
- 313 -

Colour Spaces and Colour Contrast

AviNaiman

Department of Computer Science
University of Toronto

Toronto, Ontario, M5S lA4

ABSTRACT

With the introduction of low-cost colour
graphics systems come a host of problems
specifically concerned with the colour
aspect of the system. This paper discusses
two of these problems: the selection and
manipulation of colours by (possibly) inex
perienced users, and the automatic selec
tion of colours by the system to achieve high
contrast effects on the screen. A new colour
model based on colour opponency theory is
described . This model is useful both in the
user interface and in the automatic selec
tion of high contrast colours .

RESUME

L'introduction de systemes graphiques
en couleur de bas prix introduit une
plHhore de problemes associes a
I 'apparition de la couleur dans le systeme.
Cet article discute deux de ces problemes: la
selection et la manipulation des couleurs
par les utilisateurs (possiblement)
inexperimentes, et la selection automatique
des couleurs par le systeme pour obtenir un
haut contraste sur l'ecran. Nous decrivons
aussi un nouveau modele de couleurs , fonde
sur la theorie des couleurs opposantes . Ce
modele est utile a la fois pour l'interface a
I 'utilisateur et pour la selection automatique
de couleurs a haut contraste.

KEYWORDS: Colour, Colour Contrast, Colour
Models, Colour Selection, Colour Spaces,
Colour Specification, User-Interface

Introduction
Colour is an increasingly affordable and

common feature of graphics displays - be it
i n educ ational environme nts , professional
worksta tions, or home c ompute r sysLe ms . It
has a lready becom e a s ig nific ant c ompone nt
of compute r aided visua lization of informa-

tion, concepts, and ideas. As the prolifera
tion of colour raster CRT systems continues,
colour becomes increasingly tantalizing to
programmers with little or no background in
the technology and techniques of colour
computer graphics . Both computer graphics
programmers and users - typically novices
with respect to colour - find themselves
faced with the problems of colour
specification and modification.

Most Computer Graphics applications
available today offer the user little or no
freedom in selecting colours . Often, only a
predefined palette of colours is available
from which the user must make a selection;
no method is provided for the modification
of the selected colours . Even those applica
tions which do provide more useful tools
typically restrict the flexibility of colour
specification by allowing the user only to
specify relative amounts of the red, green,
and blue components of the colour
directly corresponding to the values to be
supplied to the digital-to-analog-converters
which control the three electron guns
sweeping out the image on the monitor . It
has been recognized for a while that thi s
limitation can considerably hamper a user 's
creativity in using the colour dimension of
system [BERK82b , FOLE82, JOBL78 , MEYE80 ,
SMIT78, SCHW84, and TANN83].

In this paper, we review the more c om
mon colour spaces used in Computer Gra ph
ics today and discuss the problems ass oci
ated with using these spaces fo r
specification and selection of colour . Furth
ermore, as it is often most important tha t
certain foreground objects (e .g., tracking
symbols) be highly visible, we a nalyz e th e
usefulness of the various colour spa ces in
the context of automatically s e lecting th c
colour of the foreground obj ec ts agains t
coloured backgrounds . Fina lly , we dcsc rib e
a new colour space wc have d c velopc d b a s ed
on opponent colour· th e ory .

Graphics Interface '85

- 314 -

Colour Spaces
For the casual or inexperienced user,

thf orocess of specifying colours to be used
in a .,;cene, report, or package must be easy
to learn, use, and understand. This goal is
better achieved when the underlying
specification model is intuitively clear.

A colour spacet is a specification of a 3D
coordinate system and a 3D subspace within
which each displayable colour is represented
by a point. The purpose of a colour space is
to allow for the convenient specification of
colours within some colour gamut - the
range of colours producible on or recogniz
able by some medium [FOLE82]. Computer
Graphics is primarily concerned with
presentation of coloured output in video,
film, and print, each of which is a subspace
of the human colour gamut. Our prime con
cern here is the gamut for colour video as
defined by the red, green, and blue primaries
corresponding to the red, green, and blue
phosphors in a colour display device . All
colour spaces we use, then, must be inverti
ble functions of the valid red, green, and
blue inputs to the DACs.t

In order to specify a colour, the user
need not know the details of the space being
used; only the concepts behind each of the
dimensions in the space and how the dimen
sions interact to produce a colour need be
understood. For instance, how the colour
will be realized on the monitor (i .e ., the
transformation that must be applied to the
colour space in order to produce appropri
ate voltages for the electron guns) need not
be understood by the user .

Three issues affect the usefulness of a
colour space : ease of implementation (the
difficulty of developing conversion algo
rithms between the colour space and one
which can be used to drive the display's

t In the Computer Graphics literature. the terms
colour model and colour spa.ce are often used inter
c hangeably. To avoid ambiguity. we will reserve the
t.erm model to refer to a model of vision and use
-"pa.r.e to refer to a 3-dimensional system of colour
representation.

+ Note that. if images originally create d on a video
monitor must be faithfully reproduced on film or by
prinl.ing. the full video gamut of colours must not b e
used s ince the gamuts for films and inks a r e consider
ably smaller than the video gamut.

electron guns), effiiency of implementatio
(in terms of the speed and accuracy of thp.
conversion algorithms), and ease of use
(measured in terms of the ease with which e..
wide selection of colours can be found and
the naturalness of the dimensions of the
colour space) . Unfortunately, these issues
are usually considered in decreasing order
of importance when designing graphics
applications today. It would be more
appropriate for the user's flexibility to be
the primary consideration in providing
colour manipulation tools - within the limi
tations of the system.

Common Colour Spaces
The RGB .(for, red, green, blue) colour

space was originally implemented in
hardware (Le ., the electron guns) because of
its relation to the red, green, and blue cone
systems in the human eye . This subse
quently influenced the selection of the RGB
space in software as an interaction tool -
despite its . unintuitiveness . From a pro
gramming standpoint , the RGB space is very
appealing, as the only transformation
needed to obtain the requested colour on the
monitor is quantization.

All other colour spaces must be specifie d
in terms of invertible functions of RGB .t In
addition to RGB , the following alternative
colour spaces have been used with some suc
cess in recent applications and research
environments . More in-depth treatments of
the various spaces can be found in [FOLE82.
NAIM85, and SMIT82].

The Y1Q space is an encoding of RGB
established by the National Television Stan
dards Committee (NTSC) in 1953 for the
transmission primaries of broadcast colour
television in North America. The Y d i men
sion, called luminance,f measures the

t Note that. since CRT phosphors produce intensity
levels which exhibil a non-linear relalionship to the
DACs' inputs. we must compensate by employing a
mapping function (via a lookup table) betwe e n the
computed inlensities and those actually displayed on
the CRT. Tec hniques for compensating for thes e
hardware non- linearii. ie s . often called gamma c orrl' C
lion. can be found in rCATM79 and COWAB3].

+ As is traditional in the Computer Graphics litera
ture. we use the term brightness loosely. a nd inter
changeably with lightness. whitene ss. a nd luminosit.y.

Graphics Interface '85

- 315 -

brightness perceived by a human watching a
typical home television receiver and
matches the human luminosity response
curve. The I and Q dimensions contain the
chrominance components of chromatic
colour. Though this space is merely a linear
transformation of the RGB space, it was
developed to meet certain criteria for TV
transmission; it is not at all intuitive and is
attractive neither to a programmer nor a
user.

The HSV space, proposed by Smith, is the
first colour space for computer graphics to
be user-oriented, being based on the intui
tively appealing notions of the artist 's tint,
shade, and tone concepts [SMIT78]. In this
system, each colour is considered to be a
pure hue modified by a saturation and a
vaLue . Hue is the dimension with points on
i t normally called red, yellow, blue-green,
etc . Saturation measures the departure of a
hue from achromatic (Le., from white or
grey) . Value measures the departure of a
hue from black. Though this space needs a
fairly intricate transformation in order to
specify appropriate voltages to the
monitor's electron guns, from a user's point
of view i t is quite easy to learn and, once
mastered, very easy to use for colour
specification and selection.

The CNS colour space is based on com
monly understood English words, whereby a
colour is specified by a structure that fol
lows a few simple , systematic rules
[BERK82a] . Hue , lightness, and saturation
are allowed for in the syntax, corresponding
to the HLS colour space, which is a deforma
tion of the HSV space. Aside from the fact
t hat the CNS space i::; 1ul1suage dependent ,
two major problems exis t wiLh it. First , each
person's p r econceived notion of what colour
a particular colour name represents is
slightl y d ifferent (in fact, the re can be
significant differences around greens
[BOYN79]) . Second, it is not well-suited for
the fine tuning of colour:s, necessitating the
use of one of the other colour spaces when
further modification is ne eded . However,
use rs of eNS achieve considerabl y highe r
accuracy whe n nami ng d is played colours
than users of RG B or HSV [BERKfl2a].

Recently, Schwar z et. aI., pro posed a new
c olour space based on opponent colou r
theory [SCHW84] . This m odel of human

colour perception, accepted today by most
colour vision scientists, states that the red,
green, and blue cones in the retina of the eye
feed into a second stage of processing in
which their values are summed and
differenced to produce three new channels :
an achromatic, or luminance, channel, a
red-green opponent channel , and a yellow
blue opponent channel (figure 1) .

:: 1--;----,-1 I ~: ~ .. gbl

, C> 1}------<) y·b

Figure 1. The opponent colours model.

The justification for introducing a c olour
space based on this model is twofold . First,
this space, like YlQ and, to a limi ted extent,
HSV and HLS , separates the luminance infor
mation in a colour from the chrominance
content. Second, opponent colour theory
explains a number of visual phenomena,
such as why colours are never described a s
being composed of red and green or yellow
and blue [BOYN79] . Furthermore, as red and '
green as well as yellow and blue are comple
mentary colour pairs - that is, an a ppropri
ate mixture of the two colours can produce
white - it is useful to separate the m to
opposite ends of c olour dimensions .

One major dra wback of the colour space
described in [SCHW84] is that it requires a
significant amou!)!. of computational power
to make a n :"iJ-tlme environment poss ib le .
Therefore , 'n' have implemented a modified
version of Lh· .. : l,' c oiour space, whic h we c all
ARgYb (for Achr.)[Tla l lC, Red-Green, Ye llow
Blue) .

We compute the intensity channel as a
weighted summation of the red , green, and
blue components of the colour as de t er
m ined by the e lectron-gun stimulus values .
This allows us to e ncode the lumina nc e chan
nel in exactly the same way as the Y cha nne l
in the YlQ s pace . Hecall th aL t. h is transfor
mation m a Lches Lhe human lumi nosi ty
r es ponse c urve.

Graphics Interface '85

We then use a simplified formula to map
the chrominance into the red-green and
yellow-blue channels. The formula assigns
equal weights to the red and green values in
determining the red-green channel, and
equal weights to the red plus green and blue
inputs in determining the yellow-blue chan
nel. The major benefit of our implementa
tion is that it is very efficient for converting
to and from RGB, while still providing an
intuitive input mechanism related to the
opponent colour theory model. However, it
does not accurately implement the colour
opponency model. While we feel that this
colour space provides an advantageous tra
de off between accuracy and efficiency, it
remains to be thoroughly tested to judge its
usefulness .

The transformations can be written as
follows :

r 0.3 0 .59 0 .11] rR]

lo.5 -0.5 0 le
0.25 0.25 -0.5 B

1.29
-0.71
0.29

0 .22] r A]
0 .22 lRg

-1.78 Yb

The User Interface for Colour Selection
A common user interface, then, is a tri

plet of numbers corresponding to the three
values of the colour in whatever colour
space is implemented, which the user is
allowed to modify, either through keyboard
entry, or, more effectively, through the con
trol of input devices such as potentiometers
or sliders (physical or virtual) . We have
implemented such an interface in a colour
experimentation package which allows for
the simultaneous representation of the
current colour in two colour spaces through
virtual potentiometers on the screen. As the
user modifies the colour using one set of
potentiometers, the representation in the
a l t e rnate colour space is dynamically
updated. This often provides insight into the
relationships between various dimensions .
For exa mple, when the selected colour
spaces are RG Band HSV, it becomes
immedi ately apparent to the user that the
Val ue dim e nsion of HSV is computed as the
maximum of the R. G, and B components of

- 316 -

the colour.
The experiment reported in [SCHW84]

attempted to show which dimensions from
different colour spaces, and what interaction
techniques for altering those dimensions,
are most useful as colour selection tools.
Although not yet conclusive, their data indi
cates that spaces which separate the lumi
nance from the chrominance are more use
ful than those that do not, and using a two
dimensional chrominance input technique is
more useful than two one-dimensional input
channels [COWA84]. The first conclusion
appears well-founded, as there are only
about 200 distinguishable levels of hue and
20 distinguishable steps of saturation,
whereas there are about 500 distinguishable
steps of brightness for every hue and grade
of saturation [BOYN79].

Unfortunately, the opponent colour
space which they implemented did not per
form Significantly better than other, similar
colour spacc~. 'n :;., may be because,
although w(-: pro.;t'SS colou~' stimuli in one
manner (that p roposed by colour opponency
supporters), wc do not necessarily think
about colours in the sarne t.erms . However,
we will see that the conve lJt. of a colour
space based en opponcD~y theory can be
very useful in terms of aut <''':;.~ Lic selection
of optimally visible COlO1Jrs.

As users gain farrnl iarity With the vari
ous colour spaces, situ ations C(',--, p up where
the dimensions from '.1 pc:rLicular colour
space are the most appropnate ones to use
in modifying colours ; what is easy to do in
one space can be very difficult in a nother.
Therf~for'e, unt.il a more dll-purpose c olour
Sp 'J CC is developed, it is necessary to provide
a n'u 'rnb f' 7' of colour spact:s which can be
alternatingiy employed . SUdl a system must
provide a consistent inLel'l ilce across the
various spaces, so as not Lo confuse the user
in what must done.

Interpolation
Another useful tool in colour selection

comes about from the facL that the user may
only have a vague notion of the colour to be
selected. Quite often, this uncertainty can
be expressed in the form of looking for
colour 11. that lies between colours B a nd C.
In these situations, it is useful Lo provide an

Graphics Interface '85

- 317 -

interpolation mechanism whereby the
colours of two ends of an interpolation bar
can be specified, and the system automati
cally fills in intermediate colours (at some
appropriate step resolution) between the
two specified ones.

Due to the differing geometries among
the colour spaces, straight-line interpolation
in various colour spaces will not produce
identical results . For example, interpolating
between pure red and pure green in RGE,
will produce a midpoint interpolation value
of half red and half green (i.e ., fully
saturated, half-intense yellow), whereas
interpolating between the same two colours
in HSV, will provide a midpoint interpolation
value which is half-saturated, fully-valued
yellow.

Many applications in Computer Graphics
require the computation of interpolation
values (e.g ., shading, anti-aliasing, and image
blending) . Where interpolation is basically
an additive process, a colour space which
simulates additive colour mixing - such as
RGE - should be used to interpolate between
two colours [FOLE82]. However, Fishkin has
shown that the HLS colour space is the only
one (of those discussed) appropriate for the
simulation of pigment mixing [FISH83].

Unfortunately, as a colour selection tool.
it is neither obvious what the intermediate
interpolation values should be (except in a
limited set of special cases), nor is it clear
whether any particular space is always
better suited than others . What does seem
clear though, is that, in the context of pro
viding a rich set of manipulation tools, it is
useful to provide the user with an interpola
tion mechanism and allow for interpolation
in any of the available colour spaces.

Visibilily Consideralions
A problem which is common to many

c olour graphics environments concerns the
vi s ib ility of foreground 'objects' against
c ol oured backgrounds . These objects can be
a nyLhing from iconic tracking symbols
(more commonly refe rred to as cursors), to
Lext' to an arbitrary shape being dragged
a round the screen. If the colour of the fore
g round object is not selected with care, it is
easy for there to be an insufficient lev el of
conLras t b etween the for eground and back-

ground, causing the object to blend inte the
image and, seemingly, disappear.

Consider the case of moving a tracking
symbol around on the screen. The image
itself may be complex (in terms of its colour
composition). Assuming that the primary
concern is for the tracker to remain visible
at all times (as opposed to being composed
of uniform colour), each time the tracker is
relocated, some analysis should be per
formed to modify the colour of each of its
pixels so that none of them blend into the
background.

A common technique that is used is to
one 's-complement the bits of the back
ground colours on a pixel-by-pixel basis to
obtain the colours for the tracking symbol 's
pixels . There are two problems with this
scheme. First, complementing the bits of a
mid-range value results in another mid
range value - not far off from the original'
Second, complementing the frame buffer
memory values (typically) implies that an
RGE colour space underlies the operation.
However, since the RGE space contains little
information about the contrast of two
colours, it is a poor vehicle for visibility
tests. For example , although blue and black
lie at opposite ends of the blue dimension,
they provide little contrast against each
other, unless there is significant contrast
along the red and green dimensions as well.

We have already seen how to solve the
latter problem. That is, we can use a
different colour space for computing the
tracker'S colours. In this case, we are not
interested in the intuitiveness or ease-of
use of the colour space since no us e r
interaction is required . What is important is
the contrast provided by the colour space .
Since luminance plays such an impor·Lant
role in colour discrim lll<.. t.i on by humans
[BOYN79], a colour spnce which uses lumi
nance as one of its dim e nsion.s is more suit
able for this task than one which does not .

The former problem can b e solved by
implementing a simple distance algorithm
which, for each of the dimensi ons of th e
colour space, simply chooses the minimum
or maximum value possible in that dime n
sion. The decision of the minimum vs. th e
maximum is a trivial test of th e posiLion of
the background colour 's value for that.

Graphics Interface '85

- 318 -

dimension: if it is above the half-way mark,
then the minimum is chosen; below the half ,
the maximum is chosen.t Although this
scheme is rather more complicated than
merely a complement operation, it is far
more reliable in choosing contrasting
colours .

It must be pointed out that this scheme
i.;oes not perform well in all colour spaces.
For example, in HSV the optimally visible
colour chosen for any of the fully-valued
colours (e .g ., pure blue) is black, since black
lies at the opposite end of the value dimen
sion. However, black on blue is a very poor
choice of contrasting colours, as there is lit
tle luminosity contrast between them. This
demonstrates that the value dimension is
not perceptually based (though it is intui
tively based) and cannot be used for visibil
ity testing.

We can now see a useful property of the
ARgYb colour space. Not only does it
separate the luminance from the chroma
(like in YIQ), but its other two dimensions
position complementary colours at the ends
of the ir ranges . Therefore, by selecting
minimum or maximum values along each of
its dimensions, a highly contrasting colour is
guaranteed, if not the optimal one (which
would be based more soundly on colour
theory and would be much more expensive
t o compute) .

This scheme has a number of drawbacks,
of which the first concerns the amount of
c omputation that needs to be carried out. If
the object being displayed is static, like text,
then the a lgorithm does not add much over
head to the rendering requirements . How
ever, since a tracking symbol is constantly
repositioned, these calculations have to be
performed for each pixel every time the
tra cker is moved . If no assumptions a bout
the background 's colour composition can be
made (e.g ., a uniform colour in certain
regions of the screen), then the computation
can be costly.

t Nu te that dimensions which are circular (e .g .. hue
in HSV) require the choosing of diametrically opposit. e
Values and that impli c it constraint.s must b e enfo rced
so that when the colour is transformed back into RC B.
a valid triplet is obtained.

Fortunately, many manufacturers of
graphics systems now provide hardware for
tracking symbols which includes separate
colour lookup tables. In these systems, it is
a trivial task to precompute the tracking
symbol lookup table based on the frame
buffer lookup tabl p , using the method
described above . Modifications for the
tracking symbol need only be made when the
frame buffer's lookup table is modified .
When the tracking symbol is moved around
the screen, the colour changes happen
automatically and at refresh rate.

However, for an arbitrary shape which
must be moved around the screen, the com
putation can be prohibitive . Since high con
trast is not as critical for the visibility of
objects in motion, this technique can be
bypassed while the object is being moved,
and invoked only when it comes to rest,
guaranteeing that it does not then disappear
into the background.

A second problem of this scheme is that
i t does not take into consideration the possi
ble lack of coherence of the background.
This problem manifests itself in two ways : if
the background is very 'noisy', then the fore
ground object will also be noisy, and there is
the danger of the pixels seeming to be unre
lated to each other. However, since there
are only eight colours from which the fore
ground pixels can be selected (the minimum
or maximum from each of three dimen
Sions), whereas the background pixels usu
ally contain a much wider selection of
colours , coherence of the foreground object
is almost always assured. The second way
this problem manifests itself is in the fact
that we should not be concerning ourselve s
with the contrast b etween the foreg round
object and the pixe ls which a re going Lo
covered up, but rather with the p ixels SU1'

rounding the ones which will b e ove rwritl en.
Again, we a re relyi ng on the coherence of the
background by assuming ~hat the p ixe ls in
the neighborhood of the Ol\('~: heing covered
up a re of similar c olour c am pos i Lion.

Visi bil i ty Testing

Although the ~, c h (; rrw (i ro ~· (; ribed above is
quite useful, iL limits tnc variety of colour in
foreground objects; for eac h c olour s pace.
thp.re a re only e ig h t possibl e colours fr om
which for eg round colours will be chosen.

Graphics Interface '85

- 319 -

This may be adequate in systems which, at
any rate, provide only a limited colour selec
tion, or in situations where the object visi
bility is more important than the object
colour (e .g ., the tracking symbol). However,
othe1" applications (e.g., text display),
require a more generous selection range.
Furthermore, the application may require -
as text display often does - that the fore
ground object be of uniform colour rather
than of uniform visibility.

One possible approach is to modify the
distance algorithm discussed above to
determine a single foreground colour that is
'sufficiently' visible against all of the back
ground colours . However, there is no a
priori guarantee that such a colour exists ,
and the algorithm for trying to find one
would be very complex. Furthermore, even
if one does exist and is found; there is noth
ing to guarantee that it will appeal to the
user .

Therefore, the following approach is
much more viable . The distance algorithm is
only slightly modified to perform a 'contrast
sufficiency' test between any pair of colours .
In this test , the algorithm incorporates a
similarity criterion analogous to, but
simpler than, MacAdam ellipses [WYSC67] .
The user specifies a colour for the fore
ground object, and the system tests it
against. a set of user-specified background
colours. If the foreground colour passes the
t es t for each of the background colours ,
then the colour is used. Otherwise, the prob
lem colours are reported back to the user
with modification suggestions for repeating
the test.

Conclusions
A useful set of tools is needed in the

user-interface to allow for interactively
manipulating user-selectable colours .
Furthermore, since no single colour space
satisfies all users all of the time , various
colour spaces should be provided - with a
consistent interface - to ensure flexibility in
Lhe selection task . Along these lines , we
have d e signed the ARgYb colour s pace , based
on o pponency theory but developed as a sim
ple t ra ns formation from RGB in order Lo b e
e fficient.

An algorithm was given for automatic
colour selection of foreground objects in
order to guarantee visibility against
coloured backgrounds. It was shown that
this algorithm provides a suffiCiently con
trasting colour for the object on a pixel-by
pixel basis. However, more complicated
algorithms are needed to provide a uniform
colour on a complex background and deter
mine if there are contrast problems in the
area surrounding the foreground object.

The following table summarizes the per
formance of the various colour spaces based
on the judgement criteria discussed in this
paper:

Ease Et!. Ease Visib. I
of of of

Imnl Imnl Use Testing I
RGB Great Great Poor Fair

CMY Great Great Poor Fair I
YIQ Good Fair Bad Good i
HSV Bad Poor Good Poor

HLS Bad Poor Fair Poor

CNS Bad Good Fair Bad

Schwarz Bad Bad Good Great

ARe:Yb Good Fair Good Great

Graphics Interface '85

- 320 -

References

BERK82aBerk, T., L. Brownston, and A. Kauf
man, "A New Colour-Naming Sys
tem for Graphics Languages," IEEE
Computer Graphics and Applica
tions, May 1982, pp. 37-44.

BERK82bBerk, T., L. Brownston, and A. Kauf
man, "A Human Factors Study of
Colour Notation Systems for Com
puter Graphics," Communications
of the A CM, Volume 25, Number 8,
August 1982, pp. 547-550.

BOYN79 Boynton, R M., Human Colour
Vision, Halt, Rinehart , and Winston,
New York, 1979.

CATM79 Catmull, E., "A Tutorial on Compen
sation Tables," Computer Graphics,
Volume 13, Number 2, August 1979,
pp. 1-7. SIGGRAPH 1979 Proceed
ings.

COWA83 Cowan, W. B., "An Inexpensive
Scheme for Calibration of a Colour
Monitor in Terms of CIE Standard
Coordinates," Computer Graphics ,
Volume 17, Number 3, July 1983, pp .
315-321. SIGGRAPH 1983 Proceed
ings .

COWA84 Cowan, W. B., Private Communica
tion.

F1SH83 Fishkin, K. P., "Applying Colour Sci
ence to Computer Graphics ," M. Sc .
Thesis , Computer Science Division,
University of California, Berkeley,
Calif ornia, 1983.

FOLE82 Foley, J . D. and A. Van Dam , FUnda
mentals of Interactive Computer
Graphics , Addison-Wesley Publish
ing Co. , Menlo Park, California ,
1982.

JOBL78 Joblove, G. H. and D. Greenberg
"Colour Spaces for Compute
Graphics," Computer Graphic .
Volume 12, Number 3, August 197' .
pp . 20-27. SIGGRAPH 1978 Proceed
ings .

MEYEBO Meyer, G. W. and D. P. Greenberg ,
"Perceptual Colour Spaces for
Computer Graphics," Computer
Graphics, Volume 14, Number 3,
July 1980, pp. 254-261. SIGGRAPH
1980 Proceedings.

NAIM85 Naiman, A. C., "High-Quality Text
for Raster Displays," M. Sc. Thesis ,
Department of Computer Science,
University of Toronto , Toronto,
Ontario, 1985.

SCHW84 Schwarz, M. W., J . C. Beatty, W. B.
Cowan, and J . F. Gentleman,
"Towards an Effective User Inter
face for Interactive Colour Manipu
lation," Graphics Interface 1981,
May 1984, pp. 187-196.

SMIT78 Smith, A. R, "Colour Gamut
Transform Pairs ," Computer
Graphics, Volume 12, Number 3,
August 1978, pp. 12-19. SIGGRAPH
1978 Proceedings .

SMIT82 Smith, A. R, "Colour Tutorial
Notes," SIGGRAPH 1982 Tu tor ial
Notes on Two-Dimens ional Com
puter Animation, August 1982, pp .
71-81.

TANN83 Tanner, P ., W. Cow an, and M. We in,
"Colour Selection, Swa th Brushes
and Memory Architecture for Paint
Systems," Graphics Interfac e
1983, May 1983, pp. 171-180.

WYSZ67 Wyszecki, G. and W. S . Stiles, COlOUT
Science , WHey, Ne\\- York , 1967.

Graphics Interface '85

