
- 245 -

Architecture of languages for Large
CAD Systems Development

Clin~. Li.
GE-(a1aa c. y

...... cll Dey.l ••••• ,
~Z7 Lake._ Dr.

S ••• yYaI. CA.,..16

Abstract

This paper reviews current approaches to
designing and implementing the User Programming
Language (uPL) for computer-aided design. The
requirements of the UPL. Application Programming
Language (APL) and System Programming Language
(SPL) are summarized. Some alternatives to
language architectures for users at different levels
are analyzed, and a model is proposed for the nell
generation of CAD systems. The implementation
issues of this architecture are also addressed.

Introduction

A CAD system generally includes different
modules for at least three levels of users, such as,
system operators, application programmers and
system programmers. Computer languages and
development environments are required for these
users to perform various tasks. The UPL for system
operators (technicians, designers, and engineers) is
used to operate the system and customize the CAD
software for the needs of particular installations.
More frequently, these users will also tailor the
system to meet their practices and styles with this
language. I will define this language that serves as
the outermost level of dialogue between users and
the CAD system to be the UPL. Similarly, APL is
used by application programmers to customize CAD
systems for different applications, e.g., the
application of a piping layout. SPL is used by system
programmers to implement the system on some
hardware and operating systems. With these
definitions, the UPL is used by technicians to record
the design layout, by designers and engineers as
casual programmers to deCine the design artU'act and
its semantics, to verify the design and to customize

the user interface. Because UPL is used by a variety
of users with different purposes and knowledge of
programming, it is difficult to come up with a good
solution that meets all the requirements. However,
it is important to define such a single and consistent
language since a user usually performs more than
one type of task (e.g., record the design layout and
write a simple program for his own needs) during
the design evolution. It is in the users best interest
to have a simple yet powerful (in terms of
eIpressiveness) CAD language at this outermost
level.

This paper reviews current approaches to
designing and implementing the UPL for
computer-aided design. Different architectures of
the language for users at different levels are
analyzed, and a model is proposed for the neIt
generation CAD systems. The implementation issues
of this architecture are also addressed.

Current Approaches and Related Work

Most CAD systems provide a UPL so users can
customize the system. A UPL is provided because of
a very strong demand from the marketplace. For
eumple, Graphics Programming Language (GPL) and
Design Analysis Language (DAL) (2) (3) are two
user-oriented languages for Calma's GOSH and DDM
systems. Grip is the graphics programming for
McAuto's Unigraphics system. Formtek Drawing
Language (FDL) is the language for Form:Draw users
(7). These languages are all used as an integral part
of the underlying CAD systems, i.e. GPL for GOSH ,
DAL for DDM, Grip for Unigraphics and FDL for
Form:Draw. Given the language, users are able to
access most of the procedures and functions
provided. These languages typically consist of the

Graphics Interface '85

- 246 -

following features:
• Interactive commands

• Vocabularies including identifiers,
numbers, strings, etc.

• Manipulation of primitive data types
such as coordinate, line, circle, array, etc.

• Declarations of variables and maaos

• Arithmetic, logical, relational operations
and other elpressions

• Control statements such as branching,
looping and conditional elecution

• Functions to group items into some logical
structures such as layers, set, etc.

• Functions to deal with user interface such
as system messages and menus

• Graphical manipulation including
translation, rotation, etc.

• Display functions for manipulating
windows, views, panning and zooming

• Geometric constructions that are
available in the underlying interactive
system

• Annotation functions including telts
(different fonts), dimensioning, etc.

• Operating system utilities such as file I/O

Some vendors offer rather simple command
languages that include only a portion of the above
features. Others offer a general purpose
programming language with utilities that are
provided by the underlying CAD systems. These
languages allow users with little programming
knowledge to customize the system and develop
some simple packages of their needs. Vendors who
do not offer this sort of language are most likely

trying to come up with one in a short period of time.

In the research environment, many researchers
also recognize the need to provide a simple yet
powerful language for CAD users. Glide2 (5) is a CAD
language (a superset of Pascal) that provides
facilities such as database support and geometriC
modeling needed for prodUCing large integrated CAD
systems. Glide was developed at Carnegie-Mellon
University to be used for CAD applications
development. CAEADS (Computer-Aided Engineering
and Architectural Design System) (6) was a
prototype system actually implemented in Glide2.
Ideograph (9), another language developed at C-MU,
was designed as a drawing language that allows the
semantics of drawings to be defined and maintained.
Ideograph contains most features offered by a
programming language. It also includes many
functions that are required by a drafting/drawing
system. End users can easily operate and eltend the
drafting system using this language. End users may
also define a new form through the inheritance
mechanism for a class of drawings. The semantics of
the form are maintained and enforced by the
operations defined in the form. The language allows
programmers to encapsulate the data types. End
users should only concern themselves with how to
manipulate the drawing objects; they should not
have to know how the data types are implemented.

Another interesting language for CAD
applications is an object-oriented language TM (8)
that includes full database capabilities required in a
CAD environment. The language offers various
characteristics, e.g., object-oriented approach,
encapsulation, eltensibility, attribute inheritance,
public and private definitions, communication among
objects through message passing and response
adding.

Language offered by CAD vendors are intended
to be the UPL for end users. Most of these languages
only offer function abstractions. Function
abstractions are u:mally specified by input-output
relations that allow users to apply most utilities
provided by the underlying systems without
knowing how those utilities are actually

Graphics Interface '85

- 247 -

implemented. With only function abstractions, users
will have to deal with complicated data structures
and make sure of the correctness of the data to be
operated by the function. This requires pretty
eltensive knowledge and programming elperience
of end users. Therefore, most of these languages
restrict users from defining new data structures and
they do not support the type notion to avoid
language complelity. However, this approach
certainly limits the capability of eltending semantics
of the data that end users would like to describe.
The languags developed in the research environment
offer data abstractions in one form or another.
Glide2 has frames to encapsulate the data structures
and functions. Ideography has forms that allow
users to use the abstraction without concerning what
are inside the form. Users are also allow to create a
new form (abstraction) by simply inheriting other
data structures and functions from previous defined
forms. TM has classes, Objects and inheritance for
functions and attributes. Objects in TM are
communicated through messages. These languages
provide a good encapsulation mechanism for end
users to manipulate and eltend the complicated
objects offered by the CAD system. However, these
languages may not be designed only to address the
needs of end usres. Several issues of how the
language can be integrated well with other language
environments for other types of users such as
application and system programmers have remained
untouched.

Architecture of Laoluales for CAD Systellu

Four basic architectures of CAD systems
languages are as follows :

• One single language used for SPL, APL
and UPL (Fig.1(a»:

The advantage of this approach is the
continuity of interfaces among different
layers from hardware to the end user.
However, one language may be suitable
for one development layer but not for
others. Fortran is the most com monly

used language for this architecture.

• One language is used as SPL and APL; a
different language usually implemented
in the SPLI APL is used as UPL (Fig.1(b»:

This architecture has been undertuen by
the most current CAD systems [101.
EIamples are Applicon's command
language that is the UPL for AGS/880
system; DAL is the UPL and Fortran is the
APL and SPL for Calma's DDM system.
The UPL of this architecture is usually a
command language such that each
command gets interpreted and
appropriate subroutines are called. Users
may combine a set of commands and
later· refer to them as a whole. The
advantage is that this command language
can be designed to be easily used by end
users. However, this language often does
not contain some important features
offered by general programming
languages such as type eltension.
Another approach of this architecture has
been to extend an existing programming
language to include some keywords for
graphics. This language inherits all
features provided in the host language
such as Fortran and Pascal, however the
language is too complicated and
addresses some features beyond the
scope that CAD operators and casual
programmers can comfortably handle.

• APL and UPL are defined to the same
language that is implemented in SPL
(Fig.1(c»:

There is another approach to defining an
application-oriented language that will
meet the specific needs required by the
applications. Examples are languages for
general drafting applications, and
languages for YLS} layouts. This
approach can produce a language that is
good for the application in mind. Users

Graphics Interface '85

- 248 -

(application programmers and end users)
will have a better chance of writing code
expressed in their terms. The FDL in
Formtek's Form:Dtaw system (7) is
designed specifically Cor the users doing
drafting and building floor plan layout
The language is implemented in an
extended version ol Pascal which is the
SPL for the Form:Dtaw system. Since a
large portion of the system will be coded
in APL (and UPL in this case), the
performance, maintenance and
portability issues will require very
special attention.

• Three di1Terent languages Cor SPL, APL
and UPL (Fig.l(d»:

S.,stem Opentors
&. Cesue.

Pro,nmmors

Applleetion
Pn.nmmers

S.,ste ..
Pro. n m rs

Herdye,.

(a)

S.,stem Opontors
.. C l

Pro,nmmors

Appllnti ••
Pro,r.mmers

S •• to ..
Pro,r r.

Some systems took this architecture to
provide different languages for different
layers of system use. For example, in
Calma's GDS 11 sytem, the assembly
language or Data General's hardware
(Eclipse machine) is used as the primary
SPL. XGL (a language similar to Algol) is
used as the APL and GPL is used as the
UPL that is an intepreted language. The
advantage of this architecture is that
each language can be chosen or designed
so it is more suitable fOt one particular
layer than another. I t is important,
however, to provide good interfaces
between these layers in order to come up
with an integrated environment so that
users of di1Terent layers can move easily
Crom one layer to another and all the

S"s'o .. Opentors
&. C.sue.

Pr .. n ... rs

Applieetion --4

Pro,nmmers

S,s'e.
Pro,n rs

Herdye,.

AppllceUon
Pro,nmIMrs

Herdy.,.

(b)

Cc) Fig.(1) language ArchHectures (d)

Graphics Interface '85

- 249 -

utilities provided beneath the layer can
be accessed naturally.

Although these four different architectures,
consist d different languages for different
requirements, they currently provide the only
capability d function abstraction. Almost none of
the existing commercial systems, to the authot's
knowledge, provides data abstraction in UPL.
Without the capability of data abstraction, the
complexity oC the UPL (e.g., type extension) increases
so that the language is a useful one. Unfortunately,
when the language is complicated, it no longer
remains as a good UPL.

A Lallluaae Architecture for Larae CAD
5,.118 •• Deyelop.eat

There are hundreds d proaramming languages
available, and still many languages are under design
and development. When a new project starts, it
always calls for a sound programmatic decision
relative to the choice of a language for the system
development. It is also required to provide a
language as the interface (whether a graphical,
dialoaue-based or programming-based interface) to
the system. Typica11y, the decision is simply
determined by the hardware used for running the
system and the language used in existing code.
However, a CAD system development is usually a

1s,.t.", ,
O,.nton
&
C •••• I
Pn,nntIMn

""licati ...
Pr.'r ners

::::::Oltj.ct >; . .
:: TnAslet.r ::::

: : ' : :: .:: : : ' '.
, : : . :

large effort and it involves a very long lifetime. The
decision is thus not so straight forward. It requires
the considerations of language simolicity. oortability,
reusability. m aintainability. etTiciency and
machine-level accessibility. These factors are all
important and somewhat conflicting. Therefore, it is
unlikely to decide or define a single language that
meets all the requirements. A practical architecture
is probably the "mix and match" model that suggests
three primary proaramming languages for UPL, APL
and SPL separately (see Fig.2). The use of a
language may be extended to the level beneath or
above it, depending on individual cases. For
example, a large portion of system programming
may be performed by APL programs, if the APL has
good perCormance and easy access to the underlying
hardware. Within a layer, there may be a few other
languages used besides the primary one. The most
important consideration, however, is that data
abstractions should be offered so the "mix and
match" languages can be integrated.

The purpose of the UPL is to aid in producing
prototypes that can be refined intn production
quality systems. Thereforp- the language should
make proaram writing easy (shorter programs do
equivalent wks, greater reusability d existing code
etc.); turn-around time Cor debugging and trying
new ideas should be Caster (interactive language,
source level debuger with graphiCS aid and being

Fig.(2) A language Architecture for large Electronics
CAD/CAE Systems Deyelopment

Graphics Interface '85

- 250 -

able to resume after fixes, dynamic linking if
compiled); the language should be rich enough to
access all data structures and functions offered by
the underlying system. These requirements almost
conclude that the UPL has to be an object-oriented
language. This language is the "shell" above all other
language environments and the underlying CAD
system, i.e., through the UPL, users will be able to
access all the objects (data structures and functions)
created in the APL or SPL and link with other
objects created in the UPL, but not vice versa.
Smalltalk l111 and TM (8) are two languages that are
close to these requirements. However, they are
designed to be general purpose programming
languages. A good UPL for CAD users is yet to be
evolved.

A primary protion of the entire system is
probably implemented by writing programs in APL
in order to keep the system independent of the
target hardware and the machine level instructions.
Since the nature of the system is large and
long-lived, APL should address issues such as
readability, maintainability, reusability and
portability. The language should also generate
efficient code for execution. The choices for the APL
are Ada, Modular-2 and Mainsail. They all support
strong typiruz.. separate compilation. data abstraction.
exception handing, etc. Ada deserves more
considerations due to its strong standardization
(supported by DoD) and many unique features such
as generic. tasking and overloading.

The SPL is the closest language layer to the
operating system and the underlying hardware.
This languages should provide operators for bit
manipulation such as turning bits on and off,
perform left and right shifts etc., low level I/O such
as sequential file 110, random access I/O, storage
allocating and freeing. Ability to generate very
efficient code is the most important consideration.
The choice of this language depends primarily on the
underlying operating system and hardware. A few
choices are C, Ada, Modular -2 and Mainsail. Quite
frequently, some coding done in the assembly
language for the underlying hardware is inevitable
in order to get more speed.

Conclusions

Most CAD vendors provide the UPL simply as an
eItension to allow users acceSSing functions in the
underlying system. Their objectives and
requirements of offering these UPLs are not clear, as
a result, most of these languages are the interpreted
version of a simplied high level language with access
to underlying routines. They may be easier to use
compared to the APLs, but are limited as macro
languages.

In this paper, several current language
architectures are analyzed and the rationale of
designing a new UPL for CAD is summarized. An
architecture is proposed to allow the "mix and
match" of various languages that are integrated
through the data abstraction that allows objects
(data structures and functions) implemented in the
lower level to be accessed by the higher level
environment. A few good candidates of languages
are suggested with a more detailed model for
electronics CAD/CAE systems. These languages are
recommended based on the features and current
implementations of the languages without further
evaluations of individual business considerations. A
good report (1) can be used as a guideline that
includes other factors to be considered when
selecting a particular language for application or
system development. The design and
implementation of a UPL requires further
investigation. Some important issues are: a simple
object-oriented language but powerful enough to
produce a prototype system quickly; a good
semi-automatic mechanism that translates the UPL
code into APL and gains performance after the
prototype programs are ready; good interfaces
among the UPL to other application specific
languages (e.g., VHDL (iD that are later translated to
APL.

References

[I J D. Baker, "Ada Decision Matrix," The Aerospace
Corporation, El Segundo, Ca., March 198-4.

Graphics Interface '85

(2) Calma, "Design Analysis Language Product
Specification," GE-Calma Company, Santa QlI..ta,
Ca., 1982.

(3) Calma, "GPL-lI Reference Guide," GE-Calma
Company, Santa Oara, Ca., 1983.

(4) A. Dewey, "VHDL: Implication of a Modern
Hardware Description Language," IEEE
International Conference on Computer Design:
VLSI in Computers, New York, 198 ...

(5) C. Eastman and R. Thornton, "A Report on the
Glide2 Language Definition," preliminary draft,
IPP, Carnegie-Mellon University, Pgh., PA,
Mar. 1979.

(6) C. Eastman and Y. Yasky, 'The Integrated
Building Model and Database Schema for the
2nd Phase of Integrated CAEADS,"
CAD-Graphics Lab., IBS., Carnegie-Mellon
University, Pgh., PA, Jan. 1981 .

(7) Formtek, "Formtek Reference Manual,
Form:Draw," Formative Technologies Inc., Pgh.,
PA, 1983.

(8) J. Gerzso and A. Buchmann, 'TM- an
Object-Oriented Language for CAD and
Required Database Capabilities," IEEE
Workshop on Languages for Automation, New
Orleans, Nov. 198 ...

(9) C. Liu, "Drawings as Models for Design: a
Computer Drawing System to Build Models
Supporting Design Process through
Abstractions," Ph.D. Dissertation, Carnegie
-Mellon University, Pgh. PA, April 1984.

(10) C. Liu, "A Study of Graphics Programming
Language for Computer-Aided Design and
Drafting," IEEE Workshop on Languages for
Automation, New Orleans, Nov. 198 ...

[11] Special Issue on smalltalk , Byte, Aug. 198 1.

- 251 -

Graphics Interface ' S5

