
- 139 -

A MODEL FOR A DOCUMENT MAINTENANCE SYSTEMt

Department Of Computer Science

Matthew Kaplan

Brown University Providence, Rhode Island

Abstract

We present the architecture of a system for edit
ing formatted documents. Key among the require
ments for this system are support for complex page
formats and the ability to incorporate diagrams and
other non-textual features. The system is interactive,
using an incremental formatter to adjust the text
after each change.

Our model allows for extending the set of sup
ported document objects and permits multiple views
of these objects. Documents are highly structured,
and relationships between structures are maintained
by constraints resident in each object.

KEYWORDS: interactive editor/formatters, incre
mental formatting, document model, constraint
maintenance, page layout.

o. Motivation.

The system we describe here is intended to sup
port creation of formatted documents. Important to
us are the ability to incorporate many kinds of
graphic entities (text, line drawings, tables, equa
tions, musical notation, foreign language text, etc.)
in a document as well as the ability to easily design a
page in all its details (such as alignment of certain
components with others, and relationships between
dimensions of objects). The system is designed to
make the extension of its capabilities feasible.

Our system differs from batch formatters in its
interactive user interlace. Our system is a
'WYSIWYO' formatter in that its user is given an
accurate depiction of the printed page at all times.
However, it differs from many existing
editor/formatters by allowing many kinds of of
graphical and textual objects to be incorporated in a
document. The construction of complex documents
is facilitated by the system's highly structured, object
oriented design. Object orientation, by enforcing

modularity, enhances extensibility. The structured
approach benefits the user by making possible fast
incremental reformatting, which is especially impor
tant . in large documents. Such reformatting is
automatically perlormed after editing operations, so
that the user always sees an up-to-date version of
what he is working on.

Many WYSIWYO document editor/formatters
[MacWrite,Cham,MeyvD] have difficulty with large
documents with complex layouts. One reason for
this is the inadequacy of their internal representation
and the associated processing model. The architec
ture of our system is specifically designed to address
this problem so that, even for difficult documents, a
fully formatted version can be presented to the user
as he edits. In order to manage the richness of our
domain, we provide multiple views of the document
for the user to edit, each capturing a well-defined
subset of the document's content. Thus, the user
may edit text in one view, ·edit a picture in another,
and see a fully formatted page, updated periodically
(e.g., whenever an editing operation is complete) in
a third. The correspondence between locations in
these views is maintained, as they are merely filtered
versions of the ·underlying internal representations.
In this paper we present this architecture (a struc
tured network of communicating specialists) and two
components that display key features of our system
(incremental reformatting and a flexible page layout
facility).

These two components work together to create
formatted pages. Specifying a page layout involves
dividing a page into a pattern of rectangular regions
that can hold columns of text, pictures, tables, etc.
This division of the page into regions is user-driven.
Reformatting, on the other hand, is an automatic
process that fills columns defined in the layout with
formatted text whenever necessary.

t This work ha! been supported, in part, by mM Corp. and by the Online Computer Library Center, Inc. (OeLq

Graphics Interface '85

- 140 -

1. Introduction.

Document maintenance, as used here, is a task
that combines and extends the traditional notion of
both batch /ormaning and interactive editing. Batch
formatters (such as troff [KerLe], TEX [Knuth], and
Scribe [Reid]) do not take advantage of the fact that
documents are not created all at once, but, rather,
are the object of frequent manipulation and adjust
ment. Formatting is done all at once, on the entire
document or, in sophisticated systems, on substantial
segments of the document. A document maintenance
system (hereafter dms), like some interactive pro
gramming environments, makes use of the relatively
slow and steady rate of change of a document to
present the user with a com plete and consistent pic
ture of it at all times.

Some formatting systems (e.g., Scribe) have
assumed that formatting details are not really the
author's concern: that he does not care. This is often
the case, but it is often not the case as well. In a
dms, typography and layout do not take second place
to the text, nor does text editing suffer from an
overemphasis on the graphical components of the
document. Its user can modify diagrams, page lay
outs or typographical characteristics as easily as
words, and the document will properly adapt to all
changes in an orderly, efficient way. Our system
stands between the dual worlds of the graphical,
layed-out document and logical, textually structured
document, providing a channel of communication
between -them and allowing the user to manipulate
both.

Unlike batch formatting, text and graphical edit
ing are interactive but usually applicable only in
domains where changes are local (Le., are not pro
pagated far). In a formatted document, as opposed
to unformatted text or graphics editors, small
changes can propagate over great distances; direct
editing of formatted documents is not necessarily a
local process. Unlike traditional interactive editors a
dms lets its user edit interactively in the formatted
document domain, where small changes can have
global ramifications.

Our system is a dirut editor of formatted docu
ments . By "directly" editing a document we mean ·
editing the layed-out version itself, as opposed to a
linear command or specification file that would drive
a batch formatter creating a layout. A document

linearized into a command file is only indirectly
related to the two-dimensional document that is being
created. Eliminating the need to encode complicated
two-dimensional relations in a one-dimensional com
mand file is one of our fundamental goals. The
capacity for direct editing is, to a great extent, what
we refer to when we say that our system is "interac
tive" .

Our dms could be classed as a WYSIWYG system
designed for users creating publications, as opposed
to letters or office memos. The nature of our goals
(interactive editing of large and varied documents
with sophisticated page layout needs) forces a dif
ferent emphasis in this research than that in word
processors and office systems (e.g., Etude
[Good,HamIA]). Rather than concentrating on the
user interface design, with secondary emphasis on the
system design, we are primarily interested in how the
the system's document representation can be used to
give us a powerful, flexible, and extensible system.
The representation, which is described in the section
2, can be put to great advantage in keeping the docu
ment in a presentable, fo.matted state. The control
mechanism of the system, which oversees incremental
formatting, is distributed throughout the components
of the document, parallelling the document represen
tation. Each component (for example, paragraph,
diagram, column, sentence) has its own control
center that oversees changes to sub-components,
locally maintaining an appropriate format . Con
straints are propagated between control centers as
described in section 3. The format just mentioned is
graphical in some components: for example, a
column arranges its component rectangles so that
they are stacked vertically, all separated by the same
amount of space, and makes sure that they fit within
the column width. In other components the "for
mat" is not graphical, as in a sentence, which main
tains an ordering of its words, independently of typo
graphical characteristics. A component that is a
composition of other, simpler, components, can exert
some control over these, its children. The formats
can be thought of as constraining the appearance or
structure of document parts. Each kind of com
ponent is associated with its own mechanism for
maintaining these constraints, as will be explained
later.

Graphics Interface '85

- 141 -

2. Docomeot orgaoizatioo.

A system's domain model has a profound influ
ence on its strengths and weaknesses. A quarter
plane model of text is not well suited to a system that
has to let its users examine the text at varying levels
of detail. A hierarchical model is not well suited to
systems that have to be able to move rectangular
blocks of positioned text. The challenge for a hybrid
editor/formatter, such as ours, is to reconcile the con
flicting ways of decomposing the document. A user
has to be able to refer to document elements both by
appearance, as part of a particular column, for exam
ple, and textually, as part of a particular section or
chapter.

Each useful organization can be regarded as a
document view. Multiple views of a document are
related to multiple viewpoints of programs as dis
cussed in [Winog,BarSh], and used in the Pecan

system [Reiss], among others. Two important views
are the abstract, structured text view, and the COII

crete graphical text view, though multiple views can
exist on a smaller scale, as in multiple formats for
tables. In our domain it is important not to favor
one view over another, as have batch formatters.
For example, abstract formatters (such as Scribe)
model documents hierarchically, by textual function,
so users have little control over typography. Con
versely, concrete formatters have inadequate facilities
for changing text without regard to format [FurSS].
Because the abstract and the concrete document are
only indirectly related we must accept multiple
representations of the document, corresponding to
multiple views, if all significant aspects are to be
modelled.

Within any single view trees will be the dom
inant motif. Hierarchical representations are ubiqui
tous: many page layouts are patterns of non
overlapping nested boxes; unformatted text is
hierarchically organized; line drawings can usually be
decomposed hierarchically. Hierarchies express use
ful, natural groupings and we need them.

A true hierarchy cannot be used to express mul
tiple uses of a single object. A word must be either
a part of a sentence or a part of a text line not both
in a tree representation. Our representati~n extend~
a str~ct hierarchy by allowing objects to be shared by
multiple parents, each parent viewing the common

child in a different way . We are still able to speak,
for example, about a sentence as a group of words
but our system can simultaneously support any other
objects that contain words of the sentence in one way
or another (formatted lines and index entries, for
example) without favoring one usage of a word over
another.

An important property of this representation is
its tolerance of multiple structures built from one set
of objects. However, in documents, it is also neces
sary to coordinate such multiple views; the
relationships between different views are what bind
the document objects into a whole. Our system is
greatly concerned about how the textual and layout
aspects of the document are intertwined. The inter
nal representation of our dms is the mediator
between conflicting views of a formatted document.
As an example of the dependencies that must be
represented, the effect of a textual change is felt
throughout the column into which the text is set.
Similarly, if a column's dimensions change, all the
text within that column will be affected. Thus, the
document model has to represent the relationships
between textual document objects and the graphical
containers within which they are arranged.

The dual functions of providing and coordinating
multiple views are supplied, in our representatjon,
with the use of links to multiple parents, and chil
dren, respectively. While words, for example, may
split into multiple views by their parents, there are
objects (such as chapters) that parent different kinds
of views (see figure 1). Such objects are responsible

Figure 1. Document objects.

Graphics Interface '85

- 142 -

for communication between and coordination of
objects. The next section examines how this coordi
nation takes place by describing how pages are filled
with text.

3. Constraint maintenance.

All actions in our system are initiated within a
uniform constraint maintenance paradigm. Each
object is responsible for properly maintaining itself
according to its particular requirements. Such
maintenance could involve, for example, keeping
columns full in a magazine page format, preventing
overfull pages or widows in a standard book, keeping
sentences ordered in a paragraph, or characters
aligned with respect to the baseline of a word. The
tools available to an object to aid in this process are
predefined manipulations of its internal representa
tion, and application of functions made available to -
the object by its children. A child may not directly
demand help of parents, so the object needs no
knowledge of its parents to operate.

Our document world is dynamic: objects can
change at any moment. When an object is altered, a
parent, whose consistency is dependent on the
characteristics of its children, might have to change.
Thus whenever an object changes it wakes up each of
its parents. A parent may decide that the change is
insignificant. For exam pie, if the arrangement of
words in a paragraph changes but not the number of
lines, a text column doesn't react to the change. If
the change is significant, the parent must adapt and,
because of its own change, propagate the change
upward to its parents. Knowledge of changes
spreads upward from child to parent; orders for
adaptation are handed down from parents to chil
dren. Such structured constraint maintenance is the
fundamental pattern of control flow in our system.
All adaptation follows it. Similar constraint propaga
tion schemes, in which the conditions necessitating
adaptation are separated from the means of adapting,
have been used in other systems (e.g.,
[SteSu,Borni,Gosli]). The paths that propagation of
changes can follow are unrestricted in most such sys
tems, while we limit propagation to follow links
between parents and children as described, integrat
ing constraint maintenance with the document
representation .

c. Incremental text rormatting.

When part of the text is changed the effects of
this change are often propagated to the end of the
document. But it will be noticed that often the most
dramatic format changes occur closest to the source
of the disturbance, and the effects very far away are
~inimal. If, for example, the document in question
15 a book, a change in the text will undoubtedly
require resetting the edited paragraph. Blocks of for
matted text after that paragraph, and in the same
chapter, will have to be repositioned within their
pag~,. and ~sibly split over two or more pages.
IndIVIdual hnes, however, will not have to be reset
and, in most cases, the paragraphs can be shifted
whole. Past the chapter boundary, page numbers
and references, at worst, will have to be changed.
To take advantage of this we use an adaptive for
matter, that knows that formatting needs are nonuni
form, and that takes short cuts when possible. Our
system, when reformatting a document after a
change, notices where work needs to be done and
where work that was done at a former time can be
salvaged. We refer to this parsimonious formatting
strategy as incremental reformatting. In this section
the way that formatting objects and their associated
constraints perform incremental formatting is
described.

Similarities in various aspects of the formatting
process can be observed: successive words are fit into
lines of text, successive lines into blocks of text
representing paragraphs, blocks into columns, and
columns into pages. Similarly, when a word cannot
fit entirely in a line, it is hyphenated and split across
two, while if a paragraph can't fit completely within
a column, it is split across successive columns. We
abstract from the many formatting objects appearing
on many levels (e.g., words, text lines, paragraph
blocks, columns, pages) a single characteristic shared
by all, that is the basis of our formatting method: in
our system the objects engaging in formatting activi
ties are containers, whose primary function is to be
filled by a list of content objects. Containers may
have many properties only loosely related to their fil
lability. For example, columns have rectangle
dimensions and positions on their containing page,
geometric properties that are sensitive to page layout
constraints , and that affect how, within a column,
the contents (paragraph blocks) are geometrically'

Graphics Interface '85

- 143 -

arranged. But such properties vary from one type of
container to another. The fundamental operation of
filling is uniform across all containers, and is
independent of whether a container is a box or circle,
whether it fills lef~ to _ right or top to bottom, etc.

Changes to document objects (made explicitly by
users, or otherwise) trigger refilling the containers
holding those objects. For example, when a
paragraph's text is changed, its containing block
knows that it is obsolete, and must refill itself with
the new text. After this, the block, in turn, reports
its change to its own parent, a column. If resetting
hasn't changed the formatted paragraph's length, the
constraints maintained by the column are still satis
fied, so the column can end the propagation. (This
is an example of a constraint that is column-specific,
and not shared by other kinds of containers). If,
however, the paragraph has grown or shrunk, the
column can rearrange its other paragraphs, and pos
sibly spread the change to its containing page. But
the column doesn't have to tell any of its other para
graphs to reformat themselves. Thus, only one para
graph is fully reformatted, after which reformatting
continues on progressively higher levels (Le., with
coarser granUlarity) as propagation spreads away
from the initial change.

The key to incremental reformatting is making
intelligent decisions about when to change formatting
granularity. This decision can be made within the
context of the uniform formatting method just intro
duced. Before describing the general condition
allowing the formatter to coarsen its granularity, we
give three concrete examples. When reformatting
after changing a paragraph's text, granule size is first
increased from the lowest level after the flfSt para
graph has been reformatted, as described above. If a
column-width block (a diagram, for example) is
inserted between paragraphs we can immediately
treat blocks of formatted text as basic units, and start
repositioning text within columns using already for
matted paragraphs as a fundamental unit. And if a
column sized block is inserted, formatting can be
reduced to column motion after the blocks of the dis
rupted column are repositioned (as in figure 2(b».

The examples above differ greatly in details: in
the flfSt case the paragraph being reformatted can
grow or shrink depending on its new contents, while
columns are fixed in length, and it is unlikely that

propagation could ever be reduced to column motion
when formatting is set off by changing a paragraph's
text. However, in all three examples, granularity is
increased at analogous times. In our reformatting
method there are three objects of interest uniformly,
across all kinds of con tainers: the container of the
changed objects, its contents before modification, and
the replacement contents. What the three examples
above have in common is that formatting granularity
can be coarsened when, in the reformatting process,
the last clement of both the replacement contents
stream is inserted into a container that previously
ended with the last clement of the old, replaced, con
tents. At such time we say that the new and old con
tents are ~nchronized with respect to their container.
The significance of synchronization is that it happens
at those times when the formatter can elevate its con
cerns to a level of lesser detail.

Some types of synchronization are more common
than others. Because the length of a block is deter
mined by its the amount of text it contains (Le., the
block can grow and shrink), synchronization will
always occur after reformatting a paragraph (figure
2(a». Synchronization with respect to a column (fig
ure 2(b», however, will be much less common
because boundaries of columns are fixed indepen
dently of their contents. In this case synchronization

[IbiS &as not yet liiCii ChIIiigea: ..•

j
[IbiS &as liiCii diaDged: ...

(a)

(b)
Figure 2. Synchronization points.

Graphics Interface '85

- 144. -

will occur only under unusual circumstances, such as
the column insertion example above, or at the end of
a chapter, when text is filled out with blank space to
column-length.

5. Page layout.

TEX's glue is a well known substance used to
separate the elements of patterns of boxes. Our . sys
tem incorporates an analogous device for positioning
boxes in patterns, the spring. Springs are often
hooked up in chains that can either stretch or
squeeze, depending on whether the sum of the
relaxed lengths of the links is less or greater than the
distance between the endpoints of the chain. If the
chain stretches or squeezes, so do all its component
springs. Within a chain, the amount individuals
stretch or shrink is inversely proportional to their
strength, except when the flexibility is limited by
minimum length or maximum length constraints.

Springs appear only inside boxes. Conversely,
nearly all boxes appearing in a document are bound
up with springs . We refer to these, the underlying
objects in layout, as springboxes and they can be
informally regarded as boxes whose dimensions are
determined by springs within them, in conjunction
with "forces" exerted by neigh boring springboxes.
Thus, rather than using two kinds of materials, one
for containing objects and one for separating them,
wc have only one.

Configurations of such boxes are not made by
first creating individual springs and then arranging
them around each other. Rather, patterns are made,
starting from a box initially whole, by subdivision.
This is one major difference between our model and
the boxes separated by glue. We believe that divid
ing a page into regions is more natural for page lay
out than constructing a page layout from component
pieces. A springbox can be recursively split, hor
izontally or vertically, into several sub-boxes. The
positions of the partitions are governed by the spring
properties of the component boxes, which are speci
fied by the user when the containing box is split.
Springs in adjacent split boxes form a chain,
stretched across the containing box . When the width
(or height) of the container is somehow fIXed (how
this is done is often independent of the springbox
mechanism) component boxes will stretch or shrink
as described above. Often, as a result of this adjust-

ment, the component boxes' sizes are fixed and their
own components' sizes can be fixed in the same way.
The operation of spring chains is local to their con
taining box, and based on a simple physical model.
Thus, users can manipulate springboxes with relative
ease to create layout patterns.

Once a pattern of boxes is created, each member
can be stuffed with one of a variety of fillings (such
as text, artwork, or equations) to construct a page
that can adapt to its environment through the stretch
ing and shrinking of its component rectangles. As
are all other components of our dms, layout objects
are implemented using the model of section 2. They
are integrated into the document formatting frame
work described in the last section by assigning multi
ple roles to boxes (for example, springbox and
column). So, if the user changes a page format the
page contents will immediately adapt: page design
and formatting are not separate domains that cannot
communicate.

Though the above scheme has some applications,
such as dividing windows into regions, the class of
patterns it can generate is too restrictive for full page
layout. The inadequacy is rooted in its inability to
align more than two positions with one another. The
only alignment in springboxes is of common sides of
adjacent rectangles with the joints of individual
springs, and of sides of split boxes with those of their
containing box . To springboxes, then, we add align
ment" between (equality of) horizontal or vertical
positions. This mechanism permits the specification
of a wider class of layouts (for example, systems of
boxes that overlap can be defined).

Figure 3 gives three examples of useful and non
trivial page constructs that can be produced with our
mechanism . The first of these is a page with a foot
note, in which the footnote and page regions each
occupy one partition of the text-region box. The two
boxes grow as the need arises, the text downwards
and the footnote upwards. There is one footnote
partition for each footnote in the text, created by the
page when a footnoted item is inserted. In 3(b) a
margin note is associated with a word on the page.
The arc indicates an alignment , thus the note follows
its reference if it moves . 3(c) shows a page with a
rutout. The size and placement of the cutout can be
c~"nr.ed, and the text regions reshape and align
,nl.'IDselves around it. These changes will trigger
reformatting if necessary.

Graphics Interface '85

- 145 -

The layout facilities discussed above operate at a
fairly low level. While we think they are flexible
enough to be used by authon, springboxes and align
ment may be more useful as the basis of less general,
but more intelligent, page views. For example,
multi-column formats can be defmed in which
regions can be cut out from a page, with automatic
reshaping of page boxes to avoid overlapping with
the cutout. In this way, users could change page lay
outs without being involved in mechanical transla
tions from useful high-level page constructs to
geometric page decompositions.

6. Summary

We have described an interactive system that
allows the user to directly edit formatted documents.
Key among the mechanisms used to achieve a
responsive interface is a constraint oriented proCess
ing model, in which document objects automatically
adjust themselves in response to changes in closely

(a) page with footnote

(b) margin notl associated with word

I
(['ON

I ~
(c) three columns with cutout

KIY

Figure 3. Building page layouts from springboxes.

related objects. The constraint model, together with
an extended hierarchical document structure, pro
vides good communication between different parts of
a document, an important property for a system that
promises a fully consistent view of a complex docu
ment at all times. Furthermore, our model of
independent document objects coupled by constraints
supports the inclusion of an unspecified number of
object types (such as different kinds of graphics and
tables) in documents. Also important is incremental
reformatting, which minimizes the amount of work
needed to propagate typographical changes far from
their source. Fmally, a simple page layout scheme
was presented that is able to specify pages more com
plex than those generally obtainable from current
systems.

References
[Chamb] Chamberlin, 0.0., O.P. Bertrand, M.I.

Goodfellow, I.C. King, D.R.Slutz, S.I.P. Todd,
B.W.Wade, "IANUS: An interactive document
formatter based on declarative tags", mM Syst. I.,
21, 3 (1982)

[MeyvD] Meyrowitz, N., A. van Dam, "Interactive
editing systems: Part n", ACM Computing Sur
veys, 14~3 (Sept. 1982)

[MacWrlte] MacWrite reference manual, Apple com
puter (1984)

[KerLe] Kernighan, B. W., M.E. Lesk, "UNIX docu
ment preparation", in Document Preparation Sys
tems, Nievergelt et. al. (eds.), North Holland
(1982) .

[Knuth] Knuth, D.E., The TEXbook, Addison
Wesley (1984)

[Reid] Reid, B.K., "A high-level approach to com
puter document formatting", in Proc. 7th Annual
ACM Symp. on Prin. of Prog. Lang. (1980)

[HamlA] Hammer, M., R. TIson, T. Anderson, E.
Gilbert, M. Good, B. Niamir, L. Rosenstein, S.
Schoichet, "The implementation of etude, an
integrated and interactive document production
system", Proc. ACM Conf. Text Manipulation
(1981)

[Good] Good, M., "Etude and the folklore of user
interface design", Proc. ACM Conf. Text Manipu
lation (1981)

Graphics Interface '85

- 146 -

[Winog] Winograd, T., "Beyond programming
languages", Comm. ACM 22,7 (July, 1979)

[BarSh] Barstow, D.R., H .E. Shrobe, "From interac
tive to intelligent programming environments", in
D.R. Barstow, H.E. Shrobe, E. Sandewall (eds.),
Interactive Programming Environments, McGraw·
Hill (1984)

[Reiss] Reiss, S.P., "Graphical program developmenl
with PECAN program development systems" ,
Proc. ACM Softw. Eng. Symp. on Practical Softw.
Dev. Envir. (1984)

(FurSS] Furuta, R, J. Scofield, A. Shaw, "Document
formatting systems: survey, concepts, and issues",
ACM Computing Surveys, 14,3 (Sept. 1982)

[SteSu] Steele, G.L., G.J. Sussman, "Constraints",
MIT AI memo 502, (Nov., 1978)

[Borni] Borning, A., "Thing lab - a constraint
oriented simulation laboratory", Stanford Ph.D.
dissertation (July 1979)

[Gosli] Gosling, J., "Algebraic constraints", CMU
Ph.D. dissertation (May, 1983)

Graphics Interface '85

