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ABSTRACT 

Stochastic modelling is a technique that 
allows shifting the complexity of the picture 
away from the modelling database while 
rendering a class of "natural" looking 
objects. When implementing this technique 
within traditional rendering systems, how­
ever, one has still to deal with a very large 
number of geometric and display primitives. 
We present here a test system where most of 
the database expansion is done at the 
display level. A simple display processor, 
acting directly on the frame buffer, receives 
sparse 3-D geometric data, generates dense 
2-D stochastic arrays, and determine their 
colour, shade and visibility to write the final 
image on the frame buffer. 
The system allowed us to explore the issues 
of reentrant stochastic subdivision, priority 
and visibIlity determination, quick shading 
techniques and filtering at the frame buffer 
level with a bit-slice display processor. 
Examples of the images produced and per­
formance statistics are given for the system. 

RESUME 

Le modelage stochastique est une technique 
qui permet de repousser la complexit~ de 
l'image loin des donn~es du model age tout 
en representant une classe d 'objets qui 
apparaissent "naturels". Cependant, quand 
cette technique est r~alis~e avec des 
systemes de representation traditionels, on 
a encore affaire ~ un tres grand nombre de 
primitives gt!ometriques et d'affichage. 
N ous presentons ICI un systeme 
experimental ou la pI us grande partie de 
l 'cxpension des donnt!es est faite au niveau 
de l 'affichage. Un processeur graphique sim­
p le , agissant directement au niveau de la 
m~moire d 'image, re~oi t des donnees 
g~ometriques dispersees en trois dimen­
sions produit des tableaux de valeurs sto-

chastiques denses en deux dimensions, et 
determinent leur couleurs, intensitt!s et 
visibilite pour t!crire l'image finale en 
mt!moire . 
Le systeme no us a permis d'explorer les 
problemes associes ~ la subdivision stochas­
tique reentrante, ~ la dt!termination de la 
priorit~ et de la visibilite, aux techniques 
rapides de dt!termination des teintes au 
niveau de la m~moire d'image avec un pro­
cesseur d'affichage en tranches . Nous don­
nons aussi des examples des images pro­
duites avec le systeme, accompagn~es de 
leurs statistiques. 

KEYWORDS: stochastic modelling , terrain 
modelling, frame buffer algorithms, adaptive 
subdivision. 

1. llotivations 

The complexity of a picture can be measured 
by the number of basic elements (or primi­
tives) necessary to display it. This complex­
ity can be introduced at the modelling level 
or delayed until the display level. At the 
modelling level complexity may manifest 
itself as a large number of primitives or the 
use of higher degree surfaces, stochastic 
models [Four82], or particle systems 
[Reev83]. Since these are normally broken 
down into simpler geometric objects such as 
line segments or polygons , geometric and 
display operations still have to be performed 
on a large number of primitives. As an 
example, the landscape image in Figure 1 is 
composed of 16 bicubic patches subdivided 
into about 2000 triangles each. Roughly 30 
minutes of a VAX 11/780 processor time 
were required to model and display the 
scene. 
If we want to postpone the "data base 
amplification" step as long as possible, algo­
rithms must be developed to perform opera­
tions as close to the frame buffer as possi-
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ble. Processes like clipping. 3-D to 2-D map­
ping. filtering. visibility and shading compu­
tations should be performed with simple. 
fast. dedicated processors. An example of 
this strategy is the well known technique of 
texture mapping [Catm75. Blin78. Will83]. 
Instead of being described by dense data in 
3-D. objects are described by sparse data in 
3-D and dense data in 2-D in the form of 2-D 
texture arrays. Then a complex image is 
obtained from a sparse database. but even 
more importantly the geometric transfor­
mations have only been applied to sparse 
data. In the case of texture mapping. the 2-D 
mapping is facilitated by the fact that the 
position of the surface is not affected by the 
mapping. and therefore the shading (except 
in the case of bump mapping [Blin78. 
Haru84]) and visibility are not modified. 
In [Four82] we developed the techniques for 
stochastic modelling as applied to computer 
graphics. and in particular the reentrant 
subdivision techniques that allowed to gen­
erate approximations to fractional 
Brownian motion. This process. introduced 
by Mandelbrot [Mand68. Mand82]. permits 
realistic approximation of earth terrain. In 
[Pipe84] we described the STINT. a hardware 
board designed to generate a stochastic 
array of values using our subdivision algo­
rithm. We demonstrated that the subdivi­
sion algorithm is simple enough to be imple­
mented easily in hardware. and that such an 
implementation yields a two order of magni­
tude improvement in the speed of genera­
tion of stochastic data over a general pur­
pose processor. The other important point is 
that the data is next to the display processor 
(i . e . in its address space) and the speed of 
the generation of the stochastic data has to 
be matched to the speed at which this pro­
cessor can use the data. 
This paper will describe a group of tech­
niques to generate complex images in a 
display processor operating directly on the 
frame buffer . These techniques include the 
generation of the stochastic data defining 
implicitly the complex model . using either 
the STINT board or a firmware simulaLion. 
the mapping of that data to create the 
screen projection of a stochastic surface. 
the shading computations. the visible sur­
face determination and possible filtering 
techniques. 
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This represents a heavy burden for a proces­
sor normally dedicated to more mundane 
tasks. such as line drawing or area filling . 
This is further complicated by two types of 
constraints . In most cases in a graphics sys­
tem. simple primitives are used to describe 
the objects and must obey constraints at 
their boundaries. Then the geome tric 
transformations and the rest of the render­
ing process operate piecewise on these 
primitives (such as polygons or parametric 
patches) . Clearly then. the dense data gen­
eration and display algorithms which 
operate "close to the frame buffer" must be 
prepared to deal with and respect the con­
straints imposed on them. These can be 
called the external coherence constraints . 
Since most of the data is generated at the 
frame buffer level, and only as needed. as 
the objects appear and disappear. move 
farther and closer. more or less data is actu­
ally generated. We have to make sure ·that in 
every circumstance the picture appears to 
be a correct reconstruction of a virtual 
object. In a traditional system. the details 
are permanently stored in the data base . and 
the problem is only of correctly sampling 
and filtering it. In our system. we have to be 
careful to respect these internal coherence 
constraints as we generate the dense data 
"on the fly". 
An intelligent division of labour between a 
general purpose host processor and one or 
more special purpose display processors 
greatly improves the speed of the d isplay 
process. The host processor does the work 
which requires complex ope r ations such as 
3-D floating point calculations. Special pur­
pose processor(s) perform the simple 
repetitive tasks typical of display processing 
based on dense 2-D data. The processors are 
inexpensive and very fast in their limited 
repertoire . Such a trend is now fairly obvi­
ous. and merely one more turn of the wheel 
of reincarnation [Myer68] . It is interesting 
in this respect to point out tha t we hav c 
seen in the past processors dedicated to ras­
ter operation and display t asks (morc 
recently [Levi84]). geometric tasks [Cl a r821 
a nd modelling tasks [Pipe84] . We are in t hi s 
pupcr c xpl uring Ll:tc i::;suc,:; d eulillg IV i Li I Lli c: 
design of a display processor to which some 
of the modelling and geometric tasks havc 
been transferred. 
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2. The Experimental System 
We have developed an experimental display 
system which generates terrain scenes from 
a very sparse 3-D database consisting of a 
network of square patches. Each patch is 
"painted" with a terrain texture generated 
from an array of stochastic data. The 
software runs on a VAX 111780 host proces­
sor with an Adage 3000 graphics system. 
Resident on the Adage are two special pur­
pose processors. One (the STINT) is custom 
built to generate the stochastic data 
[Pipe84] . The second is a commercial bit­
slice processor which is part of the · raster 
system. For added flexibility, we have also 
implemented a STINT simulation in micro­
code, which allows quick exploration of 
alternatives for the algorithms or the archi­
tecture of the STINT. All the microcode has 
been written using a high level compiler, and 
we have incorporated macros that allow 
compilation of the same code into C, to be 
run on the host processor if necessary. 
The terrain scene is initially modelled as a 
single square patch. This patch is recur­
sively subdivided into smaller squares which 
are of a suitable size for painting. At the 
same time the totally invisible subpatches 
are eliminated, using a extent based on an 
estimate of the final height of the fully 
formed surface. The painter module asks for 
a dense data array using the stochastic 
interpolation algorithm and then maps it to 
the screen space definition of the patch. 
Colour, height and lighting information are 
added to the image during the process and 
clipping and visible surface determination 
are performed. The entire system runs on 
the special processors with the exception of 
the geometric subdivision itself. 

3. The Subdivision 
The display system passes the single square 
"world" patch through a perspective projec­
tion and determines its size and location in 
screen coordinates. If it is too large to be 
processed as an entity it is subdivided into 
four smaller patches and the process is 
repeated . The criterion for size is based on 
the maximum size of the stochastic arrays 
generated by the system. In the current 
implementation, it is 129x129. Therefore a 
patch is subdivided if any of its sides has a 
"Manhattan" length greater than 129 screen 
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units (pixels). This continues until the sub­
patches are completely invisible or until 
they are the appropriate size for painting. 
Subdivision proceeds in an order which sup­
ports the visible surface determination algo­
rithm used by the patch painter, that is the 
subpatches are generated in a front to back 
priority ordering, determined from the eye 
position. 
A patch is considered visible if any part of it 
could appear on the display. This is not a 
clear cut operation since the planar patches 
represent only the base area over which the 
stochastic surface will be drawn (cl Figure 
2). For this purpose patches are considered 
to be three dimensional blocks whose verti­
cal dimension is the highest value expected 
on the stochastic surface. This is similar to 
the well known technique of "boxing" objects 
for quick intersection tests, and more 
specifically to the use of "cheesecake" 
extents [Kaji83] in ray tracing stochastic 
surfaces. The height of the extent box is a 
function of the scaling factor to be used to 
map the stochastic data, and is determinist­
ically bounded by the size of the entry in the 
lookup table used for the Gaussian incre­
ments and the size of the elements in the 
STINT array [Pipe84]. SUbpatches which arc 
of the right size, but partially outside the 
window are clipped during the painting pro­
cess. This means that only a small fraction of 
the total painting effort will be expended on 
invisible portions of the patches. 
Subdivision performed in this manner 
guarantees that the work done in data gen­
eration and mapping will be closely matched 
to the size of the final image on the screen. 
Figure 3 illustrates the subdivision of a 
patch under a perspective view with a large , 
but not uncommon, foreshortening . The top 
of Figure 3 shows the patch boundaries 
resulting from the subdivision. At the bot­
tom of the figure are the patch boundaries in 
screen space. Note that the bottom corners 
have been subdivided less than their neigh­
bours because they have been clipped out. 
The modelling and the geometric modules of 
the graphic system have then to dcal onl y 
with sUbpatches. With the sizes used in our 
implementation (a 512x512 scree n and 
129x129 stochastic data arrays) thi s 
translates into about 20 to 200 ge ometric 
primitives (the sub patches) and 1 modelling 
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primitive (the initial "world" patch) instead 
of about 50.000 geometric primitives 
(assuming polygons covering about 5 pixels 
each. which is conservative for an detailed 
image). As we will see later. the figures would 
be even larger if stochastic modelling were 
not used. 

4. Dense Data Generation 
The stochastic data is generated using the 
recursive interpolation algorithm described 
in [Four82]. and whose hardware implemen­
tation is described in [Pipe84]. The algo­
ri thm generates approximations of frac­
tional Brownian motion. It ensures external 
or boundary coherence by setting the initial 
seeds of the pseudo-random number genera­
tors and it ensures internal coherence by 
tying the subsequent seeds to the values of 
the points used in the computation of the 
new points . It should be noted that in a 
software implementation. it is better to tie 
the seeds to the indices of the point being 
computed. Then changing parameters. such 
as the dimension. which influence all the 
values. will not change totally the macros­
copic features of the patch. This will make 
possible animations where only the dimen­
sion changes. for instance. 
It must be stressed that purely recursive 
subdivision is not correct. since the process 
we want to approximate is not Markovian. 
This means that the knowledge of the boun­
dary of a subpatch is not sufficient to com­
pute its interior. Enough information has to 
be carried over from the neighbours to 
insure the required coherence between lev­
els of interpolation. Figure 4 illustrates the 
reentrant process. Note that the boundary 
elements of the new array are not usable. 
since they cannot be computed from all 
their neighbours. The elements of the array 
that can safely be used are the ones at a dis­
tance from the boundaries equal to or 
greater than the distance between the 
points reentered . 
This property will automatically limit the 
level of subdivision that can be safely used. 
ir we insist on computing the subdivision in 
only one step from the "world" patch. In fact. 
since we use a 129x129 array. anything past 
the 12th or 13th level of subdivision (7 for 
the "world" patch and 5 or 6 for the sub­
patch) will introduce noticeable discontinui-
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ties between subpatches. There are two 
ways to overcome that limi t: one is to use a 
bigger "world" patch. This means more 
memory. but is easily obtained. A 1M byte 
memory would easily accommodate a 
513x513 array of 16 bit elements. This would 
allow about 16 levels. that is an amplification 
of 9 decimal orders of magnitude from the 
original square. The other way is to carry the 
subdivision in steps. carrying from step to 
step enough array elements to exactly com­
pute' the interpolation of the needed points . 
This is what the original software does . Here 
the limit (beside the additional time) is in 
the precision of the array elements. The 
values of the elements adjacent at some 
level will tend to be equal. and the standard 
deviation will eventually go to O. So in both 
cases there is a practical limit to the 
"amplification" effect. But to keep the limit 
in perspective. in the present case it means 
that the fully evolved world has more than 
100 million data points (13 levels . 
corresponding to a 2 13 linear amplification. 
or 226 data points) . 

5 . The Display Operations 
The challenge of implementing the rendering 
algorithms in a very simple processor can 
largely be overcome with a few clever pro­
gramming techniques . A notable example is 
the calculation of complex arithmetic func­
tions using inverted lookup into precom­
puted tables. It is even possible in some 
cases to avoid the search of the inverted 
index and move incrementally through it. 
It is often expedient to resort to approxima­
tion. Careful choice of the approximation 
leads to results which are good in all but the 
most extreme cases. For example . the strips 
used to render the surface are actually not 
vertical in screen space. due to the perspec­
tive projection. Fortunately. the direction 
can be safely approximated as vertical with 
a large saving in computation. Otherwise the 
viSibility algorithm would be more complex 
[Ande82] . 
The quadrilaterals passed to the painter are 
modelled as bilincar parametric patc hes . 
These patches represent the base area over 
which the surface will be drawn. Each data 
point is mapped first to a location in the 
patch and then to the surface by drawi ng a 
vertical strip originating from the pa tch (cl 
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Figure 2) . The length of the strip is deter­
mined from the value of the data point and 
scaled by a factor provided by the perspec­
tive system. Only the visible portion of the 
strip is drawn. It is clipped to fit the display 
window and then visible surface determina-
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tion is performed. I 

Note that all data points are mapped to the ( rv) 
base patch. In a conventional texture map- \: 
ping the data array would be sampled to 
match the actual size of the patch. In this 
case that is incorrect; the size and shape of 
the base patch can be quite different from 
that of the surface which is constructed over 
it. 
The bilinear mapping of the data array to the 
patch can be viewed as a linear interpolation 
of the two screen space coordinates of the 
patch over the data array. This is useful 
since there is another parameter which 
must be interpolated over the patch. The 
length of the vertical strips drawn to 
represent the surface must be scaled as in 
any perspective projection by the inverse of 
the distance from the eye. 
To allow simple visible surface determina­
tion, the patch is always filled from front to 
back (i .e . from the bottom of the screen up) 
and the strips are constrained to fit into 
vertical columns on the screen. It is then 
sufficient to record the highest point 
reached thus far in each column. As the fill 
process proceeds up the screen, only the 
portions of strips above the highest already 
seen are visible . It is crucial that this pro­
cess execute quickly, even though it places 
strict ordering requirements on the preced­
ing steps. Both patches and fill line traces 
must be performed in the correct order. 
Whenever data is mapped to the screen (a 
patch or a data point) the lowest item must 
be done first. 
The strips are coloured using a simple height 
to colour lookup table . The first colour map­
ping scheme we used was designed to match 
the traditional colours of a geography atlas . 
S ince the pictures illustrating this paper are 
grey, there was no need to choose them oth­
erwise. We have, however, experimented with 
more "realistic" colour schemes. 
The shading model used is based on 
Lambert 's law: 

I = I;, k (L . N ) 

~~ii~t~~;;~~;l ;~~Ci~er 
of the light ~ and the surfac normal. he 
calculation involves the normal zed dot pro­
duct of the incident light vector and the sur­
face nor~ The surface normal is calcu­
lated as the cross product of two tangent 
vectors . These are approximated using the 
vertical displacement between adjacent data 
points and a scale factor related to the 
interpoint variance. This scaling compen­
sates for the decrease in variance and 
corresponding lighter shading which accom­
pany increasing depth in the stochastic 
interpolation. 

6. Examples and Performance 
The most exhaustive way to te a modelling 
and display system is to use ' to create an 
animation. We produced a 0 e inute "fiyby 
and look around" animatIOn, where the 
"world" was expanded several million fold . 
The dimension (see [Mand82] for the 
definition of the dimension) was 2 . l. 
Figures 5 to 7 give an idea of the images pro­
duced. Figure 5 is an orthographic projec­
tion of the whole world. The original square 
(4 data points) now contains 512x512 points , 
that is to say 16 129x129 arrays. The time to 
compute it was 36 seconds. Figure 6 is a view 
of the world from the south. One can recog­
nize the islands in the bay, and the point at 
the tip of the southern cape. The level of 
subdivision ranges from 9 to 11. The whole 
scene has 54 subpatches and took 61 seconds 
to compute. Figure 7 is a view in roughly the 
same direction but much closer to the cape. 
Compare the point now to its size in Figure 
5 . The time to compute that image was 160 
seconds, and the level ranges from 9 to 13. 
It should be noted that 30 to 40% of the b it­
slice time in the figures given is spent s imu­
lating the STINT algorithm. For exampl e, in 
the last picture, out of the 160 seconds , 60 
seconds were spent simulating the STINT 
interpolation, 50 seconds were spent in the 
3-D to 2-D mapping , and about 50 seconds in 
the display operations. The time spent in the 
host processor was about 2 seconds , totall y 
overlapped with the bit-sl ice time . 
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7. Enhancements 
There are of course many improvements 
that can be made to the display system. We 
already discussed how to expand further the 
levels of subdivision. Another straightfor­
ward improvement is to use a more sophisti­
cated shading model. In order not to pay too 
high a price in performance. the best is to 
use the same lookup table techniques 
already used in other computations. The use 
of lookup tables for shading in the frame 
buffer has already been reported [Evan84] 
and our situation is similar. since we have a 
normal and we want to compute quickly the 
intensity. From the differences in elevation 
between points and from the precision 
needed. we can establish that 3 to 4 bits for 
each normal vector component is enough. 
giving a 512 to 4K entry lookup table for the 
intensity. Separate specular and diffuse 
reflection tables would be used. The same 
inverted lookup techniques already reported 
can be used to provide more precision. 
Al though the current system makes no 
attempt at anti-aliasing. supersampling can 
be used without too much additional effort. 
The display operations on the current sys­
tem operate at pixel resolution. We can com­
pute the location. width and length of the 
vertical strips used to represent the surface 
at subpixel resolution and make the columns 
used for visible 3e detetmination of 

\ ! 
subpixel width. It not ~ necessary to 
generate more data than are already being 
used. The ratio of data points to patch pixels 
is currently between one and two . The sub­
pixel strips corresponding to one data point 
will typically total between one half and one 
pixel across and may cover portions of more 
than one pixel both horizontally and verti­
cally. The height of the strips is already 
computed to the necessary precision. 
Figure 8 illustrates a portion of the frame 
buffer a few pixels across . The display pro­
cess is using a 4 by 4 subpixel resolution. In 
this example data points are being mapped 
to three consecutive strips. The pixel contri­
bution of the strips can be computed 'on the 
fly' using the information that is already 
being recorded for visible surface determi­
nation. The frame buffer itself can be used 
for pixel construction. The only addit ional 
storage required is that needed to extend 
vi sible surface determination to subpixel 
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resolution. The result -will be equivalent to 
supersampling to 4x4 subpixels. ~ ~ 
~ ~ .. > ~ ~V'<.. ~?L~ AI 

8. ConclusIons ~ \ ~~ ~fIv-
The system as it stands permits one more 
step towards the display of some visually 
complex objects in a reasonable time. It is 
also a case study of processor specialization 
within a display system. We have shown with 
it most of the advantages of the adaptive 
subdivision technique to generate surfaces. 
and some of its limitations for data 
amplification due to the limited sizes of the 
arrays and the limited precision of the 
numbers . 
The gain in speed from a traditional model­
ling and rendering system is about two ord­
ers of magnitude. but we are still far from 
real time. The modelling operations and the 
geometric transformations represent only 
20.000 operations (lOO sUbpatches at 200 per 
subpatch). which can be easily executed in 
real time by a 1Mips processor. The display 
operations. on the other hand. represent up 
to 8xl08 microinstructions in the bit-slice . 
Thus it would take the equivalent of about 
500 pairs of 50ns processors to accomplish 
the same task in real time. if the work is 
fairly distributed among them. 
Our experimental system can only model 
objects which are suited to a dense 2-D data 
representation. Traditional dense 3-D 
modelling is appropriate for a large class of 
(typically man-made) objects . Techniques 
must be developed to merge these two 
classes of objects in a single s ystem. For­
tunately this is often quite easy. In a flight 
simulator. for instance. the separation 
between terrain and cloud cover on one hand 
and airfields and buildings on the other is 
quite clear. Among the problems we will 
investigate next are the mapping of the sto­
chastic data over surfaces more complex 
than bilinear patches. and the visibility 
problems introduced by merging them with 
polyhedral objects . 
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Figure 1. A terrain scene generated by a 
traditional modelling system. Comprises 
about 32,000 triangles. 

Figure 2. The stochastic surface is drawn 
over a planar base area using a series of 
vertical strips. The parallelepiped is the 
surface extent for the purpose of clipping. 

Figure 3. The subdivision step: the patch 
boundaries resulting from subdivision of the 
space. 

Figure 4. Stochastic interpolator re-entry. 
All data points available from the initial 
patch are included as precomputed levels in 
the olation. 

Figure 5. 
"world" patch. Contains 16 subpatches. 

Figure 6. A view from the south. Contains 54 
subpatches, and levels from 9 to 11. 
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Figure 7. A closer view. Note the point in the 
center of the picture. Contains 120 sub­
patches, and levels from 9 to 13. 
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Figure 8. Supersampling: One row of data 
points mapped to the surface. Subpixel 
resolution is 4 by 4. Data points mapped to 
three consecutive strips. 
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