- 21 -

THE INTERACTIVE PLANNING WORK STATION: A GRAPHICS-BASED
UNIX™ TOOL FOR APPLICATION USERS AND DEVELOPERS

Richard Bournique, AT&T Bell Laboratories, Holmdel, New Jersey 07733
Ronald Candrea, AT&T Bell Laboratories, Holmdel, New Jersey 07733
Don Hartman, MLC Inc., 150 E.Riverside Drive, #400, Austin, Texas 78704

ABSTRACT

The Interactive Planning Work Station (IPWS) is a
UNIX-based system intended to support planning
and other complex decision-making tasks. IPWS
addresses the needs of at least two classes of users:
end users of an application (including both basic
and sophisticated) and application developers.
IPWS software provides for a menu-oriented user
interface, interactive database management
capabilities, and graphical input and output. The
work station capabilities, how they support end
users, and how they simplify the development of
new applications, is the topic of this paper.

RESUME

L’Interactive Planning Work Station (IPWS - Poste
de travail A planification interactif) est un systéme
basé sur UNIX, congu pour soutenir la planification
et autres taches complexes de prise de décision.
IPWS répond aux besoins des deux classes
d’utilisateurs au moins: les utilisateurs finals d’une
application (fondamentale et compliquée inclus) et
les dévelopeurs d’application. Le logiciel IPWS fait
provision pour une interface d’utilisateur liée au
menu, des capacités pour la gestion des bases de
donnécs interactive, et pour l’entréec et la sortie
graphiques. Le sujet de ca travail comprend les
capacitiés du poste de travail, la maniere dans
laquelle elles soutiennent les utilisateurs finals, et
comment elles simplifient le développement des
nouvelles applications.

KEYWORDS: graphics workstations, user
interface, Core, GKS, network planning

™ Trademark of AT&T Bell Laboratories.

I. INTRODUCTION

The Interactive Planning Work Station (IPWS) is a
UNIX™.based system intended to support planning
and other complex decision-making tasks. Network
planning at AT&T has always been supported by a
wide variety of edp systems. A typical planning
system includes a collection of algorithms that
produce large amounts of data to produce a
network plan. The primary user interface was, for
many years, a set of voluminous printouts. If the
system contained an interactive component it was
usually in the form of a single package for editing
data files or submitting batch runs.

As part of AT&T’s Bell Laboratories responsibility
to design planning methods and tools to support
facility planning within AT&T Communications
(formerly Long Lines), a study was undertaken in
1978 to review the software architecture of the
existing generation of AT&T facility planning
systems and propose an architecture for next
generation systems. One of the principal
conclusions of the study was that next generation
systems require a much better user interface than
the current ones, and the only reasonable way to
provide the required interface is to build a separate
system that can be adapted to meet the needs of a
variety of applications. It was out of this study that
work on IPWS grew. IPWS design began in early
1979; at that time the intent was to demonstrate the
feasibility of the concept and provide a testbed for
further development.

As IPWS has evolved, more users and applications
have been identified and the need for a complete set
of underlying tools, reaching beyond those needed
simply for network planning, has become even
greater. A next generation low-cost work station
has since evolved in both hardware and software
with potential applications extending into other
areas including marketing, operations research
studies, and statistical analysis.

™ Trademark of AT&T Bell Laboratories.

Graphics Interface ‘85

II. WHAT IS IPWS? WHO USES IT?

IPWS can best be viewed as a collection of software
capabilities along with a control structure that ties
these capabilities together. The IPWS philosophy is
distinguished from other work station philosophies
in its emphasis upon software. That is, IPWS
should not be viewed as a specific hardware device
but, rather, as a software architecture that can be
implemented on a variety of hardware devices. A
typical work station "terminal® consists of an
alphanumeric terminal for displaying menus and
entering text, a color raster graphics monitor for
displaying pictures, and a pointing device such as a
tablet or mouse for direct interaction with the
graphics screen. One configuration is an AT&T
6200 PC with a high resolution color board and
monitor and a Microsoft mouse (Fig. 1).

Fig. 1-The Interactive Planning Work Station hardware.

IPWS addresses the needs of at least two classes of
users: end users of an application (both basic and
sophisticated) and application developers [1]. Both
classes of users have different but overlapping
requirements.

2.1 End users of an application

The basic users of an application are typically non-
programmers who have little interest in learning
about software or an underlying database structure.
Normally they work in a highly structured and
tightly controlled environment. To assist these

- 29 =

users, IPWS provides the ability to display
information graphically and add, delete, or modify
the display by pointing at various items on the
screen. Typically, these users want to interact
through a set of menus which define alternatives
available at each step of the application process.

More sophisticated users are those who use the
system on a regular basis to manipulate data to, for
example, perform special studies and ask one-time
"what-if" questions. The tasks to be performed
change frequently and the exact functions required
are often not known prior to performing the task.
These users typically have some programming
experience and are frequently motivated to
understand an underlying database. The tools
needed by sophisticated users are those that
generate graphics displays to aid in understanding
the data (and to help locate data errors) as well as
tools that help users edit, synthesize, and
manipulate the data.

2.2 Application developers

Application developers design algorithms and
software packages for other users. They require
the same capabilities as sophisticated users plus
tools to assist in building application packages.
Software provided by IPWS here includes a
langauge for building application menus, a database
management system, an interactive graphics
package, and some general purpose software
development packages.

2.3 IPWS features

Both end users and application developers see
IPWS as a system with three major features:

(i) A menu-oriented user interface
(ii) Interactive database management
capabilities
(iii) Graphical input and output.

These three features are expanded upon in the
sections below.

III. THE MENU-ORIENTED USER INTERFACE

The question of whether it is better to provide users
with a command-oriented or menu-oriented user
interface to their applications is a difficult one. That
issue is resolved in the IPWS environment by
essentially providing both.

Graphics Interface ’85

. 23 =

3.1 IPWS menus

Fig. 2 is an example of a work station menu. The
menu is displayed at the top of the alphanumeric
screen in an application programmer-defined
format. (See Section 3.2 below.) The remaining
bottom portion of the screen is used as a scrolling
region.

3.2 The menu language

To facilitate application developers in the creation
of menu interfaces for their applications, a menu
language [3] was developed for IPWS. In many
ways the Menu Language looks like a subset of C
along with some additional functions. Fig. 3 is an
example of a menu language program.

IPWS - GRAPHICS MENU FEATURING GRADIAL - plots

| input file = linkdata

f filter = bars (options: bars curve steps stats yours)
x x-axis fleld = ?

y y-axis field = ?

U user command flle:
u user params: NoNe

a auto-axes: on
A axes-sstling menu

K clear whole screen
k clear just viewport
s select (using cursor)

w window: (d)010 1

v viewport: (d) 010 1
¢ color: 1

| list-dir d display-fmt p printfi R Runfi:
rrun 8 exit G Globals t tutorial
> | linkdata

> fbars

>r

>

Fig. 2-Plots is one of the basic menus on the Interactive
Planning Work Station. Users type the desired option in the
scrolling region below the menu. Online help information and
tutorials are available for all the basic work station menus.

Whenever the prompt character, ">", is displayed,
the user may sclect ecither an option from the
current menu (a one-character entry) or any built-in
or UNIX command (a multiple<character entry). To
UNIX system users, this appears in practice to be a
menu-oriented shell. Menu options may spawn
application programs, update entries in the current
menu, or invoke other menu pages.

IPWS provides a tree structure of basic work
station menus [2]. These menus include basic
capabilities many users want, including database
manipulation and graphical display. (See Sections
IV and V.) The basic menus may be run stand
alone or may be linked with application-specific
menus.

page sortmenu()

static char inf, outf;

display(0, "Sorting Menu")
{

/* "I” menu option atrow 1, col 1 */
A4, 1, 1; "Input file = ", Inf;

Inf = getfid();
;:pdate:

/* "O" menu option at row 2, col 1 */
:0, 2, 1; "Output file = ", outf;

{
outf = getfld();
;mdate:

/* "R" menu option atrow 3, col 1*/
‘R, 3, 1; "Run sort";

{
if ((inf 1= "") && (outf I= ""))
exec(BIN, "sort", inf, outf);
else
print("Missing file name(s)");

Fig. 3-A Menu Language program.

The most noticeable addition to the Menu Language
is the display statement which lets users create their
own menus. To define a menu entry, the
programmer provides in the display statement:

(i) The pick character, i.c., the character
typed to choose this menu option

Graphics Interface '85

- 24 -

(ii) The location of the entry using a row-
column format (the top of the screen
is row zero; the left-hand side of the
screen is column zero)

(iii) The explanatory text to be displayed
beside the menu entry

(iv) The action(s) to be performed when
the menu option is chosen.

In addition to display, other built-in functions, like
getfld and update in Fig. 3, are provided as part of
the language for inputting data and updating the
menu information on the screen.

IV. INTERACTIVE DATABASE MANAGEMENT

The interactive database management capabilities
on IPWS is a relational database management
system (DBMS) [4]. Much of the design of the
DBMS borrows from other database systems,
notably IBM’s System R.

IPWS database software has been designed in two
levels (Fig. 4). On the bottom lie the low-level
database access routines and the C language
interface. This level includes record and page
managers and an indexed access (B-tree) manager.
On top are numerous higher-level tools. They
include database menus, some basic database
management utilities, a database editor, and a
graphical database language. An interactive query
interpreter is also in the works.

Databass

Menus
Interactive
Query Language | Database Graphical
and Utllitles Database
DB Editor Languago

Low-level access routines (C language Interface)

Record Manager | Index Manager | Concurrency
Page Manager Control

Physicallogical Files

Fig. 4-Levels of IPWS database software.

4.1 Low-level database management

IPWS supports both logical UNIX databases and
physical UNIX databases. Logical UNIX databases,
in which relations are stored as plain UNIX files, are
intended primarily for personal use where
concurrent access and crash recovery are not
required. Physical UNIX databases, in which
relations are stored in a UNIX physical file system,
are intended for applications that require large
shared databases.

Users may process databases sequentially or
through indexed access provided through the use of
B-trees. Indices may be on a single field or on the
concatenation of several fields. Users can also
create databases made up of a collection of
interdependent relations.

The C language interface consists of a set of low-
level C subroutines that are used for processing the
database on a record-at-a-time basis. Record-at-a-

_time access is useful for operations that are

inherently procedural. In addition to accessing the
database, subroutines have also been provided that
support transaction control.

4.2 Higher level database tools

4.2.1 Database utilities

Many database functions are so frequently needed
that a set of database utilities has been provided for
quick and easy access. These utilities include the
ability to:

(i) Convert an ASCII file to a database file
(ii) Select and/or join database files
(iii) Print a database file
(iv) Concatenate, sort, and/or summarize
database files
(v) Index a database file.

Most of these utilities are accessible either through
an IPWS command or through one of the basic
work station menus.

4.2.2 Interactive query language and editor

A database query language is in thc works. The
fourth generation interactive query language will
allow users to query a database and browse through
the results using the database editor.

Graphics Interface ’85

- 25 -

The database editor,qde (query, display, and edit)
is a screen-oriented interactive program that allows
a user to browse through a relation in a database.
The editor appears much like the vi text editor in
that a user can easily move around in a relation and
add, delete, or modify records. Format files can
optionally be provided that define the screen layout
for records being displayed. The format file can
aiso make certain fields invisible or protected.

4.2.3 Graphical database language

GRADIAL (Graphics and Database Interpreter and
Language) is a high-level procedural language that
marries database access and graphical display. It
has been mentioned here for completensss, since it
is both a database as well as graphics language.
More is said about GRADIAL in Section 5.3.2
after a more complete discussion of graphical input
and output is presented.

V. GRAPHICAL INPUT AND OUTPUT

Like the database management software, there are
distinct levels of graphical functionality [6] to
consider (Fig. 5).

Craphics Menus

Graphics | Graphical | Picture
Utilities Database | Editor

Language

Device-Independent Graphics Routines

Virtual Davice Interface
and

Device Drivers

Fig. 5-Layers of IPWS graphics software.

At the lowest level are the hardware device drivers
and a virtual device interface (VDI) that controls
and invokes those low-level functions. The next
level of software is a set of device-independent
routines that permits programmers to develop their
own graphical applications in C. Higher-level
software, built on top of the device-independent
routines, resides at the topmost level. A basic set of
graphics utilities are available as well as a graphical
database language and an interactive picture editor.

5.1 Device drivers and the VDI

From the beginning, the intent was to allow users to
configure their IPWS work stations with the
hardware that their particular application dictated.
Consequently, many different graphics drivers
running under IPWS were anticipated. In the
authors’ work environment alone, output drivers
have been written for the AT&T Teletype 5620
bit-mapped terminal, the Ramtek 9351, the Ramtek
6211, the Printacolor ink jet color printer, the
Hewlett-Packard 7221S plotter, the Bausch and
Lomb DMP HIPLOT-29 and DMP-9 plotters, the
Epson FX-80 black and white printer, and the
Matrox, NEC, and Heurikon graphics boards; input
drivers exist for the Summagraphics bitpad, the
GTCO and CalComp Wedge tablets, and the
Microsoft and Logitech mice.

The highly repetitive and generally well understood
task of writing a device driver led to the definition
and implementation of a standard set of routines
and data structures that must be provided to drive
the devicee The result is a device-
independent/device-dependent (DI/DD) interface [7]
or VDI. The concept of a DI/DD interface is
nothing new; but without the prospect of an
industry standard soon, it was thought necessary to
go ahead and define a standard IPWS interface.

The DI/DD interface allows the inclusion of not
only hardware devices but so called pseudo devices
as well. In particular, a device driver was written
that stores the graphics calls in an application-
independent metafile, thus allowing for the saving
and retrieving of images in a picture library.

5.2 The device-independent graphics routines

The device-independent graphics routines comprise
the mid-level graphics software of IPWS. In
actuality there are two packages. One package is a
C implementation of Core, thc ACM SIGGRAPH

Graphics Interface ’85

- 26

Graphics Standards Planning Committee’s industry
standard for graphics functions [8]. The second
package is a C implementation of the newer,
internationally popular Graphical Kernel System
(GKS) standard [9]. Newer applications tend to use
the more complete GKS package.

Both packages consist of hundreds of user-callable
functions [10] and have, presently, the ability to:

(i) Draw two-dimensional line, marker, text,
or polygon primitives

(ii) Perform clipping, viewing, and image
transformations

(iii) Group the primitives into higher-level
nested segments

(iv) Set and inquire about various graphical
attributes

(v) Read input from different virtual input
devices.

5.3 Higher-level graphics software

5.3.1 Graphics utilities

Many graphics functions are rather basic and are
regularly used in an interactive session, regardless
of the particular application. Some of these basic
functions include:

(i) Automatic scaling and drawing of axes
for charts and graphs

(ii) Definition of colors to be used in drawing
the picture elements

(iii) Definition of the special markers (icons)
to be used as picture symbols

(iv) Interactive windowing and viewporting

(v) Production of panels (iconic menus) for
the graphics screen.

A set of about a dozen graphics utilities have been
provided on IPWS for easy access to these
frequently used operations. From the user’s

viewpoint, these utilities appear to be UNIX-like
commands that can be invoked directly or through
basic menu options.

5.3.2 Graphical database language

The IPWS graphical database language, GRADIAL
(Graphics and Database Interpreter and Language)
[11] is a high-level language for desc-ibing a picture
to be drawn, using the information in the records of
a database file. The GRADIAL interpreter
translates these higher-level constructs into the
appropriate lower-level graphics function calls.

Fig. 6 is a simple GRADIAL program that displays
LATAs (Local Access and Transport Areas).

stripick " save LATAS for picking
ue = continue Until End of file

read " read the next database racord
it lata It 800 * AT&T LATAs are < 800
color Icoler " got LATA color
marker xy 14 " place marker #14 on point
endif " end of Iif
endue " end of loop

Fig. 6-A GRADIAL program.

The database file from which the picture was
constructed includes the fields lata (LATA
number), lcolor (LATA color), and (x, y) (location
of LATA). With the appropriate database file and
GRADIAL program, the interpreter will generate
the graphics that, equivalently, would require a C
program about fifty lines long. Fig. 7 is a black
and white rendition of the color display generated
by this program.

In addition to producing the picture, the interpreter
can also store the indices to the database records
from which the items in the picture were generated.
A later application process can let a user point to an
item on the screen causing the database record on
that item to be displayed on the alphanumeric
screen. The strtpick statement in Fig. 6 tells the
interpreter to store the database records for later
picking.

Graphics Interface '85

Fig. 7-The display produced by the program in Fig. 6.

6.3.3 Interactive picture editor

In the same way that GRADIAL allows post-
inquiry of the picture elements, it was also thought
important to provide users with the ability to post-
edit a picture, independent of the particular
application that produced it. An interactive picture
editor [12] has been provided within the work
station for that purpose.

Most of the interaction takes place on the graphics
screen, using a tablet and cursor (or mouse). The
windows of control information, superimposed on
top of the picture, can be shuffled around like
sheets of paper on a desk (Fig. 8).

The picture editor allows a user to perform a wide
variety of tasks interactively that normally would
require some kind of programming effort. Users
can, for example, mix new colors, creatc new
marker symbols, stylize networks, and design
flowcharts, all interactively.

V1. SUMMARY

The Interactive Planning Work Station is a UNIX-
based software architecture addressing the needs
many different users. Both end users and
application developers see IPWS as a system with a
menu-oriented user interface, interactive database
management capabilities, and graphical input and

27

.

Fig. 8-Picture editor panels are superimposed on top
of the picture to be edited. Users can move the panels
and make them visible or invisible as needed.

output. The numerous applications developed and
running on IPWS have demonstrated its potential
for becoming a valuable decision-maker’s assistant
in the workplace.

Future IPWS plans include the evolution of the next
generation of hardware, movement toward a
single-screen multiple-window environment, and
the development of other higher-level software
tools such as a graphical database editor. Work on
IPWS should continue to be challenging and
exciting for some time to come.

REFERENCES

1. D. Hartman, S.J. Russo, and S. Udovic, "The
Interactive Planning Work Station- an
Introduction,” Interactive Planning Work
Station User’'s Manual- Volume 2, Version 2.

2. H. Witting, "A Design Tutorial Using Basic
IPWS Menus,” Interactive Planning Work
Station User’s Manual- Volume 2, Version 2.

Graphics Interface '85

10.

11.

12.

- 28 -

D. Hartman, "Menu Language for the
Interactive Planning Work Station,” Interactive
Planning Work Station User’s Manual- Volume
2, Version 2.

D. Hartman and S. Kashdan, "The IPWS
Database Management System,” Interactive
Planning Work Station User’s Manual- Volume
2, Version 2.

S. Kashdan, "The Database Editor, qde
(Version 1.1)," Interactive Planning Work
Station User's Manual- Volume 2, Version 2.

R. Bournique, "Graphics Software Tools on
the Interactive Planning Work Station,”
Proceedings of the Application Development
Systems Symposium (April 1983), pp. 89-95.

R. Bournique and N. Mowatt, "IPWS General
Driver Interface,” Interactive Planning Work
Station User’s Manual- Volume 3, Version.

"Status Report of the Graphics Standards
Planning Committee,” Computer Graphics,
13, No. 2 (August 1979).

"Graphics Kernel System (GKS) - Functional
Description,” ISO Draft Proposal ISOTC
97/SC 5 N 728 (December 1982).

R. Bournique, "The Definitive Guide to the
IPWS Graphics Package,” Interactive Planning
Work Station User's Manual- Volume 2,
Version 2).

K. Kretsch, "GRADIAL Language
Specification”, Interactive Planning Work
Station User's Manucl- Volume 2, Version 2.

R. Bournique, "Picture Editing Made Easier:
A Guide to the IPWS Picture Editor,”
Interactive Planning Work Station User’s
Manual-Volume 2, Version 2 .

Graphics Interface ’85

