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Abstract 

Fill algorithms are a common graphics utility 
used to change the colour of regions in the frame 
bufCer. The propagation algorithm is a key 
component oC Cilling algorithms. The problem oC 
propagation within a Cill algorithm is presented and 
defined, and the diCficulties oC Cormalization and 
comparison are discussed. The previous algorithms 
are presented and analyzed under a new comparison 
metric whose validity is confirmed by run-time tests. 
A new algorithm is developed, and is shown to have 
better average and worst case behaviour than the 
others. 

Resume' 

Les algorithmes de remp/issage sont souvent 
utiles en infographie. lis servent a produire des 
changements chromatiques de certaines regions dans la 
me'moire d'image. La propagation du remp/issage est 
un aspect important de ces algorithmes. Dans cet 
article, nous commenj:ons par deTinir le probh!me de la 
propagation. Nous discutons ensuite des diCficulteS 
inhe'rentes a la formalisation de cette notion, ainsi qu'a 
la comparaison d'algorithmes servant a resoudre ce 
probh!me. Nous proposons une melrique simple 
permettant d'efCectuer de telles comparaisons. La 
validite de cctte melriqlle est confirmee par des tests 
empiriqucs. Les algorithmes prccedemment proposes 
sont alors prescntcs et analyses a la lumiere de cctte 
melrique. Un nouvel algorithme est Cinalement 
de'veloppe', et nous montrons que ce nouvel algorithme 
se comportc mieux que les prcce'dents en moycnne 
comme cn pi re cas. 
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under a Microelectronics IODovation and Computer R~U'ch Opportunitit! 
",lUlL 
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1. Introduction and problem dennition 
A region is a group of connected pixels in a Crame 

buCCer consisting oC a set of connected spans. A span 
is a horizontal row of pixels that are all within the 
region. Furthermore, a span is the largest such row; 
the pixels horizontally adjacent to the span are 
assumed to be outside the region. The region may be 
,j-connected ("Manhattan geometry") in which case 
spans may only be connected vertically, or 8-
connected, in which case spans may be connected 
across diagonals. We focus on 4-connected Cilling, as 
have others. We show in Section that most 4-
connected propagation algorithms can be trivially 
changed into an 8-connected algorithm, iC need be. 

Every pixel in the region possesses some property 
P (Cor example, possessing a certain colour). The 
region is delimited by a set oC boundary pixels that do 
not have P. We assume a Boolean function INSIDE, 
which returns true iC and only iC the pixel has P. We 
wish to perform a certain SET operation exactly once 
upon each pixel in the region (Cor example, writing a 
certain colour into the pixel). 

Application oC the INSIDE function across the 
Crame buCfer creates a Boolean matrix. The 
propagation algorithm explores this matrix. Given a 
seed pixel known to be inside the region , the 
propagation algorithm finds the region's boundaries. 
The propagation algorithm calls the SET procedure 
(exactly once) on each connected INSIDE pixel , where 
the SET and INSIDE procedures can be varied to 
achieve diCferent efCects (see Fishkin 1 for examples). 

The set of pixcls that are in the region can be defin ed 
inductively: 

1) The seed pixel is INSIDE the region. 

2) A pixcl is in the region iC and only if it is 
INSIDE, and connected to another pixcl t.hat 
is in the region . 

Graphics Interface '80 



- 204 -

Another formalism is to consider each span in the 
region as a vertex in a graph, and to connect two such 
vertices with an edge if and only if those two spans are 
connected. In this case, the propagation algorithm is 
essentially a graph-traversal algorithm, which fmds a 
connected component from a single vertex. We will 
show that the propagation algorithms can be easily 
classified according to which oC these two Cormalisms 
they use. 

The composite process of finding and SETting the 
pixels in the region is known as filling. In this paper, 
we focus on the propagation method, to the exclusion 
oC the other parts. We assume only that INSIDE and 
SET exist, and may be called as necessary. 

Once a span has been Cound, the al~orithm must 
explore outwards from it. As per Smith, we define a 
shadow oC a span to be some set oC pixels connected to 
the span that are to be explored by the algorithm. A 
shadow has a key property: any span that lies (wholly 
or partially) in a shadow is connected to the region. 
The propagation process consists of pushing shadows 
from known spans onto a stack, and then later rmding 
the set of spans that contact that shadow, which we 
term the spanset. Figure 1.1 summarizes our 
notation, and our representational convention. A span 
may cast as few as one or as many as three shadows. 

a shadow cast by the child. 

one of its children. 

a parent span. 

a border pixe!. 

the spanset of this shadow is the two lertmost spans. 

Figure 1.1. 
Basic terms and figures to represent them 

When a span is created, it occupies a certain 
topological relationship to its parent span. There are 
three possible cases. 

First, it is possible that the child span does not 
extend beyond the parent span by more than one pixeJ 
on either end (Figure 1.2). Lieberman3 terms these S­
turns. 

Figure 1.2. 
An S-turn: the child span does not overlap 
the parent by more than one pixe/ on either 
end 

Secondly, the child could extend beyond the 
parent span on one end, but not on the other (Figure 
1.3). Lieberman3 terms these U-turns_ 

Figure 1.3. 
A U-turn: the child partially overlaps the 
parent 

Finally, the child could extend beyond the parent 
span on both ends (Figure 1.4). We term these W­
turns. 

Figure 1.4. 
A W-turn : the child wholly overlaps the 
parent 

1.1. 8-connected propagation 

Since a span is added to the region if and only if 
it contacts a shadow, it is easy to convert 4-connected 
propagation algorithms into 8-connected algorithms. 
When a shadow is pushed, it consists precisely of those 
pixels that could extend the region from the parent 
span. Therefore, if we simply extend the borders oC a 
shadow by one pixel in each direction when we push it 
on the stack, the 4-connected algorithm becomes 8-
connected. 

2. Comparing algorithms 

There are a number of Cast propagation 
algorithms2,3, 4,6,8,7 extant. Three factors motivate 
our decision for re-examination: 

1) The algorithms are requ ired to solve large 
problems in real-time. 
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2) Recently, filling algorithms have been presented l 

that require much more expensive computation on 
a per-pixel basis. 

3) A desire Cor formalism. 

UnCortunately, it is very difficult to compare 
propagation algorithms, Cor the following reasons: 

1) Topology. Algorithm performance depends upon 
the topology of the region, which is not known in 
advance. 

2) Seed. Within:t certain topology, performance is 
also a function of the starting point. 

3) Calls to the other components. The algorithm 
makes repeated calls to INSIDE and SET, whose 
expenses vary with the particular type oC filling .l 

4) Machine dependence. The cost and power of the 
instruction set depend on the particular target 
machine. 

2.1. Comparison metrics 

We will compare algorithms based on two 
metrics: 
1) Space. Regions may be cyclic. The propagation 

algorithm should not "rediscover" pixels that 
have already been filled, since this could lead to 
infinite looping. Some algorithms keep one bit 
per pixel as a "visited" bit. Other algorithms 
don't need this bit; they avoid infinite looping via 
internal data structures. 

2) Exploration behaviour. As mentioned previously, 
a span may have three different topological 
relationships to its parent. The main difference 
between the algorithms lies in their differing 
behaviour in the different cases; they may push 
different shadows onto the stack and push them 
in different orders. 

We measure the efficiency oC the exploration by 
p, the average number of reads per pixel over the 
region; that is, the total number of pixel reads 
performed by the propagation algorithm divided by 
the number of pixels in the region. Tn addition to 
those pixels inside the region, those pixels adjacent to 
the region ("boundary pixels") are also read at least 
once. We will not count these pixel reads in our 
compar;son , for three reasons: the ratio of boundary to 
interior pixels is usually very low, the analysis is 
greatly simplified if they are neglected, and memory 
requirements can be reduced if the interior p achieves 
1.0, regardless of the boundary reads. 

Since filling is a linear-time problem, we will be 
comparing constant-factor reductions in p. An extra 
pixel read represents not only a wasted frame buffer 
access, but indicates wasted control logic. Our 
contention is that this single number p (within the 
context oC the previous assumptions) measures the 
efficiency of a propagation algorithm; our run-time 
tests confirm the strength of this metric. 

2.2. Other criteria 

The algorithms were compared on three other 
criteria, which tests showed to be non-crucial. We list 
them for the sake of completeness. 

1) Computational cost, for a given p. 

2) Stack area. 

3) Instruction set needed to implement the 
algorithm. Each of the algorithms can be 
implemented with only assignments, negations , 
tests, increments, and decrements. 

Table 5.2 shows that the main algorithms were all 
approximately the same when evaluated on these 
criteria; we will not mention them for the rest of the 
paper. 

3. The algorithms 

There are two schools of propagation algorithms, 
corresponding to the two formalisms mentioned in 
Section 1. Considering the region as a connected 
graph gives rise to algorithms that are global and 
vertex-based. These algorithms consider each span as 
a vertex, and connect two vertices if and only if their 
corresponding spans are connected. 

Second, if the region is considered solely as a 
Boolean matrix, the algorithms engendered are local 
and pixel-based. They pay little or no attention to 
graph-theoretic properties, considering solely the 
topology of the current span. 

A Taxonomy of Filling Algorithms 
Author Year Class 
Lieberman 1078 graph 
Smith 1070 pixel 
Shani 1080 graph 
Pavlidis 1081 graph 
Smith H182 pixel 
Levoy H182 pixel 
new 1085 pixel 

Table 3.1. 
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3.1. Graph-oriented algorithms 

3.1.1. Lieberman 

The first published propagation algorithm is that 
of Lieberman.3 This graph-oriented algorithm keeps 
two sorted lists consisting of unexplored edges 
(shadows) leading up and down, respectively. 

This algorithm avoids cycling by referring to the 
lists of unexplored edges. Intuitively, the unexplored 
edges represent the border of the current region; if 
exploration contacts these edges, they represent an 
" imaginary boundary", and the exploration will 
retreat. This requires that the list be searched on 
every pixel (since a vertex (span) may cross more than 
one edge) , that pushes perform insertion into a sorted 
list, and that edges on the stack be modified in situ if 
spans contact them. Therefore, the algorithm's 
behaviour depends heavily on the " bushiness" of the 
region , the density of the region 's graph. 

Lieberman's algorithm is mainly of historical 
interest. Shani6 shows that it is not always correct, 
and it can be quite slow. However, it does contain five 
important ideas used by later algorithms: 

1) The treatment of the region as a graph , with one 
vertex per span , and edges between connected 
spans. 

2) 

3) 

4) 

5) 

Recogn ition of V-turns. 

Storage of parental information in a data element. 

The use of stacked shadows to represent a 
imaginary boundary enclosing the region. 

Noting that regions with holes represent the worst 
case. 

3.1.2. Shanl 
Shani6 avoids cycling by explicitly drawing the 

imaginary boundaries mentioned above. Boundary 
lines are drawn temporarily , and then erased. 

The algorithm traverses the region 's . gra~h, ~ut 
only pursuing edges which go in a certam dl.rectlon 
(upwards, say) . When no such edges remam , the 
algorithm reverses direction ; only downw~rds :dges 
are pursued, until they are exhausted . ThiS series of 
back-and-forth waves continues until no unexplored 
edges remain. 

Newly discovered edges are pur.sued if th e~ lead 
in th e current direc tion, and blocked If they lead III the 
opposite direc tion. An edge is blocked by ~rawing a 
physical ba rrier along that edge, on the Side of the 
discoverin g vertex. 

If a vertex is explored, and there is a blocked edge 
preventing further exploration, then a cycle has been 
found ; the blocked edge is removed from the stack and 
the current e:.ploring process is terminated. This 
blocked edge prevented the exploring process from re­
entering the blocked vertex, which would have caused 
an infinite loop. 

When all upwards edges have been pursued , the 
direction is reversed. Any previously blocked edges in 
the current direction are re-drawn (unblocked) and 
then pursued. In this manner, all downwards edges 
are pursued, and all upwards edges are blocked for the 
next upwards sweep. 

Shani uses a deque-like structure for his main 
data structure. Vnexplored edges leading in the 
current direction are pushed on the top of the deque, 
and blocked edges are pushed on the bottom of the 
deque. This technique ensures that direction will be 
changed only when all edges in the current direction 
have been exhausted. This deque-like structure 
combines the two sorted lists of Lieberman , by pushing 
onto the two different ends. This deque-like structure 
is not a " pure" deque, which would only allow 
removal from the ends. When a cycle is discovered, 
the blocking edge is removed from the structure, 
wherever it may be. 

This algori thm is qualitatively different from the 
pixel-based algorithms, and cannot be compared solely 
on the basis of p. First, the algorithm doesn' t need a 
bit per pixel, a decided advantage. However, the 
algorithm pays for this by (1) blocking edges, and (2) 
removing blocked edges that are found to form a 
cycle. This latter step requires that the deque be 
searched after each span, to see if that span was 
claimed by a blocked edge. Depending on the region , 
this step can be very expensive. 

Shani never explicitly describes the behaviour of 
his algorithm when confronted with V and W turns . 
However, his paper contains a figure that shows the 
algorithm performing optimally on a V-turn , and his 
algorithm requires that non-cycle-causing Sp ~lOS not be 
revisited . For these two reasons, our implementation 
of his algorithm uses both V and W turn optimization. 

The algorithm visits every non-cycle-causing span 
once, and every potentially cycle-causing span twice. 
This leads to a worst-case p of l.5 , but this is 
extremely rare; our test regions had an average-case p 
of l.Og . This is a lmost identical to (but slightly higher 
than) th e p of our algorithm, the only other one that 
optimizes both V and W turns. Th is is because 
Shani's algorithm only revisits pix els that could form a 
cycle, and ours only revisits those that do form a 
cycle. 
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This algorithm, unfortunately, is not extendible to 
8-connected propagation. When a blocked edge is 
found, the blocking line must be drawn on the side of 
the blocking vertex, not the blocked vertex. 
Otherwise, a span could (wholly or partially) traverse 
any number oC blocking edges; the deque would have 
to be consulted not on every span, but every pixe/, 
and shadows have to be modified in-place. 

Drawing the line on the side oC the blocking 
vertex is only correct in 4-connected propagation; it is 
only in this case that we are guaranteed that the 
blocking edge overlays a set oC pixels in the blocking 
vertex that are all inside the region. For example, 
consider a to-be-blocked span that lies diagonally and 
one pixcl away Crom the blocking span. In this case, 
no pixels in the blocking span will both (1) block the 
cycle and (2) correctly re-discover the blocked vertex 
when direction is changed. 

3.1.3. Pavlidis 
Pavlidis' algorithm4 notes that the graph Cormed 

by the region is implicitly deCined by a graph that 
defines the border oC the region. Furthermore, this 
border graph is usually much sparser than the interior 
graph. His algorithm, then, explores not the interior 
graph but rather the border graph. 

His algorithm uses a stack as the main data 
structure, containing the address oC a border span, and 
its direction with respect to its parent. 

If the interior and border have 1 and B pixels, 
respectively, Pavlidis' algorithm makes 1 + 3B pixel 
visits, (or a p oC (I +2B)/ I. In the worst case, the 
ratio oC B to I can be arbitrarily large; the algorithm 
has worst-case p approaching infinity. 

We did not implement Pavlidis' algorithm Cor 
testing because oC two disadvantages: 

1) The algorithm assumes that the border oC the 
region has a distinct colour, distinct even Crom 
the surrounding background. If this is not the 
case (e.g. when the picture has only two colors), 
then the algorithms' behavior is not defined. 

2) Pavlidis ' algorithm is unique among the graph­
oriented algorithms in reserving a bit per pixel. 

3.2. Pixel-based algorithms 

3.2.1. SmithO 

Smith has published two propagation 
algorithms.7,8 His first,7 which we will term "SmithO", 
is the only algorithm that keeps no parental 
information oC any kind on the stack. 

The end points oC the shadow and the values of 
the parent span are kept as program variables rather 
than as stack data. This means that when the 
algorithm switches direction the algorithm has no 
recourse to parental information. 

This algorithm detects S-turns by these program 
variables (except for immediately after a change of 
direction), but does not detect U or W-turns. 
Therefore, the algorithm will always push one shadow 
continuing in the same direction, and will push one 
shadow in the opposite direction oC the same size as 
the child in the case of a U or W turn , (see Figure 
3.1). 

: . : ~ I "··"··"··"·".·::.·· ··::.:,···:::::::::::::::::::: 1 

(when chansinr; direction) 

..... :::: .. : .. ::::::::::::::::::::::.::::::::;:.::: .... 

W 

I

··········::::::::::::::::::::::::::::::::::::::::::::::::: ······· ··· ·····1 

Figure 3.1. 
The SmithO algorithm acting upon S (left), U 
(right), and W (bottom) turns 

On both U and W turns, the algorithm will read 
pixels at least twice; those pixels that are in the parent 
span and also in shadow. This can also happen on S 
turns, when the algorithm changes direction. Since 
spans are pushed in both directions, this algorithm can 
achieve a worst-case p oC 3, as noted by Pavlidis.4 

3.2.2. Smith 

At the SIGGRAPH '82 2-D Animation tutorial 
Smith presented an improvement on his first 
algorithm.8 It is this algorithm that we will reCer to as 
"Smith's algorithm" for the rest oC the paper. 

~mith's algorithm keeps the endpoints and y 
coordmate oC the span explicitly on the stack, and 
thereCore avoids the S-turn anomaly noted above aCter 
a switch of direction. 
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However, the algorithm still performs the same in the 
case of a V or W turn; two shadows are pushed, of the 
same size of the child, in either direction (see Figure 
3.2). 

w 1· ••• ·····,/,·····························1 
_ ······>I ...... ··H ( _ 

Figure 3.2. 
Smith's algorithm acting upon S, U, and W 
turns 

I ~[XJL---IXI~IXI--:"---"'-----1IX1~ 
lXJ 

~m 

Figure 3.3. 
Worst case for Smith 's algorithm 

The worst case is a region that consists 
exclusively of children that barely exceed their parents 
on one end, as shown in Figure 3.3. In this case, we 
have n rows of m pixels each. Each row is a V-turn 
with relation to its parent. On the top and bottom 
rows, pixels will be read only once. On the other 
rows, m -2 pixels will be re-read by each of the 
adjoining spans. This leads to a worst-case p of 

p = 2m +(n-2)[3(m -2)+2] = 3- ~_ ~+ ~ 
mn n m mn 

As m and n approach infinity, this approaches a 
worst-case p of 3. In our tests, the algorithm had an 
average-case p oC 2.02. 

3.2.3. Levoy 

At the same tutorial, Levoy presented a 
propagation aigorithm2 which, though similar to 
Smith 's, makes more use of the parental information. 

The endpoints oC the shadow, when popped, a.re 
compared to the end points oC the span that pushed it. 
At this time, S and V turns are detected. If the 
shadow represents the downward side of an S turn, it 
is discarded, and if it represents the downward side oC 
a V turn its end points are shaved. 

Levoy's algorithm delays stack pushes as long as 
possible; as shown in Table 5.2, it tends to have the 
lowest stack heights of any algorithm. 

Figure 3.4. 
Levoy's algorithm acting on S, U, and W 
turns 

The behaviour of Levoy's algorithm is 
summarized in Figure 3.4. Since it does not detect W 
turns, the worst case arises when the region consists 
entirely oC W turns, with edges as small as possible 
(Figure 3.5). If the seed point is at the apex of the 
triangle, then the algorithm will read every pixel twice 
except .cor those in the top row. If the triangle has n 
rows, it consists of 2n 2 - n pixels' 4n -3 oC which are 
in the top row. Then 

T M 
n 

1 

2(2n 2 -n)-(4n-3) 
p= ~----~~--~ 

2n 2-n 

M 
IX! 

IX! IX! 
M 

Figure 3.S. 
Worst case for Levoy 's algorithm 

M 
IX! 

As n approaches infinity, p approaches a worst­
case of 2. In our tests , Levoy 's algorithm had an 
average p of 1.53. Levoy 's algorithm shows 
substantially better worst and average case behaviour 
than Smith 's, solely due to the detection of U turns. 
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3.2.4. The new algorithm 

This section presents a new algorithm for fill 
propagation. Like Levoy's and Shani's, it keeps full 
parental information on the stack. Only the direction 
that the parent came from is kept, rather than its 11 
value; this simplifies the logic considerably. 

The algorithm checks each span against its parent 
for the S, U, or W configuration. The shadows pushed 
are the largest set of pixels that could extend the 
region and do not contact the parent span. The 
algorithm's performance is most easily shown visually 
by Figure 3.B. 

~ F ' ! s t::==J u t2i """" 

b:
::'::'::' ::'::"::::'::'::' ::"'::::'::'::'::'::'::.::.::::................. .............. "I w= :::::::::::::::::::::::::::::::::::::::::::::::::::::,· .• ," 

I . 
F1l'1re 3.0. 

Our algorithm acting on S, U, and W turns 

In any serially-implemented recursive algorithm, 
recursive calls must be evaluated in some order. In 
the previous algorithms, the order is arbitrary. Our 
algorithm uses the well-known heuristic of "do the 
smallest piece first" .5 In practice, shadows pushed in 
the opposite direction for U and W turns are almost 
always very small, corresponding to local bumps in the 
region; therefore, we always push those spans last. 

The new algorithm is the only one with a non­
arbitrary stacking order. Otherwise, it is very similar 
to Levoy 's, except that ours detects W-turns. Our 
tests show that these two minor improvements reduce 
run-time by roughly 25% on our test data. 

The new algorithm is also very similar to Shani's, 
except that ours needs a bit/pixel but does not require 
a data structure search, reducing run-time by roughly 
75% on our test data. 

Even though our algorithm pushes as many as 
three shadows per span, as opposed to the two of most 
other algorithms, our stack height is virtually identical 
to theirs, due to this simple heuristic. Of course, there 
could be narrow spans leading into arbitrarily complex 
regions, but this rarely happens in practice. 

If the region has a hole, the algorithm will re­
discover some of those pixels that formed the cycle, as 
shown in Figure 3.7. 

Fll'1re 3.7. 
Our worst case; a hole (region BJ 

If the widths of the left span, hole, and right span 
are A, B, and C, respectiveiy, the child of the left span 
will bleed over on top of the hole and revisit the pixels 
which are the responsibility of the right span. This 
results in C pixels being read twice. 

The region has A+B+C pixels in the top row, 
A+C in the middle row, and at least B+2 in the 
bottom row, giving the region 2A + 2B + 2C + 2 
pixels. All pixels are visited once except for the C 
cycle-forming pixels on the top right, which are visited 
twice. Therefore, the worst-case p is 

2A+2B+3C+2 
p = 2A+2B+2C+2 

When C approaches infinity and A and Bare 
minimized, p approaches its worst-case value of 1.5. 

3.2.4.1. Behaviour on simply connected regions 
In this section, we show that the algorithm 

achieves p of 1.0 on regions without holes (simply 
connected regions). 

We need only consider two shadows whose 
spansets overlap. Those shadows must lie on the same 
line, by the definition of spanset. Suppose, then, that 
we have some overlap of spansets. There are four 
possible cases, depending on whether or not the 
shadows overlap and whether or not the parent spans 
are on the same line. We only prove the result for one 
case: the others follow similarly. 

F1l'1re 3.8. 

Case 1: The parent spans lie on different lines, 
and the shadows don ' t overlap (Figure 3.8). 
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Figure 3.g. 

Figure 3.10. 

At any point in the algorithm, the set oC pixels 
that have been SET is 4-connected. Furthermore, we 
defined the shadows for our algorithm such that they 
don't overlap any previous parents. Therefore, the 
parent spans must be 4-connected by a path that does 
not touch either oC the shadows (Figure 3.9). Then, 
we fill in the current spanset, a spanset which, by 
assumption, contacts both parent spans. This forces a 
hole either to the right of the upper span, or to the 
right of the lower span (Figure 3.10). Again, there are 
other symmetrical cases. 

The algorithm achieves the optimal p iC the 
arbitrary region turns out to be simply connected. If 
we know in advance that the region is simply 
connected, is our algorithm optimal? 

UnCortunately, no. Consider any region whose 
border has area proportional to the square root of the 
area or the entire region (a square, Cor example). If 
the border of the region is traversed, and the region is 
known not to have holes, then the entire interior must 
be entirely within the region (see Figure 3.11). Since 
we only visit the border, this process gives us a p oC 
O( Jri) , where n is the area or the region. 

Therefore, although our algorithm achieves the 
lower bound for a subset or the possible regions, it is 
not necessarily optimal if we know in advance that we 
are dealing with an element of that subset. 

mun "" inside 

rUled pixelo 

oeed pixel 

Figure 3.11. 
A/ter Jri visits, we can /ilI n pixels 

4. An analogy 

All the algorithms explore (either explicitly or 
implicitly) the graph defined by the topology oC the 
region. 

Both Smith 's and Levoy's algorithms proceed in 
some fIXed direction until reaching a dead end, then 
back up to the last node where a choice was possible, 
and pursue that. This recalls depth-first graph 
traversal. 

Our· algorithm always changes direction iC 
possible. Branches are filled beCore the main trunk, as 
in breadth-first graph traversal. 

Shani's algorithm proceeds in one direction as 
long as there are unexplored arcs anywhere in the 
region in that direction, repeating the process in the 
other direction, This exploration by back-and-forth 
waves recalls network flow or spanning tree 
algorithms. 

5. Comparison of the three algorithms 

Four of the algorithms were implemented in C 
under 4.2 BSD UNIX on a VAX-11/750, using an 
Adage/Ikonas RDS3000 frame buffer. The gprof 
command provided run-time profiling. The "CPU 
time" row in Table 5.2 represents the relative total 
CPU time to fill each region, using boundary /iIl5 ,7 
INSIDE and SET procedures. 

One of the 21 regions was a grid. This region 
represents a maximally dense graph (the greatest 
possible number of holes) , and was created specifically 
to demonstrate worst-case behaviour. Each oC the 
algorithms fared the worst by far on this region, 
especially Shani's; the list of blocked spans was so long 
that his algorithm's behaviour was extremely poor. 
Without this region , Shani's algorithm performed quite 
well; it 's relative CPU time dropped from 2.17 times 
Smith's to 0.79 times. 
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An Overall Comparison of the Filling Algorithms 
Lieberman SmithO 

year 1978 1979 
taxonomy graph pixel 
data structure sorted list stack 
element width 2 int 2 int 

space requirement? No Yes 
detects S turns? Yes usually 
detects U turns? Yes No 
detects W turns? No No 
gradient fills? No Yes 
8-connected? Yes Yes 
pushes/span 1-2 1-2 
p, worst case 2 3 
av. p, test cases - -
relative CPU time, 
test cases - -

Table 5.1. 

Average per-region statistics, 4 algorithms, 21 regions 
Algorithm 

Shani Smith Levoy 
pushes 821.3 724.9 618.0 
max height , 
stack/ deque 198.1 192.3 98.7 
max area (bytes) , 
stack/ deque • 2575.3 1153.8 987.0 

P 1.09 2.02 1.53 
incr 25.18 2.11 1.99 
decr 23.07 0.24 0.30 
negate 0.01 0.00 1.05 
test 94.69 2.20 4.23 
assIgn l.22 0.48 0.76 
CPU time 217.2 100.0 83.5 

Table 5.2. 

• assuming 2 bytes/integer , 1 byte/Boolean 

6. Conclusion 

new 
780.0 

102.7 

1129.7 
1.05 
1.20 
0.20 
0.04 
3.76 
0.27 
60.2 

A number or algorithms to rill regions were 
presented and compared undrr a new metric . A new 
algorithm was developed wit.h better average and 
worst-case behaviour under this metric. The appendix 
gives code to implement the algorithm. 
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Shani Pavlidis Smith Levoy new 
1980 1981 1982 1982 1985 

graph graph pixel pixel pixel 
deque stack stack stack stack 
5 int, 2 int 3 int 5 int 5 int, 

3 Bool. 1 Bool. 1 Bool. 
No Yes Yes Yes Yes 
Yes No Yes Yes Yes 
Yes No No Yes Yes 
Yes No No No Yes 
No No Yes Yes No 
No Yes Yes Yes Yes 
1-3 NA 1-2 1-2 1-3 
1.5 00 3 2 1.5 

1.09 - 2.02 1.55 1.05 

217.2 - 100.0 83.5 60.2 
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Appendix 

Here we list C source for the key portion of our 
algorit.hm, with pseud~code provided for the other 
parts. 

struct { 
int MyLx, MyRx; 1* endpoints of this shadow* / 
int DadLx, DadRx; 1* and parent span * / 
int Myy; 1* my shadows y coord * / 
TWO_ VAL Mydir; 1* only holds values of +1 or -1 */ 
} Stack[STACK_HEIGHT]; 
macro PUSH(a,b,c,dd,e,f) { 

} 

push a shadow from (a) to (b), inclusive, 
on line (e), going in direction (f) 
from the parent span of of [(c) .. (dd)] . 

/* pop top of stack into local variables * / 
macro POP() { 

} 

pop the top shadow into local variables 
Ix,rx ,y ,direction, DadLx, DadRx 

/* stack a shadow on the stack. The current span is 
[Ix .. rx] on line y, the parent is [DadLx .. DadRx], 
and the current direction is (direction) * / 
macro STACK(direction,DadLx,DadRx ,lx,rx ,y) { 
1* store the *shoulders* of the span, 
to simplify testing 3,6 lines down * / 

} 

pushrx = rx + 1; push Ix = Lx - 1; 
PUSH(lx,rx ,pushlx ,pnshrx ,y+direction ,direction); 
1* U turn to the right * / 
if (rx > DadRx) 

PUSH(DadRx + l , rx , pll ~hlx,pushrx, 

y-direction ,-direction); 
1* U turn to the left * / 
/* W turn handled implicitly * / 
if (Lx < DadLx) /* U turn to the left ; 

PUSH(Ix,DadLx - l,pushlx ,pushrx, 
y-direction,-direction); 

1* fill a region, with seed at (seedx,seedy) * / 
Fill(seedx,seedy) 
int seedx,seedy ; 
{ 
int x,y; 
int IX ,rx ,DadLx ,DadRx; 
int pushlx ,pushrx; 
int direction; 

(*Start) 0; 

find the span containing the seed point. 
suppose it goes from (Ix) to (rx), inclusive. 
PUSH(Ix,rx ,lx,rx,seedy+ 1,1); 
PUSH(Ix,rx,lx,rx,seedy-l,-l); 

while (tos >= 0) { 
POPO; 
if ( (y < Top) OR (y > Bottom)) 

continue; 
x = Ix + I; 
if (WasIn = (*Inside )(Ix,y)) { 

(*Set)(lx,y); Ix = Ix - 1; 

} 

while ((*Inside)(Ix,y) AND (Ix >= Left)) { 
(*Set)(lx ,y) ; Ix = Lx - I ; 

} 
Ix = Ix + 1; 

/* now looking at pixel (x) . 
if (Wasln) , then am inside a run of pixels from [Lx .. x) 
else, Ix is meaningless * / 
while (x <= Right) { 

} 

if(WasIn) { 
if ((*Inside)(x ,y)) { 

(*Set)(x ,y); 
} else { 

} 

1* just found the end of a run * / 
STACK(direction,DadLx,DadRx,Ix ,(x- I),y) ; 
WasIn = FALSE; 

} else { 

} 

if (x > rx) break; 
if ((*Inside)(x,y)) { 

(*Set)(x,y); 

} 

1* just found the start of a run * / 
WasIn = TRUE; Ix = x; 

x = x + 1; 

if(Wasln) { 
/* hit a.n edge while inside a. run * / 
ST ACK( direction ,Da.dLx,DadRx ,Ix ,(x-l),y) ; 

} 

nOOLEANW 35ln ; 1* are the pixels from [Ix .. x) in 11 run? * / 
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