRA, it is not necessarily easy, since
neither language provides explicit, high level
support for developing functional abstractions
or adaptive motion. Interestingly, Thalman et
al. note that they found it necessary to
integrate a guiding system, MUTAN (14], into
their production scheme. I will have more to
say about integrating control modes later on.

~ Task Level Animation

At the task level, the animation system must
schedule the execution of motor programs to
control characters, and the motor programs
themselves must generate the necessary pose
vectors. To do this, a knowledge base of
objects in the environment is necessary,
containing information about their position,
physical attributes, and functionality.

In [47] I outline one approach to task level
animation in which motor behavior is generated
by traversing a hierarchy of skills
(represented as frames [26] or actors [19] in
an object-oriented system) selected by rules

which map the current action and context onto
the next desired action. Albus of the Bureau
of Standards has designed a robot control
system based on a hierarchy of table-driven
computing elements (1]. powers has outlined a
behavioral control hierarchy based entirely on
servomechanism theory (31]. Both of these
latter approaches seem to work .well at the
lower levels of motor control and what we might
call instinct-driven behavior, but seem rather
vague when it comes to behavior requiring
symbolic interaction with the environment.

Task level motor control is a difficult problem
under study by cognitive scientists,
roboticists, and of course those interested in
high level animation systems. In the near term
we can expect the development of prototype
systems capable of generating rather simple
behaviors. How well such systems scale up
depends on our understanding of the motor
control problem itself.

With task level control, the animator can only
specify the broad outlines of a particular
movement and the animation system fills in the
details. Whether this approach is appropriate
depends on the particular application. A
non-expert user may be satisfied with the
'default' movements and figures the system
provides if he or she can produce, in a
reasonable amount of time and at a reasonable
cost, and animation that gets the point across.
A 'high-end' user, say, in the entertainment
industry may want nearly total control over
every nuance of a character's movenent to make
a sequence as expressive as possible. However,
control over the expressive qualities of
movement does not mean that the animator needs
or wants a pure guiding system to generate
pose vectors. The animator does need access
to different levels of the control hierarchy in
order to generate new motor skills and to
'tweak' the existing skills .

6. Integration of Control Hodes

Guiding is the prevalent mode in most current
interactive animation systems. The necessity
for integrating all three modes of control
stems from the inability of anyone mode to
provide complete yet economical control.
Guiding is best suited for specifying fine
details but unsuited for controlling complex
motion. Animator level programming is powerful
but difficult. Task level systems give us
facile control over complex motions by trading
off explicit control over the details of motion.

Part of the solutin lies in applying guiding

Graphics Interface '85

- 112 -

techniques at appropriate pOints in the motion
control hierarchy. The key is the ability to
decompose the movement repertoire into a
manageable set of hierarchically organized
skills. The notion of browsers, as implemented
in Smalltalk [40] or Loops [37] suggests a
powerful method for attaching guiding controls
to motor skills. Suppose I have on my RGB
monitor a shaded display of a human character.
On my terminal screen is a representation of the
structure of the character and its skills. Now
suppose I trace a curve on the graphics tablet.
If I specify that that curve represents a
particular joint rotation, -- i.e., I point to
the node for the little finger on my terminal,
I should immediately see on the display the
little finger of my character wiggling.
Suppose now I point to the node for "grasping
with the left hand" -- I should see the figure's
left hand open and close with the velocity I
have specified. Lastly, if I pick the node
labeled "walk", the figure should begin to walk
across the screen, and this time, the curve I
have drawn could determine, say, the speed of
the gait.

This modular, hierarchical organization allows
the user to identify the motion qualities that
need to be adjusted, and at the same time it
helps to localize the effect of such changes.
This calls for a uniform representation of
motor skills that incorporates, for each skill,
a specification of the kinds of adjustments
that are possible, and, in addition, a uniform
set of mechanisms, e.g., p-curves for
interacting with skills.

L.. Conclusion

I have presented a conceptual analysis of the
domain of three-dimensional computer animation,
which is viewed as the process to simulating
objects and their behaviors in a microworld
specified by the animator . The degrees of
freedom problem is the central issue in the
coordination of articulated figures. Computer
animation systems must be based on the
appropriate set of domain concepts, namely
adaptive motion and the five abstraction
mechanisms, to enable the animator to define
and manipulate interesting characters and
environments in an expressive way.

The discussion of the three control modes
suggest criteria for good guiding and animator
level systems. Guiding systems have received
the greatest attention to date -- the notion of
an interactive, device-mediated interface has
come to be viewed almost as a standard way of
communicating with computers, as evidenced by

the popularity of the "mouse-and-window" style
of computing. In general, however, guiding
should be seen as a mechanism for developing and
controlling the behavior of complex systems,
rather thatn just picking points, drawing
lines, or generating scalar values for various
transformation parameters. As suggested above,
we want to be able to attach the output of a
physical input device at arbitrary levels of a
behavioral hierarchy. While the meaning of a
gesture depends, of course, on the process
that is viewing it, the hard question is to
find an appropriate set of parameters for
controlling a complex process, for example,
facial expressions (cf. Parke [28] and Platt
[30]). Once a natural control set has been
determined, it is not- hard to use input devices
to generate parameter values interactively .
There are two complementary design themes:
How can we "plug in" guiding mechanisms to
drive a given complex behavior? How can input
device modules serve as standard "gesture
amplifiers" that can be easily -redirected to
various functions of the figure control
hierarchy?

An animator level language should incorporate
the deSign features and prinCiples we expect in
a quality programming language . Concealing the
programming task from the user or sugar-coating
the syntax is not nearly as important as
providing the expressive power needed for
animation. This is not the place for a
discussion of the future of automatic
programming, nor of the merits of the latest
programming paradigm. The pOint is that the
algorithmic description of behavior -- "Do
this, then do that" -- is an essential and
fundamental way to communicate about movement .
Hore often than not the so-called "naive user"
will quickly learn the syntax of an animation
language only to become frustrated because the
language is not powerful enough. Animation
level languages and systems should therefore
combine what we know about software technology
with the mechanisms appropriate to motion
control -- e.g., functional abstraction and
adaptive motion.

Finally, adaptive motion, in the form of
collision testing, and resolved motion control
should be implemented, at least in part, as
basic elements of any 3-D computer animation
system.

The art and science of 3-D computer animation
continues to evolve towards the simulation of
hypothetical worlds complete with physical laws

Graphics Interface '85

and figures possessing behavioral repertoires.
It is by learning to construct and control
these simulations that we give computer
animation its expressive power.

Acknowledgements

- 113 -

This work was supported in part by the National
Science Foundation Grant, No. MCS 8304185.

References

1. J. S. Albus, Brains, Behavior and Robotics,
Byte Books, Peterborough, NH (1981).

2. N. I. Badler, "Design of a Human
Movement Representation Incorporating
Dynamics," Course Notes, Seminar on
Three-Dimensional Computer Animation, (July
27, 1982). ACM SIGGRAPH 82

3. R. M. Baecker, "Picture-driven Animation,"
Proc. AFIPS Spring Joint Computer Confer­
~, Volume 34, pp.273-288 (Spring 1969).

4. N. Bernstein, The Coordination and
Regulation of Movements, Pergamon Press,
Oxford (1967).

5. J. F. Blinn, "Systems Aspects of Computer
Image Synthesis," Course Notes. Seminar on
Three Dimensional Computer Animation, (July
1982). ACM SIGGRAPH 82

6. N. Burtnyk and M. Wein, "Interactive
Skeleton Techniques for Enhancing Motion
Dynamics in Key Frame Animation,"
Communications of the ACM, Vol. 19(10)
(October 1976).

7. T. W. Calvert, J. Chapman, and A. Patla,
"The Integration of Subjective and
Objective Data in the Animation of Human
Movement," Computer Graphics, Vol. 14(3)
pp.198-203 (July 1980). Proc. ACM SIGGRAPH
80

8. T. W. Calvert, J. Chapman, and A. Patla,
"Aspects of The Kinematic Simulation of
Human Movement," IEEE Computer Graphics and
Aplications, Vol. 2(9) pp. 41-50 (November
1982) •

9. E. Catmul1, "The Problems of
Computer-Assisted Animation," Computer
GraphiCS, Vol. 12(3)(July 1978). Proc. ACM
SIGGRAPH 78

10. R. Chuang and G. Entis, "3-D Shaded
Computer Animation -- Step-by-Step," IEEE -
Computer Graphics and Applications, V~
3(9) pp. 18-25 (Dec 1983).

11. J. H. Clark, "Hierarchical Geometric
Models for Visible Surface Algorithms,"
Communications of the ACM, Vol. 19(10) pp.
547-554 (October 1976).

12. F. C. Crow, "A More Flexible Image
Generation Environment," Computer GraphiCS,
Vol. 16(3) pp. 9-18 (July 1982). Proc. ACM
SIGGRAPH 82

13. J. Denavit and R. B. Hartenberg, "A
Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices," Journal of
Applied Mechanics, Vol. 23 pp. 215-221
(June 1955).

14. D. Fortin, J. Lamy, and D. Thalman, "A
Multiple Track Animator System for Motion
Synchronization, "Proc.ACM SIGGRAPH/SIGART
Workshop on Motion, pp. 180-186 (April 1983) .

15 . W. R. Franklin, "3-D Geometric Databases
Using Hierarchies of Inscribing Boxes,"
Proc. Con!. Canadian Society for
Man-Machine Interaction, pp. 173-180 (June
1981).

16. H. Fuchs, Z. Kedem, and B. Naylor, "On
Visible Surface Generation by A Priori Tree
Structures," Computer GraphiCS, Vol. 14(3)
pp. 124-133 (July 1980). Proc. ACM
SIGGRAPH 80

17. C. Ginsberg and D. Maxwell, "Graphical
Marionette," Proc. ACM SIGGRAPH/SIGART
Workshop on Motion, pp. 172-179 (April 1983).

18. J. E. Gomez, "Twixt: A 3-D Animation
System," Proc. Eurographics '84,
North-Holland, (September 1984).

19. C. Hewitt, "Control Structure as Patterns
of Message Passing," pp. 433-465 in
Artificial Intelligence: an MIT
Perspective, ed. R. H. Brown, HIT Press,
Cambridge, HA (1979).

20. C. Klein and C. Huang, "Review of
Ps~udoinverse Control for Use with
Kinematically Redundant Manipulators," IEEE
Transactions on Systems, Man, and
Cybernetics, Vol. SMC-13(3) pp. 245-250
(March 1983) .

Graphics Interface '85

- 114 -

21. D. H. U. Kochanek and R. H. Bartels,
"Interpolating Splines with Local Tension,
Continuity, and Bias Control," Computer
Graphics, Vol. 18(3) pp. 33-41 (July 1984).
Proc. ACM SIGGRAPH 84

22. J. Korein, J. Korein, G. Radack, and N.
Badler, "TEMPUS User Manual," Unpublished,
Dept. of Computer and Information Science,
University of Pennsylvania, Philadelphia,
PA (September 1983).

23. T. Lozano-Perez, "Robot Programming," AI
Memo 698, HIT, Cambridge, HA (December 1982).

24. D. Lundin, "3-D Modeling, A Personal
Orthodoxy," Course Notes. Seminar on
Three-Dimensional Computer Animation, (July
27,1982). ACM SIGGRAPH 82

25. N. Magnenat-Thalman and D. Thalman,
"Tbe Use of High-Level 3-D Graphical Types
in the HIRA Animation System," IEEE Computer
Graphics and Applications, Vol. 3(9) pp. 9-16
(Dec 1983).

26. M. Minsky, "A Framework for Representing
Knowledge," in The Psychology of Computer
Vision, ed. P. Winston, McGraw-Hill, New
York (1975).

27. T. J. O'Donnel and Artbur J. Olson, "GRAMPS
-- A Graphics Language Interpreter for
Real-Time, Interactive, Three-Dimensional
Picture Editing and Animation," Computer
Graphics, Vol. 15(3)(August 1981) . Proc .
ACM SIGGRAPH 81

28. F. I. Parke , "Parameterized Models for
Facial Animation," IEEE Computer Graphics
and Applications, Vol . 2(9) pp. 61-68
(November 1982).

29. R. Paul, Robot Manipulators: Mathematics,
Programming, and Control, HIT Press (1981).

30. s. M. Platt and N. I. Badler, "Animating
Facial Expressions," Computer Graphics,
Vol. 15(3) pp. 245-252 (August 1981).
Proc. ACM SIGGRAPH 81

31. W. T. Powers, Behavior: The Control of
Perception, Aldine Publishing Co., Chicago
(1973)

32 . C. W. Reynolds, "Computer Animation with
Scripts and Actors," Computer Graphics,
Vol . 16(3) pp. 289-296 (July 1982). Proc.
ACM SIGGRAPH 81

33. E. A. Ribble, "Synthesis of Human Skeletal
Motion and the Design of a Special-Purpose
Processor for Real-Time Animation of Human
and Animal Figure Motion," M.S. Thesis, The
Ohio State University (June 1982) .

34. D. F. Rogers and J. A. Adams,
Mathematical Elements for Computer GraphiCS ,
MCGraw-Hill, New York (1976)

35 . S. Rubin and T. Whitted, "A 3-Dimensional
Representation for Fast Rendering of
Complex Scenes," Computer GraphiCS, Vol.
14(3) pp. 110-116 (July 1980). Proc . ACM
SIGGRAPH 80

36. M. Shaw, "The Impact of Abstraction
Concerns on Modern Programming Language,"
Proc. of the IEEE, Vol. 68(9) pp. 1119-1130
(September 1980).

37. M. Stefik, D. Bobrow, S. Hittal, and L.
Conway, "Knowledge Programming in Loops:
Report on an Experimental Course, "AI
MagaZine , Vol. 4(3) 00, 3-13 (Fall 1983).

38. I. E. Sutherland, "Sketchpad: A Man-Machine
Graphical Communication System," Proc .
AFIPS Spring Joint Computer Conf.:-Y01 . 23
pp. 329-346 (Spring 1963) .

39 . R. D. Tennent, Principles of Programming
Languages , prentice-Hall, Englewood Cliffs ,
NJ (1981).

40. L. Tesler, "The Smalltalk EnVironment,"
Byte, Vol. 8(8) pp. 90-147 (August 1981) .

41. F. Thomas and O. Johnston, Disney
Animation: The Illusion of Life, Abbevil le
Press, New York (1981) .

42 . M. T. Turvey, H. L. Fitch, and B. Tuller,
"The Problems of Degrees of Freedom and
Context-Conditioned Variability," pp.
239-252 in Human Motor Behavior, ed. J.A. S.
Kelso, Lawrence Erlbaum ASSOCiates,
Hillsdale, Jew Jersey (1982).

43 . L. Weber, S. W. Smoliar, and N. I. Badler,
"An Architecure for the Simulation of Human
Movement," Proc. ACM Ann. Conf., pp .
737-745 (1978).

44. D. E. Whitney, "The Mathematics of
Coordinated Control of Prosthetic Arms and
Manipulators," Transactions of the ASME,
Journal of Dynam~c Systems, Measurement,
and Control , Vol . 122 pp. 303-309 (December
1972) •

Graphics Interface '85

- 115 -

45. L. Williams, "BBOP," Course Notes, Seminar
on Three-Dimensional Computer Animation,
(July 27,1982). ACM SIGGRAPH 82

46. D. Zeltzer, "Representation of Complex
Animated Figures," Proe. Graphics Interface
82, pp. 205-211 (May 1982).

47. D. Zeltzer, "Knowledge-based Animation,"
Proe. ACM SIGGRAPH/SIGART Workshop on
Motion, pp. 187-192 (April 1983).

Graphics Interface '85

