
- 203 -

AN ANALYSIS AND ALGORITHM FOR FILLING PROPAGATION

Kenneth P. Fishkin

Brian A. Barsky

Berkeley Computer Graphics Laboratory
Computer Science Division

Department oC Electrical Engineering and Computer Sciences
University oC CaliCornia

Berkeley, CaliCornia g4720

Abstract

Fill algorithms are a common graphics utility
used to change the colour of regions in the frame
bufCer. The propagation algorithm is a key
component oC Cilling algorithms. The problem oC
propagation within a Cill algorithm is presented and
defined, and the diCficulties oC Cormalization and
comparison are discussed. The previous algorithms
are presented and analyzed under a new comparison
metric whose validity is confirmed by run-time tests.
A new algorithm is developed, and is shown to have
better average and worst case behaviour than the
others.

Resume'

Les algorithmes de remp/issage sont souvent
utiles en infographie. lis servent a produire des
changements chromatiques de certaines regions dans la
me'moire d'image. La propagation du remp/issage est
un aspect important de ces algorithmes. Dans cet
article, nous commenj:ons par deTinir le probh!me de la
propagation. Nous discutons ensuite des diCficulteS
inhe'rentes a la formalisation de cette notion, ainsi qu'a
la comparaison d'algorithmes servant a resoudre ce
probh!me. Nous proposons une melrique simple
permettant d'efCectuer de telles comparaisons. La
validite de cctte melriqlle est confirmee par des tests
empiriqucs. Les algorithmes prccedemment proposes
sont alors prescntcs et analyses a la lumiere de cctte
melrique. Un nouvel algorithme est Cinalement
de'veloppe', et nous montrons que ce nouvel algorithme
se comportc mieux que les prcce'dents en moycnne
comme cn pi re cas.

Tbis work w.. suppor d in pan by the s"miconductor R cb
Corpora.tion under gra.nt Dumber 8Z-11-008, the National Scienee
Found.tion under ",&ut numb", ECS-820438I , &Dd tbe St of Cillorni.
under a Microelectronics IODovation and Computer R~U'ch Opportunitit!
",lUlL

U.S.A.

1. Introduction and problem dennition
A region is a group of connected pixels in a Crame

buCCer consisting oC a set of connected spans. A span
is a horizontal row of pixels that are all within the
region. Furthermore, a span is the largest such row;
the pixels horizontally adjacent to the span are
assumed to be outside the region. The region may be
,j-connected ("Manhattan geometry") in which case
spans may only be connected vertically, or 8-
connected, in which case spans may be connected
across diagonals. We focus on 4-connected Cilling, as
have others. We show in Section that most 4-
connected propagation algorithms can be trivially
changed into an 8-connected algorithm, iC need be.

Every pixel in the region possesses some property
P (Cor example, possessing a certain colour). The
region is delimited by a set oC boundary pixels that do
not have P. We assume a Boolean function INSIDE,
which returns true iC and only iC the pixel has P. We
wish to perform a certain SET operation exactly once
upon each pixel in the region (Cor example, writing a
certain colour into the pixel).

Application oC the INSIDE function across the
Crame buCfer creates a Boolean matrix. The
propagation algorithm explores this matrix. Given a
seed pixel known to be inside the region , the
propagation algorithm finds the region's boundaries.
The propagation algorithm calls the SET procedure
(exactly once) on each connected INSIDE pixel , where
the SET and INSIDE procedures can be varied to
achieve diCferent efCects (see Fishkin 1 for examples).

The set of pixcls that are in the region can be defin ed
inductively:

1) The seed pixel is INSIDE the region.

2) A pixcl is in the region iC and only if it is
INSIDE, and connected to another pixcl t.hat
is in the region .

Graphics Interface '80

- 204 -

Another formalism is to consider each span in the
region as a vertex in a graph, and to connect two such
vertices with an edge if and only if those two spans are
connected. In this case, the propagation algorithm is
essentially a graph-traversal algorithm, which fmds a
connected component from a single vertex. We will
show that the propagation algorithms can be easily
classified according to which oC these two Cormalisms
they use.

The composite process of finding and SETting the
pixels in the region is known as filling. In this paper,
we focus on the propagation method, to the exclusion
oC the other parts. We assume only that INSIDE and
SET exist, and may be called as necessary.

Once a span has been Cound, the al~orithm must
explore outwards from it. As per Smith, we define a
shadow oC a span to be some set oC pixels connected to
the span that are to be explored by the algorithm. A
shadow has a key property: any span that lies (wholly
or partially) in a shadow is connected to the region.
The propagation process consists of pushing shadows
from known spans onto a stack, and then later rmding
the set of spans that contact that shadow, which we
term the spanset. Figure 1.1 summarizes our
notation, and our representational convention. A span
may cast as few as one or as many as three shadows.

a shadow cast by the child.

one of its children.

a parent span.

a border pixe!.

the spanset of this shadow is the two lertmost spans.

Figure 1.1.
Basic terms and figures to represent them

When a span is created, it occupies a certain
topological relationship to its parent span. There are
three possible cases.

First, it is possible that the child span does not
extend beyond the parent span by more than one pixeJ
on either end (Figure 1.2). Lieberman3 terms these S­
turns.

Figure 1.2.
An S-turn: the child span does not overlap
the parent by more than one pixe/ on either
end

Secondly, the child could extend beyond the
parent span on one end, but not on the other (Figure
1.3). Lieberman3 terms these U-turns_

Figure 1.3.
A U-turn: the child partially overlaps the
parent

Finally, the child could extend beyond the parent
span on both ends (Figure 1.4). We term these W­
turns.

Figure 1.4.
A W-turn : the child wholly overlaps the
parent

1.1. 8-connected propagation

Since a span is added to the region if and only if
it contacts a shadow, it is easy to convert 4-connected
propagation algorithms into 8-connected algorithms.
When a shadow is pushed, it consists precisely of those
pixels that could extend the region from the parent
span. Therefore, if we simply extend the borders oC a
shadow by one pixel in each direction when we push it
on the stack, the 4-connected algorithm becomes 8-
connected.

2. Comparing algorithms

There are a number of Cast propagation
algorithms2,3, 4,6,8,7 extant. Three factors motivate
our decision for re-examination:

1) The algorithms are requ ired to solve large
problems in real-time.

Graphics Interface '85

- 205 -

2) Recently, filling algorithms have been presented l

that require much more expensive computation on
a per-pixel basis.

3) A desire Cor formalism.

UnCortunately, it is very difficult to compare
propagation algorithms, Cor the following reasons:

1) Topology. Algorithm performance depends upon
the topology of the region, which is not known in
advance.

2) Seed. Within:t certain topology, performance is
also a function of the starting point.

3) Calls to the other components. The algorithm
makes repeated calls to INSIDE and SET, whose
expenses vary with the particular type oC filling .l

4) Machine dependence. The cost and power of the
instruction set depend on the particular target
machine.

2.1. Comparison metrics

We will compare algorithms based on two
metrics:
1) Space. Regions may be cyclic. The propagation

algorithm should not "rediscover" pixels that
have already been filled, since this could lead to
infinite looping. Some algorithms keep one bit
per pixel as a "visited" bit. Other algorithms
don't need this bit; they avoid infinite looping via
internal data structures.

2) Exploration behaviour. As mentioned previously,
a span may have three different topological
relationships to its parent. The main difference
between the algorithms lies in their differing
behaviour in the different cases; they may push
different shadows onto the stack and push them
in different orders.

We measure the efficiency oC the exploration by
p, the average number of reads per pixel over the
region; that is, the total number of pixel reads
performed by the propagation algorithm divided by
the number of pixels in the region. Tn addition to
those pixels inside the region, those pixels adjacent to
the region ("boundary pixels") are also read at least
once. We will not count these pixel reads in our
compar;son , for three reasons: the ratio of boundary to
interior pixels is usually very low, the analysis is
greatly simplified if they are neglected, and memory
requirements can be reduced if the interior p achieves
1.0, regardless of the boundary reads.

Since filling is a linear-time problem, we will be
comparing constant-factor reductions in p. An extra
pixel read represents not only a wasted frame buffer
access, but indicates wasted control logic. Our
contention is that this single number p (within the
context oC the previous assumptions) measures the
efficiency of a propagation algorithm; our run-time
tests confirm the strength of this metric.

2.2. Other criteria

The algorithms were compared on three other
criteria, which tests showed to be non-crucial. We list
them for the sake of completeness.

1) Computational cost, for a given p.

2) Stack area.

3) Instruction set needed to implement the
algorithm. Each of the algorithms can be
implemented with only assignments, negations ,
tests, increments, and decrements.

Table 5.2 shows that the main algorithms were all
approximately the same when evaluated on these
criteria; we will not mention them for the rest of the
paper.

3. The algorithms

There are two schools of propagation algorithms,
corresponding to the two formalisms mentioned in
Section 1. Considering the region as a connected
graph gives rise to algorithms that are global and
vertex-based. These algorithms consider each span as
a vertex, and connect two vertices if and only if their
corresponding spans are connected.

Second, if the region is considered solely as a
Boolean matrix, the algorithms engendered are local
and pixel-based. They pay little or no attention to
graph-theoretic properties, considering solely the
topology of the current span.

A Taxonomy of Filling Algorithms
Author Year Class
Lieberman 1078 graph
Smith 1070 pixel
Shani 1080 graph
Pavlidis 1081 graph
Smith H182 pixel
Levoy H182 pixel
new 1085 pixel

Table 3.1.

Graphics Interface '85

- 206 -

3.1. Graph-oriented algorithms

3.1.1. Lieberman

The first published propagation algorithm is that
of Lieberman.3 This graph-oriented algorithm keeps
two sorted lists consisting of unexplored edges
(shadows) leading up and down, respectively.

This algorithm avoids cycling by referring to the
lists of unexplored edges. Intuitively, the unexplored
edges represent the border of the current region; if
exploration contacts these edges, they represent an
" imaginary boundary", and the exploration will
retreat. This requires that the list be searched on
every pixel (since a vertex (span) may cross more than
one edge) , that pushes perform insertion into a sorted
list, and that edges on the stack be modified in situ if
spans contact them. Therefore, the algorithm's
behaviour depends heavily on the " bushiness" of the
region , the density of the region 's graph.

Lieberman's algorithm is mainly of historical
interest. Shani6 shows that it is not always correct,
and it can be quite slow. However, it does contain five
important ideas used by later algorithms:

1) The treatment of the region as a graph , with one
vertex per span , and edges between connected
spans.

2)

3)

4)

5)

Recogn ition of V-turns.

Storage of parental information in a data element.

The use of stacked shadows to represent a
imaginary boundary enclosing the region.

Noting that regions with holes represent the worst
case.

3.1.2. Shanl
Shani6 avoids cycling by explicitly drawing the

imaginary boundaries mentioned above. Boundary
lines are drawn temporarily , and then erased.

The algorithm traverses the region 's . gra~h, ~ut
only pursuing edges which go in a certam dl.rectlon
(upwards, say) . When no such edges remam , the
algorithm reverses direction ; only downw~rds :dges
are pursued, until they are exhausted . ThiS series of
back-and-forth waves continues until no unexplored
edges remain.

Newly discovered edges are pur.sued if th e~ lead
in th e current direc tion, and blocked If they lead III the
opposite direc tion. An edge is blocked by ~rawing a
physical ba rrier along that edge, on the Side of the
discoverin g vertex.

If a vertex is explored, and there is a blocked edge
preventing further exploration, then a cycle has been
found ; the blocked edge is removed from the stack and
the current e:.ploring process is terminated. This
blocked edge prevented the exploring process from re­
entering the blocked vertex, which would have caused
an infinite loop.

When all upwards edges have been pursued , the
direction is reversed. Any previously blocked edges in
the current direction are re-drawn (unblocked) and
then pursued. In this manner, all downwards edges
are pursued, and all upwards edges are blocked for the
next upwards sweep.

Shani uses a deque-like structure for his main
data structure. Vnexplored edges leading in the
current direction are pushed on the top of the deque,
and blocked edges are pushed on the bottom of the
deque. This technique ensures that direction will be
changed only when all edges in the current direction
have been exhausted. This deque-like structure
combines the two sorted lists of Lieberman , by pushing
onto the two different ends. This deque-like structure
is not a " pure" deque, which would only allow
removal from the ends. When a cycle is discovered,
the blocking edge is removed from the structure,
wherever it may be.

This algori thm is qualitatively different from the
pixel-based algorithms, and cannot be compared solely
on the basis of p. First, the algorithm doesn' t need a
bit per pixel, a decided advantage. However, the
algorithm pays for this by (1) blocking edges, and (2)
removing blocked edges that are found to form a
cycle. This latter step requires that the deque be
searched after each span, to see if that span was
claimed by a blocked edge. Depending on the region ,
this step can be very expensive.

Shani never explicitly describes the behaviour of
his algorithm when confronted with V and W turns .
However, his paper contains a figure that shows the
algorithm performing optimally on a V-turn , and his
algorithm requires that non-cycle-causing Sp ~lOS not be
revisited . For these two reasons, our implementation
of his algorithm uses both V and W turn optimization.

The algorithm visits every non-cycle-causing span
once, and every potentially cycle-causing span twice.
This leads to a worst-case p of l.5 , but this is
extremely rare; our test regions had an average-case p
of l.Og . This is a lmost identical to (but slightly higher
than) th e p of our algorithm, the only other one that
optimizes both V and W turns. Th is is because
Shani's algorithm only revisits pix els that could form a
cycle, and ours only revisits those that do form a
cycle.

Graphics Interface '85

- 207 -

This algorithm, unfortunately, is not extendible to
8-connected propagation. When a blocked edge is
found, the blocking line must be drawn on the side of
the blocking vertex, not the blocked vertex.
Otherwise, a span could (wholly or partially) traverse
any number oC blocking edges; the deque would have
to be consulted not on every span, but every pixe/,
and shadows have to be modified in-place.

Drawing the line on the side oC the blocking
vertex is only correct in 4-connected propagation; it is
only in this case that we are guaranteed that the
blocking edge overlays a set oC pixels in the blocking
vertex that are all inside the region. For example,
consider a to-be-blocked span that lies diagonally and
one pixcl away Crom the blocking span. In this case,
no pixels in the blocking span will both (1) block the
cycle and (2) correctly re-discover the blocked vertex
when direction is changed.

3.1.3. Pavlidis
Pavlidis' algorithm4 notes that the graph Cormed

by the region is implicitly deCined by a graph that
defines the border oC the region. Furthermore, this
border graph is usually much sparser than the interior
graph. His algorithm, then, explores not the interior
graph but rather the border graph.

His algorithm uses a stack as the main data
structure, containing the address oC a border span, and
its direction with respect to its parent.

If the interior and border have 1 and B pixels,
respectively, Pavlidis' algorithm makes 1 + 3B pixel
visits, (or a p oC (I +2B)/ I. In the worst case, the
ratio oC B to I can be arbitrarily large; the algorithm
has worst-case p approaching infinity.

We did not implement Pavlidis' algorithm Cor
testing because oC two disadvantages:

1) The algorithm assumes that the border oC the
region has a distinct colour, distinct even Crom
the surrounding background. If this is not the
case (e.g. when the picture has only two colors),
then the algorithms' behavior is not defined.

2) Pavlidis ' algorithm is unique among the graph­
oriented algorithms in reserving a bit per pixel.

3.2. Pixel-based algorithms

3.2.1. SmithO

Smith has published two propagation
algorithms.7,8 His first,7 which we will term "SmithO",
is the only algorithm that keeps no parental
information oC any kind on the stack.

The end points oC the shadow and the values of
the parent span are kept as program variables rather
than as stack data. This means that when the
algorithm switches direction the algorithm has no
recourse to parental information.

This algorithm detects S-turns by these program
variables (except for immediately after a change of
direction), but does not detect U or W-turns.
Therefore, the algorithm will always push one shadow
continuing in the same direction, and will push one
shadow in the opposite direction oC the same size as
the child in the case of a U or W turn , (see Figure
3.1).

: . : ~ I "··"··"··"·".·::.·· ··::.:,···:::::::::::::::::::: 1

(when chansinr; direction)

..... :::: .. : .. ::::::::::::::::::::::.::::::::;:.:::

W

I

··········::: ······· ··· ·····1

Figure 3.1.
The SmithO algorithm acting upon S (left), U
(right), and W (bottom) turns

On both U and W turns, the algorithm will read
pixels at least twice; those pixels that are in the parent
span and also in shadow. This can also happen on S
turns, when the algorithm changes direction. Since
spans are pushed in both directions, this algorithm can
achieve a worst-case p oC 3, as noted by Pavlidis.4

3.2.2. Smith

At the SIGGRAPH '82 2-D Animation tutorial
Smith presented an improvement on his first
algorithm.8 It is this algorithm that we will reCer to as
"Smith's algorithm" for the rest oC the paper.

~mith's algorithm keeps the endpoints and y
coordmate oC the span explicitly on the stack, and
thereCore avoids the S-turn anomaly noted above aCter
a switch of direction.

Graphics Interface '85

- 208 -

However, the algorithm still performs the same in the
case of a V or W turn; two shadows are pushed, of the
same size of the child, in either direction (see Figure
3.2).

w 1· ••• ·····,/,·····························1
_ ······>I ··H (_

Figure 3.2.
Smith's algorithm acting upon S, U, and W
turns

I ~[XJL---IXI~IXI--:"---"'-----1IX1~
lXJ

~m

Figure 3.3.
Worst case for Smith 's algorithm

The worst case is a region that consists
exclusively of children that barely exceed their parents
on one end, as shown in Figure 3.3. In this case, we
have n rows of m pixels each. Each row is a V-turn
with relation to its parent. On the top and bottom
rows, pixels will be read only once. On the other
rows, m -2 pixels will be re-read by each of the
adjoining spans. This leads to a worst-case p of

p = 2m +(n-2)[3(m -2)+2] = 3- ~_ ~+ ~
mn n m mn

As m and n approach infinity, this approaches a
worst-case p of 3. In our tests, the algorithm had an
average-case p oC 2.02.

3.2.3. Levoy

At the same tutorial, Levoy presented a
propagation aigorithm2 which, though similar to
Smith 's, makes more use of the parental information.

The endpoints oC the shadow, when popped, a.re
compared to the end points oC the span that pushed it.
At this time, S and V turns are detected. If the
shadow represents the downward side of an S turn, it
is discarded, and if it represents the downward side oC
a V turn its end points are shaved.

Levoy's algorithm delays stack pushes as long as
possible; as shown in Table 5.2, it tends to have the
lowest stack heights of any algorithm.

Figure 3.4.
Levoy's algorithm acting on S, U, and W
turns

The behaviour of Levoy's algorithm is
summarized in Figure 3.4. Since it does not detect W
turns, the worst case arises when the region consists
entirely oC W turns, with edges as small as possible
(Figure 3.5). If the seed point is at the apex of the
triangle, then the algorithm will read every pixel twice
except .cor those in the top row. If the triangle has n
rows, it consists of 2n 2 - n pixels' 4n -3 oC which are
in the top row. Then

T M
n

1

2(2n 2 -n)-(4n-3)
p= ~----~~--~

2n 2-n

M
IX!

IX! IX!
M

Figure 3.S.
Worst case for Levoy 's algorithm

M
IX!

As n approaches infinity, p approaches a worst­
case of 2. In our tests , Levoy 's algorithm had an
average p of 1.53. Levoy 's algorithm shows
substantially better worst and average case behaviour
than Smith 's, solely due to the detection of U turns.

Graphics Interface '85

- 209 -

3.2.4. The new algorithm

This section presents a new algorithm for fill
propagation. Like Levoy's and Shani's, it keeps full
parental information on the stack. Only the direction
that the parent came from is kept, rather than its 11
value; this simplifies the logic considerably.

The algorithm checks each span against its parent
for the S, U, or W configuration. The shadows pushed
are the largest set of pixels that could extend the
region and do not contact the parent span. The
algorithm's performance is most easily shown visually
by Figure 3.B.

~ F ' ! s t::==J u t2i """"

b:
::'::'::' ::'::"::::'::'::' ::"'::::'::'::'::'::'::.::.::::................. "I w= :::,· .• ,"

I .
F1l'1re 3.0.

Our algorithm acting on S, U, and W turns

In any serially-implemented recursive algorithm,
recursive calls must be evaluated in some order. In
the previous algorithms, the order is arbitrary. Our
algorithm uses the well-known heuristic of "do the
smallest piece first" .5 In practice, shadows pushed in
the opposite direction for U and W turns are almost
always very small, corresponding to local bumps in the
region; therefore, we always push those spans last.

The new algorithm is the only one with a non­
arbitrary stacking order. Otherwise, it is very similar
to Levoy 's, except that ours detects W-turns. Our
tests show that these two minor improvements reduce
run-time by roughly 25% on our test data.

The new algorithm is also very similar to Shani's,
except that ours needs a bit/pixel but does not require
a data structure search, reducing run-time by roughly
75% on our test data.

Even though our algorithm pushes as many as
three shadows per span, as opposed to the two of most
other algorithms, our stack height is virtually identical
to theirs, due to this simple heuristic. Of course, there
could be narrow spans leading into arbitrarily complex
regions, but this rarely happens in practice.

If the region has a hole, the algorithm will re­
discover some of those pixels that formed the cycle, as
shown in Figure 3.7.

Fll'1re 3.7.
Our worst case; a hole (region BJ

If the widths of the left span, hole, and right span
are A, B, and C, respectiveiy, the child of the left span
will bleed over on top of the hole and revisit the pixels
which are the responsibility of the right span. This
results in C pixels being read twice.

The region has A+B+C pixels in the top row,
A+C in the middle row, and at least B+2 in the
bottom row, giving the region 2A + 2B + 2C + 2
pixels. All pixels are visited once except for the C
cycle-forming pixels on the top right, which are visited
twice. Therefore, the worst-case p is

2A+2B+3C+2
p = 2A+2B+2C+2

When C approaches infinity and A and Bare
minimized, p approaches its worst-case value of 1.5.

3.2.4.1. Behaviour on simply connected regions
In this section, we show that the algorithm

achieves p of 1.0 on regions without holes (simply
connected regions).

We need only consider two shadows whose
spansets overlap. Those shadows must lie on the same
line, by the definition of spanset. Suppose, then, that
we have some overlap of spansets. There are four
possible cases, depending on whether or not the
shadows overlap and whether or not the parent spans
are on the same line. We only prove the result for one
case: the others follow similarly.

F1l'1re 3.8.

Case 1: The parent spans lie on different lines,
and the shadows don ' t overlap (Figure 3.8).

Graphics Interface '85

- 210 -

Figure 3.g.

Figure 3.10.

At any point in the algorithm, the set oC pixels
that have been SET is 4-connected. Furthermore, we
defined the shadows for our algorithm such that they
don't overlap any previous parents. Therefore, the
parent spans must be 4-connected by a path that does
not touch either oC the shadows (Figure 3.9). Then,
we fill in the current spanset, a spanset which, by
assumption, contacts both parent spans. This forces a
hole either to the right of the upper span, or to the
right of the lower span (Figure 3.10). Again, there are
other symmetrical cases.

The algorithm achieves the optimal p iC the
arbitrary region turns out to be simply connected. If
we know in advance that the region is simply
connected, is our algorithm optimal?

UnCortunately, no. Consider any region whose
border has area proportional to the square root of the
area or the entire region (a square, Cor example). If
the border of the region is traversed, and the region is
known not to have holes, then the entire interior must
be entirely within the region (see Figure 3.11). Since
we only visit the border, this process gives us a p oC
O(Jri) , where n is the area or the region.

Therefore, although our algorithm achieves the
lower bound for a subset or the possible regions, it is
not necessarily optimal if we know in advance that we
are dealing with an element of that subset.

mun "" inside

rUled pixelo

oeed pixel

Figure 3.11.
A/ter Jri visits, we can /ilI n pixels

4. An analogy

All the algorithms explore (either explicitly or
implicitly) the graph defined by the topology oC the
region.

Both Smith 's and Levoy's algorithms proceed in
some fIXed direction until reaching a dead end, then
back up to the last node where a choice was possible,
and pursue that. This recalls depth-first graph
traversal.

Our· algorithm always changes direction iC
possible. Branches are filled beCore the main trunk, as
in breadth-first graph traversal.

Shani's algorithm proceeds in one direction as
long as there are unexplored arcs anywhere in the
region in that direction, repeating the process in the
other direction, This exploration by back-and-forth
waves recalls network flow or spanning tree
algorithms.

5. Comparison of the three algorithms

Four of the algorithms were implemented in C
under 4.2 BSD UNIX on a VAX-11/750, using an
Adage/Ikonas RDS3000 frame buffer. The gprof
command provided run-time profiling. The "CPU
time" row in Table 5.2 represents the relative total
CPU time to fill each region, using boundary /iIl5 ,7
INSIDE and SET procedures.

One of the 21 regions was a grid. This region
represents a maximally dense graph (the greatest
possible number of holes) , and was created specifically
to demonstrate worst-case behaviour. Each oC the
algorithms fared the worst by far on this region,
especially Shani's; the list of blocked spans was so long
that his algorithm's behaviour was extremely poor.
Without this region , Shani's algorithm performed quite
well; it 's relative CPU time dropped from 2.17 times
Smith's to 0.79 times.

Graphics Interface '85

- 211 -

An Overall Comparison of the Filling Algorithms
Lieberman SmithO

year 1978 1979
taxonomy graph pixel
data structure sorted list stack
element width 2 int 2 int

space requirement? No Yes
detects S turns? Yes usually
detects U turns? Yes No
detects W turns? No No
gradient fills? No Yes
8-connected? Yes Yes
pushes/span 1-2 1-2
p, worst case 2 3
av. p, test cases - -
relative CPU time,
test cases - -

Table 5.1.

Average per-region statistics, 4 algorithms, 21 regions
Algorithm

Shani Smith Levoy
pushes 821.3 724.9 618.0
max height ,
stack/ deque 198.1 192.3 98.7
max area (bytes) ,
stack/ deque • 2575.3 1153.8 987.0

P 1.09 2.02 1.53
incr 25.18 2.11 1.99
decr 23.07 0.24 0.30
negate 0.01 0.00 1.05
test 94.69 2.20 4.23
assIgn l.22 0.48 0.76
CPU time 217.2 100.0 83.5

Table 5.2.

• assuming 2 bytes/integer , 1 byte/Boolean

6. Conclusion

new
780.0

102.7

1129.7
1.05
1.20
0.20
0.04
3.76
0.27
60.2

A number or algorithms to rill regions were
presented and compared undrr a new metric . A new
algorithm was developed wit.h better average and
worst-case behaviour under this metric. The appendix
gives code to implement the algorithm.

7. Acknowledgements

The authors wish to thank Marc Levoy or the
University or North Carolina at Chapel Hill ror his
many helprul comments and discussions, and the
rev iewer ror suggest ing re-examination or the graph­
ori ented algorithms.

Shani Pavlidis Smith Levoy new
1980 1981 1982 1982 1985

graph graph pixel pixel pixel
deque stack stack stack stack
5 int, 2 int 3 int 5 int 5 int,

3 Bool. 1 Bool. 1 Bool.
No Yes Yes Yes Yes
Yes No Yes Yes Yes
Yes No No Yes Yes
Yes No No No Yes
No No Yes Yes No
No Yes Yes Yes Yes
1-3 NA 1-2 1-2 1-3
1.5 00 3 2 1.5

1.09 - 2.02 1.55 1.05

217.2 - 100.0 83.5 60.2

References

1. Kenneth P. Fishkin and Brian A. Barsky, "A
Family of New Algorithms for Sort Filling," pp .
235-244 in SIGGRAPH '84 Conference
Proceedings , ACM,Minneapolis(July 23-27, H/84).
Extended abstract in Proceedings of Graphics
Interface '84, Ottawa (28 May - 1 June HJ84) , pp.
181-185.

2. Marc S. Levoy, Area Flooding Algorithms,
Report, Hanna-I3arbera Productions (June, 1981).
Presented at SIGGRAPII '82 2-D Animation
Tutorial.

3. Henry Lieberman, " How To Color in a Coloring
Book ," pp. 111-116 in SIGGRAf'H '78
Conference Proceedings, ACM,Ati:J.nta(1978).

4. Pavlidis, Theo, "Contou r Filling in Ibstrr
Graphics," pp . 29-36 in SIGGflAPII '81
Conference Proceedings , ACM,Dallas

5. Robert Sedgewick, Algorithms, Addison-Wesley.

6. Uri Shani, "Filling Regions in Binary Raster
Images: A Graph-Theoret.ic Approach ," pp . 32 1-
327 in SIGGRAPlI '80 Conference Proceedillgs ,
ACM,Seattle(July , 1980).

7. Alvy Ray Smith, "Tint Fill ," pp . 276-283 in
SICG'flAPII '7[J Conference Proceedings,
ACM,Chicago(August , 1979). Also Techn ical
Memo No. 6, New York Institute or Tec h~() I(.'gy.

8. Alvy [by Smith, Fill Tutorial Notes, Report No.
40, LucasFilm (April 27 , 1982). Present ed at
SIGGRAPII '82 2-D Animation Tut orial.

Graphics Interface '85

- 212 -

Appendix

Here we list C source for the key portion of our
algorit.hm, with pseud~code provided for the other
parts.

struct {
int MyLx, MyRx; 1* endpoints of this shadow* /
int DadLx, DadRx; 1* and parent span * /
int Myy; 1* my shadows y coord * /
TWO_ VAL Mydir; 1* only holds values of +1 or -1 */
} Stack[STACK_HEIGHT];
macro PUSH(a,b,c,dd,e,f) {

}

push a shadow from (a) to (b), inclusive,
on line (e), going in direction (f)
from the parent span of of [(c) .. (dd)] .

/* pop top of stack into local variables * /
macro POP() {

}

pop the top shadow into local variables
Ix,rx ,y ,direction, DadLx, DadRx

/* stack a shadow on the stack. The current span is
[Ix .. rx] on line y, the parent is [DadLx .. DadRx],
and the current direction is (direction) * /
macro STACK(direction,DadLx,DadRx ,lx,rx ,y) {
1* store the *shoulders* of the span,
to simplify testing 3,6 lines down * /

}

pushrx = rx + 1; push Ix = Lx - 1;
PUSH(lx,rx ,pushlx ,pnshrx ,y+direction ,direction);
1* U turn to the right * /
if (rx > DadRx)

PUSH(DadRx + l , rx , pll ~hlx,pushrx,

y-direction ,-direction);
1* U turn to the left * /
/* W turn handled implicitly * /
if (Lx < DadLx) /* U turn to the left ;

PUSH(Ix,DadLx - l,pushlx ,pushrx,
y-direction,-direction);

1* fill a region, with seed at (seedx,seedy) * /
Fill(seedx,seedy)
int seedx,seedy ;
{
int x,y;
int IX ,rx ,DadLx ,DadRx;
int pushlx ,pushrx;
int direction;

(*Start) 0;

find the span containing the seed point.
suppose it goes from (Ix) to (rx), inclusive.
PUSH(Ix,rx ,lx,rx,seedy+ 1,1);
PUSH(Ix,rx,lx,rx,seedy-l,-l);

while (tos >= 0) {
POPO;
if ((y < Top) OR (y > Bottom))

continue;
x = Ix + I;
if (WasIn = (*Inside)(Ix,y)) {

(*Set)(lx,y); Ix = Ix - 1;

}

while ((*Inside)(Ix,y) AND (Ix >= Left)) {
(*Set)(lx ,y) ; Ix = Lx - I ;

}
Ix = Ix + 1;

/* now looking at pixel (x) .
if (Wasln) , then am inside a run of pixels from [Lx .. x)
else, Ix is meaningless * /
while (x <= Right) {

}

if(WasIn) {
if ((*Inside)(x ,y)) {

(*Set)(x ,y);
} else {

}

1* just found the end of a run * /
STACK(direction,DadLx,DadRx,Ix ,(x- I),y) ;
WasIn = FALSE;

} else {

}

if (x > rx) break;
if ((*Inside)(x,y)) {

(*Set)(x,y);

}

1* just found the start of a run * /
WasIn = TRUE; Ix = x;

x = x + 1;

if(Wasln) {
/* hit a.n edge while inside a. run * /
ST ACK(direction ,Da.dLx,DadRx ,Ix ,(x-l),y) ;

}

nOOLEANW 35ln ; 1* are the pixels from [Ix .. x) in 11 run? * /

Graphics Interface ' 85

