
- 9 -

Frame Butler Algorithms for Stochastic Models

Alain Fournier
Tom MiLligan

Computer Systems Research Institute
Department of Computer Science, University of Toronto

Toronto, Ontario, M5S 1A4

ABSTRACT

Stochastic modelling is a technique that
allows shifting the complexity of the picture
away from the modelling database while
rendering a class of "natural" looking
objects. When implementing this technique
within traditional rendering systems, how­
ever, one has still to deal with a very large
number of geometric and display primitives.
We present here a test system where most of
the database expansion is done at the
display level. A simple display processor,
acting directly on the frame buffer, receives
sparse 3-D geometric data, generates dense
2-D stochastic arrays, and determine their
colour, shade and visibility to write the final
image on the frame buffer.
The system allowed us to explore the issues
of reentrant stochastic subdivision, priority
and visibIlity determination, quick shading
techniques and filtering at the frame buffer
level with a bit-slice display processor.
Examples of the images produced and per­
formance statistics are given for the system.

RESUME

Le modelage stochastique est une technique
qui permet de repousser la complexit~ de
l'image loin des donn~es du model age tout
en representant une classe d 'objets qui
apparaissent "naturels". Cependant, quand
cette technique est r~alis~e avec des
systemes de representation traditionels, on
a encore affaire ~ un tres grand nombre de
primitives gt!ometriques et d'affichage.
N ous presentons ICI un systeme
experimental ou la pI us grande partie de
l 'cxpension des donnt!es est faite au niveau
de l 'affichage. Un processeur graphique sim­
p le , agissant directement au niveau de la
m~moire d 'image, re~oi t des donnees
g~ometriques dispersees en trois dimen­
sions produit des tableaux de valeurs sto-

chastiques denses en deux dimensions, et
determinent leur couleurs, intensitt!s et
visibilite pour t!crire l'image finale en
mt!moire .
Le systeme no us a permis d'explorer les
problemes associes ~ la subdivision stochas­
tique reentrante, ~ la dt!termination de la
priorit~ et de la visibilite, aux techniques
rapides de dt!termination des teintes au
niveau de la m~moire d'image avec un pro­
cesseur d'affichage en tranches . Nous don­
nons aussi des examples des images pro­
duites avec le systeme, accompagn~es de
leurs statistiques.

KEYWORDS: stochastic modelling , terrain
modelling, frame buffer algorithms, adaptive
subdivision.

1. llotivations

The complexity of a picture can be measured
by the number of basic elements (or primi­
tives) necessary to display it. This complex­
ity can be introduced at the modelling level
or delayed until the display level. At the
modelling level complexity may manifest
itself as a large number of primitives or the
use of higher degree surfaces, stochastic
models [Four82], or particle systems
[Reev83]. Since these are normally broken
down into simpler geometric objects such as
line segments or polygons , geometric and
display operations still have to be performed
on a large number of primitives. As an
example, the landscape image in Figure 1 is
composed of 16 bicubic patches subdivided
into about 2000 triangles each. Roughly 30
minutes of a VAX 11/780 processor time
were required to model and display the
scene.
If we want to postpone the "data base
amplification" step as long as possible, algo­
rithms must be developed to perform opera­
tions as close to the frame buffer as possi-

Graphics Interface '85

ble. Processes like clipping. 3-D to 2-D map­
ping. filtering. visibility and shading compu­
tations should be performed with simple.
fast. dedicated processors. An example of
this strategy is the well known technique of
texture mapping [Catm75. Blin78. Will83].
Instead of being described by dense data in
3-D. objects are described by sparse data in
3-D and dense data in 2-D in the form of 2-D
texture arrays. Then a complex image is
obtained from a sparse database. but even
more importantly the geometric transfor­
mations have only been applied to sparse
data. In the case of texture mapping. the 2-D
mapping is facilitated by the fact that the
position of the surface is not affected by the
mapping. and therefore the shading (except
in the case of bump mapping [Blin78.
Haru84]) and visibility are not modified.
In [Four82] we developed the techniques for
stochastic modelling as applied to computer
graphics. and in particular the reentrant
subdivision techniques that allowed to gen­
erate approximations to fractional
Brownian motion. This process. introduced
by Mandelbrot [Mand68. Mand82]. permits
realistic approximation of earth terrain. In
[Pipe84] we described the STINT. a hardware
board designed to generate a stochastic
array of values using our subdivision algo­
rithm. We demonstrated that the subdivi­
sion algorithm is simple enough to be imple­
mented easily in hardware. and that such an
implementation yields a two order of magni­
tude improvement in the speed of genera­
tion of stochastic data over a general pur­
pose processor. The other important point is
that the data is next to the display processor
(i . e . in its address space) and the speed of
the generation of the stochastic data has to
be matched to the speed at which this pro­
cessor can use the data.
This paper will describe a group of tech­
niques to generate complex images in a
display processor operating directly on the
frame buffer . These techniques include the
generation of the stochastic data defining
implicitly the complex model . using either
the STINT board or a firmware simulaLion.
the mapping of that data to create the
screen projection of a stochastic surface.
the shading computations. the visible sur­
face determination and possible filtering
techniques.

- 10 -

This represents a heavy burden for a proces­
sor normally dedicated to more mundane
tasks. such as line drawing or area filling .
This is further complicated by two types of
constraints . In most cases in a graphics sys­
tem. simple primitives are used to describe
the objects and must obey constraints at
their boundaries. Then the geome tric
transformations and the rest of the render­
ing process operate piecewise on these
primitives (such as polygons or parametric
patches) . Clearly then. the dense data gen­
eration and display algorithms which
operate "close to the frame buffer" must be
prepared to deal with and respect the con­
straints imposed on them. These can be
called the external coherence constraints .
Since most of the data is generated at the
frame buffer level, and only as needed. as
the objects appear and disappear. move
farther and closer. more or less data is actu­
ally generated. We have to make sure ·that in
every circumstance the picture appears to
be a correct reconstruction of a virtual
object. In a traditional system. the details
are permanently stored in the data base . and
the problem is only of correctly sampling
and filtering it. In our system. we have to be
careful to respect these internal coherence
constraints as we generate the dense data
"on the fly".
An intelligent division of labour between a
general purpose host processor and one or
more special purpose display processors
greatly improves the speed of the d isplay
process. The host processor does the work
which requires complex ope r ations such as
3-D floating point calculations. Special pur­
pose processor(s) perform the simple
repetitive tasks typical of display processing
based on dense 2-D data. The processors are
inexpensive and very fast in their limited
repertoire . Such a trend is now fairly obvi­
ous. and merely one more turn of the wheel
of reincarnation [Myer68] . It is interesting
in this respect to point out tha t we hav c
seen in the past processors dedicated to ras­
ter operation and display t asks (morc
recently [Levi84]). geometric tasks [Cl a r821
a nd modelling tasks [Pipe84] . We are in t hi s
pupcr c xpl uring Ll:tc i::;suc,:; d eulillg IV i Li I Lli c:
design of a display processor to which some
of the modelling and geometric tasks havc
been transferred.

Graphics Interface '85

2. The Experimental System
We have developed an experimental display
system which generates terrain scenes from
a very sparse 3-D database consisting of a
network of square patches. Each patch is
"painted" with a terrain texture generated
from an array of stochastic data. The
software runs on a VAX 111780 host proces­
sor with an Adage 3000 graphics system.
Resident on the Adage are two special pur­
pose processors. One (the STINT) is custom
built to generate the stochastic data
[Pipe84] . The second is a commercial bit­
slice processor which is part of the · raster
system. For added flexibility, we have also
implemented a STINT simulation in micro­
code, which allows quick exploration of
alternatives for the algorithms or the archi­
tecture of the STINT. All the microcode has
been written using a high level compiler, and
we have incorporated macros that allow
compilation of the same code into C, to be
run on the host processor if necessary.
The terrain scene is initially modelled as a
single square patch. This patch is recur­
sively subdivided into smaller squares which
are of a suitable size for painting. At the
same time the totally invisible subpatches
are eliminated, using a extent based on an
estimate of the final height of the fully
formed surface. The painter module asks for
a dense data array using the stochastic
interpolation algorithm and then maps it to
the screen space definition of the patch.
Colour, height and lighting information are
added to the image during the process and
clipping and visible surface determination
are performed. The entire system runs on
the special processors with the exception of
the geometric subdivision itself.

3. The Subdivision
The display system passes the single square
"world" patch through a perspective projec­
tion and determines its size and location in
screen coordinates. If it is too large to be
processed as an entity it is subdivided into
four smaller patches and the process is
repeated . The criterion for size is based on
the maximum size of the stochastic arrays
generated by the system. In the current
implementation, it is 129x129. Therefore a
patch is subdivided if any of its sides has a
"Manhattan" length greater than 129 screen

- 11 -

units (pixels). This continues until the sub­
patches are completely invisible or until
they are the appropriate size for painting.
Subdivision proceeds in an order which sup­
ports the visible surface determination algo­
rithm used by the patch painter, that is the
subpatches are generated in a front to back
priority ordering, determined from the eye
position.
A patch is considered visible if any part of it
could appear on the display. This is not a
clear cut operation since the planar patches
represent only the base area over which the
stochastic surface will be drawn (cl Figure
2). For this purpose patches are considered
to be three dimensional blocks whose verti­
cal dimension is the highest value expected
on the stochastic surface. This is similar to
the well known technique of "boxing" objects
for quick intersection tests, and more
specifically to the use of "cheesecake"
extents [Kaji83] in ray tracing stochastic
surfaces. The height of the extent box is a
function of the scaling factor to be used to
map the stochastic data, and is determinist­
ically bounded by the size of the entry in the
lookup table used for the Gaussian incre­
ments and the size of the elements in the
STINT array [Pipe84]. SUbpatches which arc
of the right size, but partially outside the
window are clipped during the painting pro­
cess. This means that only a small fraction of
the total painting effort will be expended on
invisible portions of the patches.
Subdivision performed in this manner
guarantees that the work done in data gen­
eration and mapping will be closely matched
to the size of the final image on the screen.
Figure 3 illustrates the subdivision of a
patch under a perspective view with a large ,
but not uncommon, foreshortening . The top
of Figure 3 shows the patch boundaries
resulting from the subdivision. At the bot­
tom of the figure are the patch boundaries in
screen space. Note that the bottom corners
have been subdivided less than their neigh­
bours because they have been clipped out.
The modelling and the geometric modules of
the graphic system have then to dcal onl y
with sUbpatches. With the sizes used in our
implementation (a 512x512 scree n and
129x129 stochastic data arrays) thi s
translates into about 20 to 200 ge ometric
primitives (the sub patches) and 1 modelling

Graphics Interface '85

r

\

primitive (the initial "world" patch) instead
of about 50.000 geometric primitives
(assuming polygons covering about 5 pixels
each. which is conservative for an detailed
image). As we will see later. the figures would
be even larger if stochastic modelling were
not used.

4. Dense Data Generation
The stochastic data is generated using the
recursive interpolation algorithm described
in [Four82]. and whose hardware implemen­
tation is described in [Pipe84]. The algo­
ri thm generates approximations of frac­
tional Brownian motion. It ensures external
or boundary coherence by setting the initial
seeds of the pseudo-random number genera­
tors and it ensures internal coherence by
tying the subsequent seeds to the values of
the points used in the computation of the
new points . It should be noted that in a
software implementation. it is better to tie
the seeds to the indices of the point being
computed. Then changing parameters. such
as the dimension. which influence all the
values. will not change totally the macros­
copic features of the patch. This will make
possible animations where only the dimen­
sion changes. for instance.
It must be stressed that purely recursive
subdivision is not correct. since the process
we want to approximate is not Markovian.
This means that the knowledge of the boun­
dary of a subpatch is not sufficient to com­
pute its interior. Enough information has to
be carried over from the neighbours to
insure the required coherence between lev­
els of interpolation. Figure 4 illustrates the
reentrant process. Note that the boundary
elements of the new array are not usable.
since they cannot be computed from all
their neighbours. The elements of the array
that can safely be used are the ones at a dis­
tance from the boundaries equal to or
greater than the distance between the
points reentered .
This property will automatically limit the
level of subdivision that can be safely used.
ir we insist on computing the subdivision in
only one step from the "world" patch. In fact.
since we use a 129x129 array. anything past
the 12th or 13th level of subdivision (7 for
the "world" patch and 5 or 6 for the sub­
patch) will introduce noticeable discontinui-

- 12 -

ties between subpatches. There are two
ways to overcome that limi t: one is to use a
bigger "world" patch. This means more
memory. but is easily obtained. A 1M byte
memory would easily accommodate a
513x513 array of 16 bit elements. This would
allow about 16 levels. that is an amplification
of 9 decimal orders of magnitude from the
original square. The other way is to carry the
subdivision in steps. carrying from step to
step enough array elements to exactly com­
pute' the interpolation of the needed points .
This is what the original software does . Here
the limit (beside the additional time) is in
the precision of the array elements. The
values of the elements adjacent at some
level will tend to be equal. and the standard
deviation will eventually go to O. So in both
cases there is a practical limit to the
"amplification" effect. But to keep the limit
in perspective. in the present case it means
that the fully evolved world has more than
100 million data points (13 levels .
corresponding to a 2 13 linear amplification.
or 226 data points) .

5 . The Display Operations
The challenge of implementing the rendering
algorithms in a very simple processor can
largely be overcome with a few clever pro­
gramming techniques . A notable example is
the calculation of complex arithmetic func­
tions using inverted lookup into precom­
puted tables. It is even possible in some
cases to avoid the search of the inverted
index and move incrementally through it.
It is often expedient to resort to approxima­
tion. Careful choice of the approximation
leads to results which are good in all but the
most extreme cases. For example . the strips
used to render the surface are actually not
vertical in screen space. due to the perspec­
tive projection. Fortunately. the direction
can be safely approximated as vertical with
a large saving in computation. Otherwise the
viSibility algorithm would be more complex
[Ande82] .
The quadrilaterals passed to the painter are
modelled as bilincar parametric patc hes .
These patches represent the base area over
which the surface will be drawn. Each data
point is mapped first to a location in the
patch and then to the surface by drawi ng a
vertical strip originating from the pa tch (cl

Graphics Interface '85

Figure 2) . The length of the strip is deter­
mined from the value of the data point and
scaled by a factor provided by the perspec­
tive system. Only the visible portion of the
strip is drawn. It is clipped to fit the display
window and then visible surface determina-

- 13

tion is performed. I

Note that all data points are mapped to the (rv)
base patch. In a conventional texture map- \:
ping the data array would be sampled to
match the actual size of the patch. In this
case that is incorrect; the size and shape of
the base patch can be quite different from
that of the surface which is constructed over
it.
The bilinear mapping of the data array to the
patch can be viewed as a linear interpolation
of the two screen space coordinates of the
patch over the data array. This is useful
since there is another parameter which
must be interpolated over the patch. The
length of the vertical strips drawn to
represent the surface must be scaled as in
any perspective projection by the inverse of
the distance from the eye.
To allow simple visible surface determina­
tion, the patch is always filled from front to
back (i .e . from the bottom of the screen up)
and the strips are constrained to fit into
vertical columns on the screen. It is then
sufficient to record the highest point
reached thus far in each column. As the fill
process proceeds up the screen, only the
portions of strips above the highest already
seen are visible . It is crucial that this pro­
cess execute quickly, even though it places
strict ordering requirements on the preced­
ing steps. Both patches and fill line traces
must be performed in the correct order.
Whenever data is mapped to the screen (a
patch or a data point) the lowest item must
be done first.
The strips are coloured using a simple height
to colour lookup table . The first colour map­
ping scheme we used was designed to match
the traditional colours of a geography atlas .
S ince the pictures illustrating this paper are
grey, there was no need to choose them oth­
erwise. We have, however, experimented with
more "realistic" colour schemes.
The shading model used is based on
Lambert 's law:

I = I;, k (L . N)

~~ii~t~~;;~~;l ;~~Ci~er
of the light ~ and the surfac normal. he
calculation involves the normal zed dot pro­
duct of the incident light vector and the sur­
face nor~ The surface normal is calcu­
lated as the cross product of two tangent
vectors . These are approximated using the
vertical displacement between adjacent data
points and a scale factor related to the
interpoint variance. This scaling compen­
sates for the decrease in variance and
corresponding lighter shading which accom­
pany increasing depth in the stochastic
interpolation.

6. Examples and Performance
The most exhaustive way to te a modelling
and display system is to use ' to create an
animation. We produced a 0 e inute "fiyby
and look around" animatIOn, where the
"world" was expanded several million fold .
The dimension (see [Mand82] for the
definition of the dimension) was 2 . l.
Figures 5 to 7 give an idea of the images pro­
duced. Figure 5 is an orthographic projec­
tion of the whole world. The original square
(4 data points) now contains 512x512 points ,
that is to say 16 129x129 arrays. The time to
compute it was 36 seconds. Figure 6 is a view
of the world from the south. One can recog­
nize the islands in the bay, and the point at
the tip of the southern cape. The level of
subdivision ranges from 9 to 11. The whole
scene has 54 subpatches and took 61 seconds
to compute. Figure 7 is a view in roughly the
same direction but much closer to the cape.
Compare the point now to its size in Figure
5 . The time to compute that image was 160
seconds, and the level ranges from 9 to 13.
It should be noted that 30 to 40% of the b it­
slice time in the figures given is spent s imu­
lating the STINT algorithm. For exampl e, in
the last picture, out of the 160 seconds , 60
seconds were spent simulating the STINT
interpolation, 50 seconds were spent in the
3-D to 2-D mapping , and about 50 seconds in
the display operations. The time spent in the
host processor was about 2 seconds , totall y
overlapped with the bit-sl ice time .

Graphics Interface '85

r

7. Enhancements
There are of course many improvements
that can be made to the display system. We
already discussed how to expand further the
levels of subdivision. Another straightfor­
ward improvement is to use a more sophisti­
cated shading model. In order not to pay too
high a price in performance. the best is to
use the same lookup table techniques
already used in other computations. The use
of lookup tables for shading in the frame
buffer has already been reported [Evan84]
and our situation is similar. since we have a
normal and we want to compute quickly the
intensity. From the differences in elevation
between points and from the precision
needed. we can establish that 3 to 4 bits for
each normal vector component is enough.
giving a 512 to 4K entry lookup table for the
intensity. Separate specular and diffuse
reflection tables would be used. The same
inverted lookup techniques already reported
can be used to provide more precision.
Al though the current system makes no
attempt at anti-aliasing. supersampling can
be used without too much additional effort.
The display operations on the current sys­
tem operate at pixel resolution. We can com­
pute the location. width and length of the
vertical strips used to represent the surface
at subpixel resolution and make the columns
used for visible 3e detetmination of

\ !
subpixel width. It not ~ necessary to
generate more data than are already being
used. The ratio of data points to patch pixels
is currently between one and two . The sub­
pixel strips corresponding to one data point
will typically total between one half and one
pixel across and may cover portions of more
than one pixel both horizontally and verti­
cally. The height of the strips is already
computed to the necessary precision.
Figure 8 illustrates a portion of the frame
buffer a few pixels across . The display pro­
cess is using a 4 by 4 subpixel resolution. In
this example data points are being mapped
to three consecutive strips. The pixel contri­
bution of the strips can be computed 'on the
fly' using the information that is already
being recorded for visible surface determi­
nation. The frame buffer itself can be used
for pixel construction. The only addit ional
storage required is that needed to extend
vi sible surface determination to subpixel

- 14 -

\. ~

resolution. The result -will be equivalent to
supersampling to 4x4 subpixels. ~ ~
~ ~ .. > ~ ~V'<.. ~?L~ AI

8. ConclusIons ~ \ ~~ ~fIv-
The system as it stands permits one more
step towards the display of some visually
complex objects in a reasonable time. It is
also a case study of processor specialization
within a display system. We have shown with
it most of the advantages of the adaptive
subdivision technique to generate surfaces.
and some of its limitations for data
amplification due to the limited sizes of the
arrays and the limited precision of the
numbers .
The gain in speed from a traditional model­
ling and rendering system is about two ord­
ers of magnitude. but we are still far from
real time. The modelling operations and the
geometric transformations represent only
20.000 operations (lOO sUbpatches at 200 per
subpatch). which can be easily executed in
real time by a 1Mips processor. The display
operations. on the other hand. represent up
to 8xl08 microinstructions in the bit-slice .
Thus it would take the equivalent of about
500 pairs of 50ns processors to accomplish
the same task in real time. if the work is
fairly distributed among them.
Our experimental system can only model
objects which are suited to a dense 2-D data
representation. Traditional dense 3-D
modelling is appropriate for a large class of
(typically man-made) objects . Techniques
must be developed to merge these two
classes of objects in a single s ystem. For­
tunately this is often quite easy. In a flight
simulator. for instance. the separation
between terrain and cloud cover on one hand
and airfields and buildings on the other is
quite clear. Among the problems we will
investigate next are the mapping of the sto­
chastic data over surfaces more complex
than bilinear patches. and the visibility
problems introduced by merging them with
polyhedral objects .

Acknowledgements
We gratefully acknowledge the support of the
Natural Sciences and Engineering Research
Council and of the Communication Research
Centre JOf the Department of Communica­
tions. t. C<1,v Ci'-tltt

Graphics Interface '85

Figure 1. A terrain scene generated by a
traditional modelling system. Comprises
about 32,000 triangles.

Figure 2. The stochastic surface is drawn
over a planar base area using a series of
vertical strips. The parallelepiped is the
surface extent for the purpose of clipping.

Figure 3. The subdivision step: the patch
boundaries resulting from subdivision of the
space.

Figure 4. Stochastic interpolator re-entry.
All data points available from the initial
patch are included as precomputed levels in
the olation.

Figure 5.
"world" patch. Contains 16 subpatches.

Figure 6. A view from the south. Contains 54
subpatches, and levels from 9 to 11.

Graphics Interface '85

r

Figure 7. A closer view. Note the point in the
center of the picture. Contains 120 sub­
patches, and levels from 9 to 13.

- , - --. ..r+1-M'+1
.' , ,"

-f- -

-f--- --, '

_ rr '>
" , i:

, .
' . 1

, -- .. ~ -'-I-

- '

Figure 8. Supersampling: One row of data
points mapped to the surface. Subpixel
resolution is 4 by 4. Data points mapped to
three consecutive strips.

)j) References

, ~}/[Ande82] Anderson. D. P . "Hidden Line Elimi­
. ,..0/ nation in Projected Grid Surfaces", ACM
~ Transactions on Graphics, 1, 4, (October 82) ,

274-288.

[Blin78] Blinn, J . F . "Simulation of Wrinkled
Surfaces", in Proceedings of SIGGRAPH '78,
also published as Comput. Graphics , 12, 3,
(Aug 1978) , 286-292.

[Catm75] Catmull. E., "Computer display of
curved surfaces", in Proc . IEEE Conference
on Computer Graphics , Pattern Recognition
and Data Structure . (May 1975) .

[Clar82] Clark, J . H. "The Geometry Engine: A
VLSI Geometry System for Graphics", in
Proceedings of SIGGRAPH 82, also published

- 16 -

as Comput. Graphics, 16,3, (Aug 82), 127-133.

[Evan84] Evans, K. B. "Real time Lighting
Manipulation in Color via Lookup Tables" ,
Proceedings of Graphics Interface '84, (May
1984), 173-177.

[Four82] Fournier, A., Fussell, D. and Car­
penter, 1. "Computer Rendering of Stochas­
tic Models", Communications of the ACM , 25,
6, (June 1982), 371-384.

[Haru84] Haruyama, S. and Barsky, B. A.
"Using Stochastic Modelling for Texture Gen­
eration", IEEE Computer Graphics and Appli­
cations, 4, 3, 7-19.

[Kaji83] Kajiya, J . T., "Ray Tracing Procedur­
ally Defined Objects", in Proceedings of SIG­
GRAPH 83, also published as Comput. Graph­
ics, 17,3, (July 83),91-102.

[Levi84] Levinthal A. and Porter, T. , "Chap- A
SI1tQ) Graphics Processor", in Proceedings of
SIGGRAPH 84, also published as Comput.
Graphics, 18, 3, 77-82.

[Mand68] Mandelbrot, B. B. and Van Ness, J.
W. "Fractional Brownian motions , fractional
noises and applications", SIAM Review, 10, 4,
(Oct 1968).422-437.

[Mand82] Mandelbrot, B. B. The Practal
Geometry of Nature. Freeman, (1982) .

[Myer68] Myer, T. H. and Sutherland, 1. E., "On
the Design of Display Processors", Communi­
cations of the ACM , 11 , 6, (June 68) , 410-414 .

[Pipe84] Piper, T. S. and Fournier, A. "A
Hardware Stochastic Interpolator for Raster
Displays", in Proceedings of SIGGRAPH 84,
also published as Comput. Graphics , 18, 3 ,
(July 84),83-91.

[Reev83] Reeves, W. T., "Particle Systems-A
Technique for Modeling a Class of Fuzzy
Objects", Transactions on Graphics , 2, 2,
(April 83) , 91-108.

[Will83] Williams, L.
Parametrics", in Proceedings
83, also published as Comput.
3, (July 83) , 1-11 .

"Pyramidal
of SIGGRAPH
Graphics, 17,

Graphics Interface '85

