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ABSTRACT 

To automate character animation and extend it 

to 3-D we need to create and manipulate three­

dimensional models of articulated figures. 

Abstraction and wadaptive motion are key 
mechanisms for dealing with the degrees of 

freedom problem, which refers to the sheer 
volume of control information necessary for 

coordinating the motion of an articulated 

figure when the number of links is large. A 

three level hierarchy of control modes for 

animation is proposed: guiding, animator-level, 
and task-level systems . Guiding is best suited 

for specifying fine details but unsuited for 

controlling complex motion. Animator-level 

programming is powerful but difficult. 

Task-level systems give us facile control over 

complex motions and tasks by trading off 

explicit control over the details of motion. 

The integration of these three control levels 

is discussed. 

1. Animation as Simulation 

Currently there is much controversy about the 

nature of 3-D computer animation. Should such 

systems by based on Simulation, keyframing, or 

an animation programming language? Should the 

interface be through graphical input devices, 

or through the keyboard? It is my purpose here 

to provide a conceptual framework for 3-D 
computer animation in general, and character 

animation in particular. 

Automatic inbetweening has been the focus of 

attention in moving from conventional to 

computer-assisted 2-D animation [6,9]. From 

this point of View, it seems a natural 
extension to apply automatic inbetweening to 

3-D animation, and in fact, a number of such 

systems have been developed [10,18,25]. Here I 

will argue that 3-D key framing belongs to the 

lowest level of a three level hierarchy of 

control regimes for animating articulated 
figures. 

In order to produce convincing character 

animation, conventional 2-D animators refer 

constantly to living models, or study motion 

pictures of living models, on draw directly 

from still frames of such motion pictures 

(rotoscoping). That is, character animation is 

not a process of transforming lines and shapes 

on 2-D surface, nor is it simply the art of 

squashing, stretching, or otherwise 

exaggerating and caricaturing motion. Thomas 

and Johnston [41] make quite clear that the 

great success of the Disney animators was due 

in large part to the long hours they devoted to 

studying and observing the movements of humans 

and animals in preparing for a particular 

sequence. A character was successful preCisely 

in proportion to how well the animator 

understood the kinematics of the figure, the 

structure and timing of a movement, and the 

effects of a movement on soft tissue and 

clothing. Once these elements were mastered 

only then could the animator develop a ' 

character's personality by the judicious 

exaggeration or de-emphasis of particular 
attributes. 

As long as animation requires the generation of 

many drawings by hand, SimpliCity and economy 

will be essential elements . 3-D computer 

animation, however, is an entirely different 

medium. The animator's energy is no longer 

invested in drawing and the tedium of 
inbetweening. Instead, the focus is on 
creating an environment -- deSigning 
microworlds and populating them with 

interesting characters. 3-D computer animation 

is thus a process of simulation in its most 

general sense : the specification of objects 

and transformations on objects. In this paper 

we will look at the specification and 

coordination of the behavior of the objects we 

wish to animate. There are three basic 
approaches. 

(1) We can explicitly describe the behaviors 

we are interested in. This is the guiding 
mode. 

(2) We can describe behaviors algorithmically, 

~n some programming notaion. This is the 
animator level. 
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Lastly, we can describe behavior 
implicitly, in terms of events and 
relationships. This is the ~ level. 
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For our purposes we can consider the domain of 
3-D computer character animation to be the 
control and coordination of the motion of 
articulated structures made up of rigid links. 
Differential scaling and other shape 
transformations. In the next section I examine 
the fundamental problem we face in trying to 
coordinate the motion of articulated figures, 
and we will look at mechanisms for dealing with 
the complexities of figure animation. Later 
we will see that the graded implementation of 
these mechanisms gives the above three-tiered 
hierarchy of control modes. 

~ The Degrees of Freedom Problem 

The essential problem of coordinating the 
motion of an articulated figure is to generate 
appropriate values of the joint variables that 
control the positions and orientation of each 
link. Joints may be modeled as lower pairs 
[11], such as rotary or sliding jOints, or they 
may be more complex, as in a detailed model of 
the human knee. For a figure with n joints, we 
can think of an n-dimensional pose space, where 
we assign a coordinate axis to each of n 
degrees of freedom; and an n-component pose 
vector, which completely specifies a particular 
configuration. To animate the motion of a 
jointed figure, a pose vector must be specified 
for each frame of the sequence. To animate a 
minute of complex motion for a reasonably 
detailed figure, say , with 30 links, tens of 
thousands of values will need to be specified 
for the jOint variables to display a new 
configuration each frame. Even if the sequence 
is keyframed, with a keyframe every two 
seconds , 30 pose vecors -- nearly a thousand 
values -- need to be specified . This is an 
example of the degrees of freedom (DOF) problem 
[42], which refers to the sheer volume of 
control information necessary for coordinating 
the motion of an articulated figure when the 
number of links is large, as in a human figure. 
It is the reason why animators find 3-D 
character animation so tedious. 

Of course we are not interested in random 
mot i on; the movements of a figure must be 
"correct" in some sense to be of any use -- the 
robot programmer may wish to optimize energy 
expenditure, for example, and the animator will 
want the f i gure to move in some expressive 
manner. Viewed in this way, character 
animation is problem of search. Not only do 
we have to generate pose vectOrs, we need to 

find a particular set of variables out.Of an 
immense pose space -- if each of 30 Jo~nts has 
only 3 possible positions, there are over a 
billion potential configurations! 

To complicate the problem, many figures of 
interest are kinematically redundant, 
possessing "extra" degrees of freedom that 
allow multiple solutions -- perhaps an infinity 
of pose vectors -- all of which satisfy a 
particular movement problem. The human arm, 
for example is redundant -- you can reach for 
an object with the elbow held high, low, or in 
between. That is, there are many arm 
configurations that will position the hand at 
some fixed location in space. This redundancy 
gives us the extra flexibility we need to reach 
around and over objects, and, in general, to 
maneuver in a cluttered environment. And it is 
why individuals can develop characteristic and 
expressive "styles" of movement . 

For animation, of course, we are not interested 
in a single configuration, but a sequence of 
pose vectors -- a "hyper-path" through a 
many-dimensional pose space . So it is not 
surprising that even when the main features of 
a motion are known, it may take an animator 
many iteratiOns to get the movement "just 
right" . 

In the next sections we look at two important 
techniques for feeling with the degrees of 
freedom problem. 

~ Adaptive Motion 

By adaptive motion I mean the abil i ty of a 
figure controllor to use information about the 
environment and the figure itself i n the 
control process . That is , feedback can be used 
to guide the search through the huge space of 
potential configurations. To do this, at leas t 
the location and orientation of objects and 
their surfaces must be available to the 
animation software, and not just to the 
rendering programs, as is usually the case . 
Physical interactions between figures and 
objects are so ubiquitous in the real world 
touching, grasping, pushing, not to mention 
locomotion over a wide variety of surfaces -­
that automatic collision detection, long of 
interest in CAD/CAM and robotics, should become 
an integral part of the animation environment. 

Adaptive motion makes possible goal-di rected 
and constrained behavior , since i t allows the 
animator to describe movement in t erms of 
relations among objects and figures. It lends 
generality to animation sequences, since 
animation software can adjust motion sequences 
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for different scenes. This helps to hide 
unnecessary detail from the animator, since the 
burden of generating much of the control 
information can be left to the animation 
software. 

Reynolds [32] has suggested that it would be 
desirable if an animator could establish "rules 
of behavior" for objects and characters in some 
imagined microworld. After establishing the 
initial conditions of this simulated universe, 
the animator would sit back and let the 
animation system generate the sequence. This 
amounts to a 3-D, computerized extension of the 
straight ahead style of 2-D animation [4]. 
Adaptive motion makes possible the extension of 
this technique to 3-D computer animation. 

.!:.. Abstraction 

The importance of abstraction in dealing with 
the intellectual complexity of computer 
programming is well-known [36] and it is a 
basic tool for dealing with the kinematic and 
behavioral complexities of articulated motion 
as well. 

There are five kinds of abstraction useful for 
controlling character animation: structural, 
procedural, functional , character and world 
modeling. 

~ Structural Abstraction 

A structural abstraction describes the 
kinematic properties of a figure, i.e., the 
transformation hierarchy, the nature of the 
allowable joint motions, and whether links are 
rigid or non-rigid (although we will deal only 
with rigid motion here). The notion of a 
transformation hierarchy is a generalization to 
3-D of the familiar 2-D instancing systems 
described in graphics text. Most 3-D animation 
sytems provide some means of represent ing 
transformation hierarchies, e.g., Crow's 
scn assmblr [12], Blinn's artic [5], and 
Reynold's ASAS [32]. In these systems, joint 
transformations are represented as simple 
rotations and translations, sometimes including 
scaling, although more general representations 
for articulated motion have long been used in 
the field of mechanism design [13], and more 
recently, robotics [29]. sdI, the skeleton 
description language, is t~tool for 
specifying structural abstractions for use in 
s a, an articulated motion system described in 
[46] . At the M.I.T. Arts and Media Laboratory 
we are developing a set of graphical tools, 
i mplemented on a Symbolics 3600 Lisp machine, 
for designing and editing kinematic 
descriptions of jointed figures. 

4.2. World Modeling 

In the physical world objects and figures 
interact in complex ways at many levels of 
detail. Just as we need mechanisms for 
representing figures, we need some means of 
describing the physical and functional 
properties of objects in the environment. 
Adaptive motion requires at least efficient 
geometric representations for collision testing 
and path planning; goal-directed animation 
control requires in addition sophisticated 
machanisms for knowledge representation . 

Part of the problem involves structuring 
high-density graphical data bases to avoid 
exhaustive searches through long lists of 
surface elements to do, say, collision testing. 
Rather, we want to consider only those objects 
in the scene that are "near" the figure. This 
means that the data base must be carefully 
organized spatially so that searches always 
proceed at the appropriate level of detail. 
Various hierarchical methods of structuring 
data to speed up occlusion testing have been 
reported, e.g., [11,16,35]. Franklin [15] 
describes a set of algorithms which are useful 
for intersection testing as well. 

Another problem is to represent attributes, 
functionality, and relationships of objects in 
a scene, so that the animation system can plan 
motion sequences in complicated environments . 
If a script specifies, say, that a character i s 
to "leave the room", the animation system 
should be able to infer, among other things, 
that 

To leave a room, use the door . 
The current room has a door at (x,y,z). 
To open the door, move to (x,y,z) and 
invoke skill S. 

The problem of knowledge representation is 
currently a major area of research in 
artificial intelligence. At The Media 
Laboratory we are developing a set of design 
goals and specifications for a knowledge-based 
animation system capable of common sense 
planning and problem solving in simple 
environments. For a discussion of knowledge 
representation issues in computer animation, 
see [47]. 

4.3. Procedural Abstraction 

A procedural abstraction [39] is the 
representation of a movement algorithm 
i ndependent of the structure of the figure it 
controls . 
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For example, the DOF problem is not so severe 
in the case of a robot manipulator with six or 
seven jOints. Even so, humans are not good at 
calculating the ncessary joint angles for 
controlling even a simple manipulaor, and 
resolved motion [20,44] is generally used. 
That is, the position and orientation of a 
target location are input, and the manipulator 
controller automatically computes the pose 
vector necessary to reach it. 

Resolved motion control is an example of the 
use of procedural abstraction in the solution 
of the DOF problem: a computation is specified 
that will transform the input parameter, i.e., 
the position and orientation of the target, 
into the output object, here the set of joint 
angles that will position and orient the end 
effect or at the desired location in the 
workspace, if possible. Resolved motion 
control is independent of a particular 
kinematic structure, and can be applied to 
figures of 6, 8 or more links, and for, say, a 
human figure, can be applied equally well to 
control either arms or legs [33]. Other 
examples of procedural abstraction are the 
computation of trajectories for falling 
objects, the computation of the paths of 
colliding objects, or the use of spline curves 
for generating smooth motion. Such facilities 
are often provided for the animator ready-made , 
but may be constructed by the animator in 
animation systems embedded in high-level 
programmming languages. 

4.4. Functional Abstraction 

For the robot arm the number of links is small 
and the arm is treated as a single kinematic 
entity. But for a figure with many links, we 
want to be able to group together both the 
structural elements and the procedures that are 
necessary to effect a particular class of 
motions. Alternatively, we can impose 
constraints on the movements of a set of 
joints. We call such a grouping a functional 
abstraction. 

Functional abstractions are important because 
they allow the animator to factor the pose 
space into motor skills. If we already know 
the general "shape" of a motion, we need only 
consider a subregion of the total pose space. 
Say we want a figure's hand to grasp an object 
-- we already know which jOints need to move, 
roughly how they should move, and moreover, we 
know this is a useful motion that we want to 
repeat often. We can cluster this group of 
joint movements around the task "to grasp", and 
attach one or more procedures to implement it 

(perhaps resolved motion). Once this motor 
skill has been defined, the details of its 
execution can be suppressed. That is , we need 
only supply the appropriate parameters, e.g . , 
target location, fast or slow, hard or soft, to 
the motor program for the grasping skill. By 
specifying functional abstractions for grasping 
and other tasks, the animator is spared the 
burden of generating pose vectors and can 
instead think of the figure motion at a higher 
level -- in terms of the tasks and events that 
are to be performed. 

Functional abstractions allow us to attach 
implicit goals to figure motion. By 
decomposing a figure's potential movements into 
a repertoire of skills we can associate the 
events and relationships the animator specifies 
with the skills (implemented as functional 
abstractions) that the figure controller 
"knows" about. Moreover, if we allow 
functional abstractions to refer to other 
functional abstractions, it is possible to 
construct behaviors as compositions of simplier 
movements. 

~ Character Abstraction 

We would like to abstract a step further from 
these structural and functional descriptions, 
so that we could define, say, a generic human 
figure and a repertOire of "standard" skills. 
The animator could then instance on or more 
"customized" human figures appropriate to a 
particular animated sequence. At the same 
time, we need to instance the skills defined 
for the generic figure so that we can customize 
the behaviors of the instantiated characters as 
well . Object-oriented programming systems such 
as Small talk [40] and Loops [37] explicitly 
support the creation and manipulation of 
classes of objects and their instances. For 
example, a class of human figures could be 
specified with a particular structural 
description and a set of default dimensions 
specifying limb lengths and rotational 
constraints at the jOints. By altering these 
defaults the user could instantiate a 
particular human character, or even create 
subclasses of special figures, e . g., dwarves or 
giants. Motor skills also need to have a 
uniform representation, including preconditions 
that must be true prior to execution, pOinters 
to other skills to invoke in order to satisfy 
necessary preconditions, rules for executing 
under special Circumstances , postconditions 
that will be true after execution, and so on. 
I have oulined one representation scheme for 
motor skills in [47]; the development of 
techniques for representing and manipulating 
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characters and behaviors is an ongoing area of 
research. 

4.6. Text-Mediated and Device-Mediated 
Interaction 

- 109 -

The power of an animation system derives 
ultimately from its available abstraction 
mechanisms and the implementation of adaptive 
movement, not simply be providing the animator 
with joysticks, knobs and dials. Huch has been 
made of device-mediated interaction in computer 
graphics, especially in early work (e.g. 
[3,38]), begun at a time when Fortran or 
assembly code may have been the only 
alternative means of human-machine 
communication. However, language will probably 
remain the medium of choice for describing 
algorithms and complicated spatial, temporal, 
and behavioral relationships. Huch of the 
objection to text-mediated interaction really 
is an objection to typing. Progress in 
improving the ergonomics of the typewriter 
keyboard and ultimately, developments in speech 
recognition will go a long way towards 
ameliorating this this aspect of the 
human-machine interface. 

At the same time, there are many functions, 
e.g., picking, locating, and sketching, for 
which the graphical gesture clearly is the 
preferred mode of interaction. Perhaps the 
ultimate example of graphical interaction is 
that of flying a simulated airplane, or steering 
the six-legged walk of a science fiction robot 
ant with a joystick. But these are large 
simulation programs built on a complex set of 
procedures. The user interacts with the top 
level of a hierarchy of abstractions, and it is 
this organization that allows small movements 
of the operator's hand on a joystick to be 
amplified into a complex of meaningful control 
signals with such a powerful result. 

In the following sections, we will see how 
three levels of control result from the graded 
implementation of adaptive motion and 
abstraction mechanisms. 

~ A Three Level Hierarchy for Character 
Animation 

We can classify animation systems as being 
either guiding, animator level, or task level 
systems. (For a similar classification of 
robot programming systems, see [23]). 

2.:..1..:.. Guiding 

Guiding systems are those with no mechanisms 
for user-defined abstraction or adaptive motion. 
There are a wide range of guiding systems, 
including motion recording [7,17], shape interpo­
lation [18], key-transformation systems [10,18,45] 
and notation-based systems [8,43]. 

In ~ recording, various devices are used 
to acquire kinematic data from a moving figure. 
The kinematic data is then used to control an 
animated figure. Such systems are usually 
limited to measurements of a restricted range 
of human movement in a laboratory setting, but 
offer a potentially rich source of data on 
human motion. Shape-interpolation (also known 
as "metamorphosis") is the 3-D analog of 2-D 
keyframing. Where there is a one-to-one 
correspondnce between the pOints and faces of 
separate objects, inbetween frames can be 
computed by interpolating between the data 
points ' of the two objects. In 
key-transformation systems, whole objects are 
manipulated by affine transformations. 
Inbetween frames are generated by interpolating 
the transformation parameters and transforming 
the objects. Such systems usually allow the 
specification of transformation hierarchies, 
making articulated motion possible. In such 
key pose systems, e.g., BBOP, a p-curve 
facility [3] is provided so that the user can 
graphically specify velocities. Notation-based 
systems are an example of text-mediated guiding 
in which the user describes a movement in a 
choreographic notation or an alphanumeric 
equivalent (i.e. [7]) . 

5 . 1.1. Limitations of Guiding Systems 

In guiding systems, the animator must specify 
in advance the details of motion. This is 
reasonable only in a relatively featureless 
environment. Suppose a human character is t o 
walk over rough terrain. Walk cycles are not 
difficult to generate using keyframing or shape 
interpolation, but in this case, the walk cycl e 
changes with each step, requiring a large 
number of intermediate configurations to ensure 
that the motion looks right. This is because 
the inbetween frames are computed without 
regard for other objects in the scene. If a 
foot goes through the floor, or the figure 
walks right through a wall, so be it. What is 
worse, if the character is to walk in another 
direction over different terrain, none of the 
earlier key configurations can be used. 

In guiding, the animator has nearly complete 
control over the motion of a figure. Because 

Graphics Interface '85 



- 110 -

of the nature of the DOF problem, this is both 
a blessing and a curse. The animator is free 
to design an expressive motion sequence in 
toto, but for complicated figures or intricate 
mechanisms this is a demanding or perhaps an 
impossible task, even with a well-designed 
device-mediated interface [24]. 

Host guiding systems include predefined 
procedural abstractions for smoothing motion 
based on one or several spline techniques [34]. 
Often these tools allow the animator to 
interactively adjust the spline parameters 
until some desired trajectory is achieved. 
Splining allow the animator to more closely 
simulate the dynamics of rigid bodies, e.g., 
acceleration and deceleration due to inertia, 
friction, or gravity, since motion that is 
linear and jerky doesn't look right and is 
often unpleasant to view. (In conventional 
animation acceleration and deceleration are 
referred to as ease in and ease out 
respectively, and must be calculated by hand 
and from tables). In general, splining 
provides convenient control over the velocity 
of many kinds of transformations, including 
changes in size, shape and color, in addition 
to changes in positiOns and orientation. The 
value of using parameterized curves to control 
animation was recognized early on [3] and the 
refi nement of these techniques remains an 
active area of interest (see e.g., [21]). While 
the use of spline curves is a powerful 
s i mulation mechanism, spline techniques alone 
are not a general solution to the DOF problem, 
since the control of many transformations 
requires the generation and refinement of many 
splines . 

To date, a number of interesting animation 
sequences have been produced using guiding 
systems at various commercial production houses 
and university laboratories . However, since 
powerful abstraction mechanisms are not 
provided, and because adaptive motion is not 
possible at all, guiding systems do not scale 
up well for use with complicated figures, and 
their utility for controlling animation in 
complicated environments is limited . 

~ Animator-Level Systems 

A number of ani mator level systems have been 
desi gned to allow the ani mator to specify 
motion algorithmi cally. A few of these 
sys tems, while not specificall y deSigned as 
character ani mation sys tems, do provide some 
measure of one or both adaptive motion and 
abstracti on. 

~ GRAHPS, ASAS, and HIRA 

GRAHPS [27] has no facility for adaptive 
motion, but does allow the construction of 
motion macros based on functional abstraction. 
Joints can be grouped together and their input 
derived from dials, and the motion at the 
joints can be explicitly constrained to lie 
within some range of values. This is a good 
example of the interaction of a guiding 
mechanism (dials) and a functional abstraction 
(motion macros). While not desi gned as a 
character animation system, GRAHPS has been 
used to generate interesting animation of a 
human figure. 

Craig Reynolds's ASAS [32] provides a set of 
low-level mechanisms for both abstraction and 
adaptive motion. The actor paradigm expl i citl y 
provides a general abstraction mechanism 
allowing the definition of transformation 
hierarchies (structural abstraction) and 
behaviors (procedural and functional 
abstractions). The message passing mechanism 
makes it possible to implement adaptive motion , 
since animated entities can report aspects of 
their physical attributes or their internal 
states. 

Another animation system, MlRA [25], i s based 
on a programming paradigm closely related to 
actor-based systems, namely, the data 
abstraction [36] MlRA provides a set of 
important abstraction facilities nearly 
identical to those of ASAS. Whil e MlRA is not 
a message-passing system, the animator can se t 
and examine the values of variables (of various 
data types) , so that attributes of f i gures and 
objects can be used to influence the generation 
of movement . 

The group led by Norman Badler at the 
University of Pennsylvania has long been 
involved in research on representing and 
portraying human movement. They have developed 
TEMPUS [2,22], a system for analyzing and 
displaying the movements of realistic human 
figures in a workspace. While not a 
general-purpose animation system, TEMPUS has 
sophisticated features for defining and 
modifying human figures, and for resolved 
moti on control . 

Because the domain of TEMPUS i s r estricted 
unl i ke MlRA and ASAS , t o pos iti oning and ' 
ori enting human figures, TEMPUS can be largely 
device-mediated. Users pick actions from a 
graphically displayed menu, and control motions 
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using displays of simulated potentiometers. 
Available movements are rotation and 
translation of the whole figure, rotations at 
selected jOints, and resolved motion of the 
limbs. 

TEMPUS has no facilities for adaptive motion, 
and abstraction mechanisms available to the 
animator are limited to a parameterless macro 
facility which allows the user to group 
movement commands. The implementation of a 
flexible resolved motion algorithm for 
positioning the limbs of a human figure is an 
important step towards task-level animation. 

~ Discussion 

Because it is possible to implement adaptive 
motion, and to define structural, functional 
and procedural abstractions, animator level 
systems provide significant improvements over 
guiding in terms of the DOF problem. But as 
usual, there is a trade-off. Guiding systems 
are relatively easy to learn and use, but lack 
the power to control complicated animation. 
Animator level systems, on the other hand, 
provide the computational power of a general 
programming language but at the same time 
saddle the user with all the problems so 
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closely associated with software development. 
Thalman et al. (25] note that "it took 14 months 
to produce (a] 13-minute film," certainly 
highlighting the problem. That is, while it is 
possible to develop complex motion in either 
ASAS or MlRA, it is not necessarily easy, since 
neither language provides explicit, high level 
support for developing functional abstractions 
or adaptive motion. Interestingly, Thalman et 
al. note that they found it necessary to 
integrate a guiding system, MUTAN (14], into 
their production scheme. I will have more to 
say about integrating control modes later on. 

~ Task Level Animation 

At the task level, the animation system must 
schedule the execution of motor programs to 
control characters, and the motor programs 
themselves must generate the necessary pose 
vectors. To do this, a knowledge base of 
objects in the environment is necessary, 
containing information about their position, 
physical attributes, and functionality. 

In [47] I outline one approach to task level 
animation in which motor behavior is generated 
by traversing a hierarchy of skills 
( represented as frames [26] or actors [19] in 
an object-oriented system) selected by rules 

which map the current action and context onto 
the next desired action. Albus of the Bureau 
of Standards has designed a robot control 
system based on a hierarchy of table-driven 
computing elements (1]. powers has outlined a 
behavioral control hierarchy based entirely on 
servomechanism theory (31]. Both of these 
latter approaches seem to work .well at the 
lower levels of motor control and what we might 
call instinct-driven behavior, but seem rather 
vague when it comes to behavior requiring 
symbolic interaction with the environment. 

Task level motor control is a difficult problem 
under study by cognitive scientists, 
roboticists, and of course those interested in 
high level animation systems. In the near term 
we can expect the development of prototype 
systems capable of generating rather simple 
behaviors. How well such systems scale up 
depends on our understanding of the motor 
control problem itself. 

With task level control, the animator can only 
specify the broad outlines of a particular 
movement and the animation system fills in the 
details. Whether this approach is appropriate 
depends on the particular application. A 
non-expert user may be satisfied with the 
'default' movements and figures the system 
provides if he or she can produce, in a 
reasonable amount of time and at a reasonable 
cost, and animation that gets the point across. 
A 'high-end' user, say, in the entertainment 
industry may want nearly total control over 
every nuance of a character's movenent to make 
a sequence as expressive as possible. However, 
control over the expressive qualities of 
movement does not mean that the animator needs 
or wants a pure guiding system to generate 
pose vectors. The animator does need access 
to different levels of the control hierarchy in 
order to generate new motor skills and to 
'tweak' the existing skills . 

6. Integration of Control Hodes 

Guiding is the prevalent mode in most current 
interactive animation systems. The necessity 
for integrating all three modes of control 
stems from the inability of anyone mode to 
provide complete yet economical control. 
Guiding is best suited for specifying fine 
details but unsuited for controlling complex 
motion. Animator level programming is powerful 
but difficult. Task level systems give us 
facile control over complex motions by trading 
off explicit control over the details of motion. 

Part of the solutin lies in applying guiding 
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techniques at appropriate pOints in the motion 
control hierarchy. The key is the ability to 
decompose the movement repertoire into a 
manageable set of hierarchically organized 
skills. The notion of browsers, as implemented 
in Smalltalk [40] or Loops [37] suggests a 
powerful method for attaching guiding controls 
to motor skills. Suppose I have on my RGB 
monitor a shaded display of a human character. 
On my terminal screen is a representation of the 
structure of the character and its skills. Now 
suppose I trace a curve on the graphics tablet. 
If I specify that that curve represents a 
particular joint rotation, -- i.e., I point to 
the node for the little finger on my terminal, 
I should immediately see on the display the 
little finger of my character wiggling. 
Suppose now I point to the node for "grasping 
with the left hand" -- I should see the figure's 
left hand open and close with the velocity I 
have specified. Lastly, if I pick the node 
labeled "walk", the figure should begin to walk 
across the screen, and this time, the curve I 
have drawn could determine, say, the speed of 
the gait. 

This modular, hierarchical organization allows 
the user to identify the motion qualities that 
need to be adjusted, and at the same time it 
helps to localize the effect of such changes. 
This calls for a uniform representation of 
motor skills that incorporates, for each skill, 
a specification of the kinds of adjustments 
that are possible, and, in addition, a uniform 
set of mechanisms, e.g., p-curves for 
interacting with skills. 

L.. Conclusion 

I have presented a conceptual analysis of the 
domain of three-dimensional computer animation, 
which is viewed as the process to simulating 
objects and their behaviors in a microworld 
specified by the animator . The degrees of 
freedom problem is the central issue in the 
coordination of articulated figures. Computer 
animation systems must be based on the 
appropriate set of domain concepts, namely 
adaptive motion and the five abstraction 
mechanisms, to enable the animator to define 
and manipulate interesting characters and 
environments in an expressive way. 

The discussion of the three control modes 
suggest criteria for good guiding and animator 
level systems. Guiding systems have received 
the greatest attention to date -- the notion of 
an interactive, device-mediated interface has 
come to be viewed almost as a standard way of 
communicating with computers, as evidenced by 

the popularity of the "mouse-and-window" style 
of computing. In general, however, guiding 
should be seen as a mechanism for developing and 
controlling the behavior of complex systems, 
rather thatn just picking points, drawing 
lines, or generating scalar values for various 
transformation parameters. As suggested above, 
we want to be able to attach the output of a 
physical input device at arbitrary levels of a 
behavioral hierarchy. While the meaning of a 
gesture depends, of course, on the process 
that is viewing it, the hard question is to 
find an appropriate set of parameters for 
controlling a complex process, for example, 
facial expressions (cf. Parke [28] and Platt 
[30]). Once a natural control set has been 
determined, it is not- hard to use input devices 
to generate parameter values interactively . 
There are two complementary design themes: 
How can we "plug in" guiding mechanisms to 
drive a given complex behavior? How can input 
device modules serve as standard "gesture 
amplifiers" that can be easily -redirected to 
various functions of the figure control 
hierarchy? 

An animator level language should incorporate 
the deSign features and prinCiples we expect in 
a quality programming language . Concealing the 
programming task from the user or sugar-coating 
the syntax is not nearly as important as 
providing the expressive power needed for 
animation. This is not the place for a 
discussion of the future of automatic 
programming, nor of the merits of the latest 
programming paradigm. The pOint is that the 
algorithmic description of behavior -- "Do 
this, then do that" -- is an essential and 
fundamental way to communicate about movement . 
Hore often than not the so-called "naive user" 
will quickly learn the syntax of an animation 
language only to become frustrated because the 
language is not powerful enough. Animation 
level languages and systems should therefore 
combine what we know about software technology 
with the mechanisms appropriate to motion 
control -- e.g., functional abstraction and 
adaptive motion. 

Finally, adaptive motion, in the form of 
collision testing, and resolved motion control 
should be implemented, at least in part, as 
basic elements of any 3-D computer animation 
system. 

The art and science of 3-D computer animation 
continues to evolve towards the simulation of 
hypothetical worlds complete with physical laws 
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and figures possessing behavioral repertoires. 
It is by learning to construct and control 
these simulations that we give computer 
animation its expressive power. 
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