
- 329 -

A SHIPLE BUT SYSTEMATIC CSG SYSTEM

Tosiyasu L. Kunii
University of Tokyo, Japan

Geoff Wyvill
University of Otago, New Zealand

ABSTRACT

A simple system is described for computer aided
design by constructive solid geometry (CSG). The
system allows the design of engineering com
ponents by combining 'basic components' which.
represent shapes produced by standard machining
operations.

The system has
features:

four significant original

1. The primit~ve components are described in an
object oriented ~ashion, data plus pro
cedures.

2. A new kind of octree structure is used to
render various displays from descriptions.

3. Certain objects can be directly associated
with components of tool paths. For example,
a cylindrical object might represent a drill
moving along its length or a prism might
represent the shape of material cut by a
milling tool sweeping horizontally. An ob
ject built from these basic objects can, in
principle, be cut using combinations of
their associated tool-paths.

4. The system consists of four conceptual
modules with well-defined interfaces. One
module, for example, is the set of primitive
objects and their associated procedures.
Another is the octree generator . Because of
this design technique, it is easy to modify
or even replace modules. This meta-structure
provides us with a general, if informal
method of describing CSG systems.

KEYWORDS: CAD/CAl1, Geometric modelling, CSG, Oc
tree , Ray tracing.

INTRODUCTION

In the last few years the method of constructive
solLd geometry (CSG) has becom e increasing l y po
pular as an alternative t o surface-based models
for Computer Aided Design [1, 2, 3, 11, 13, 14,
20, 22J. In a CSG system, objects are

represented as collections of 'primitive ob
jects' connected by set operations on the space
they occupy. This leads, naturally, to the
representation of objects as a tree structure
where the leaves represent primitive objects.
The nodes, other than leaves, represent set
operations between sub-objects. Since the sub
objects can be different copies of the same ob
ject description, we prefer to represent this as
a directed acyclic graph (DAG) or node-sharing
tree. The edges of this graph carry geometrical
transformation information. (Diagram 1 .)

DAG

+

Bloc k Cy linde r

Diagr am 1 : An object and i t s DAG.

This structure is also a natural extension of
the recursive picture languages PG, Pictures 68
and PDL-2 [9, 23, 24]. The structure can be
built from text descriptions, algebraic descrip
tions or, in principle, interactively with a
graphics console. The user interface is a sub
stantial separate problem which we intend t o ad
dress in a subsequent paper.

In order to extrac t useful information from the
DAG, a rendering process is needed. Usually,
this implies building a secondary structure

Graphics Interface '85

which can be processed by conventional display
algorithms. For this structure, surface models
have been used [2, 3, 13 and others] and more
recently octree and other solid grid representa
tions [8, 10, 25]. We use a modified octree
structure. It provides a spatial ordering to
reduce the complexity of a scene (e.g. for ray
tracing) while retaining almost all of the in
formation from the primitive CSG objects.

Each primitive object is represented as a col
lection of procedures which describe its proper
ties. Some of these procedures are called by the
rendering algorithm as it processes the inter
mediate (octree) structure. Others are called as
the octree is being built. This means that new
primitives can be added in a systematic way, by
writing procedures which describe them.

Similarly, new rendering algorithms can be ad
ded, for example to generate n.c. machine tool
paths. Depending on its purpose, an algorithm
can extract information from the DAG, the inter
mediate structure or both.

The system consists of four parts.

1. The primitives and their procedures.

2. The CSG structure and user interface.

3. The intermediate structure and its creation
algorithm.

4. The renderers

These communicate through well-defined inter
faces. In principle, any part can be replaced by
a functional equivalent, although in the pilot
version , the renderers include some knowledge of
the intermediate structure and a radical change
in the CSG structure would require changes in
the 'creation procedure'.

TIlE DAG STRUCTURE

The language PDL-2 [24] is for describing pic
tures. The line:

DEFINE stool leg leg AT 1,0 top AT 0 , 1 TURNED 90

defines a (2-D) object called "stool" which con
s ists of two copies of the object called "leg"
and a copy of the object "top". The phrases "AT
1 ,0" and "AT 0,1 TURNED 90" convey inf ormation
about the position and orientation of the copi es
of "leg" and "top". The r e pr es entation of this
i n DAG f orm i s shown in diagram 2.

A definition i s a list of "instance s" of sub
pi ctures and each insta nce inc ludes a point er t o
a definition.

- 330 -

Def in it i o n: stool

Instanc e: Instance: Instance :
:.....-.. r---> .

leg leg top

~

y i Definition: leg

I top I
1. 0 Definition: top

leg leg

olo 1.0 x

Diagram 2: De! initl o ns a nd Instances.

Similarly in our DAG structure a list of ele
ments constitutes an object's definition and
each element contains a pointer to a definition.
Our DAG elements have five fields:

Mode : PLUS or MINUS

Trans: A pair of matrices which describe the
position of this instance in the current
definition.

This: A pointer to another object's defin
ition. (This instance.)

Next: A pointer to the next element of thi s
definition.

Props: A pointer to another structure contair.
ing properties of this instance.

The mode PLUS indicates that this object is to
be added in the current definition. Mode MINUS
indicates that the object represents a volume
cut away.

The matrices are simple matrices
tr ansformation. For example :

(

ax+by+cZ+d)
ex+fy+gx+h
ix+jy+kz+l

1

of linear

Th i s ma trix tr ans f orm s th e po in t <x ,y,z > i nt o
some other coordinate sy s t em. The el ement s
d,h,l de scribe a tran s lation of <x ,y , z> and th e

Graphics Interface '85

- 331 -

other elements describe rotation and magnifica
tion. Because matrix multiplication is associa
tive, we can accumulate a number of matrices,
Ul*M2* ••• Mn and observe that for a position
p-<x,y,z>:

Ml*M2* ••• Mn*p - Ml*(M2*(M3 .•. (Mn*p»)

We use this in traversing the DAG to find the
final position of each primitive element in the
world space. (See [23, 24]).

The properties are other information that can be
associated with an object. In our pilot system,
the only properties are surface colour and re
flectivity, but other information such as densi
ty, elasticity or material cost could be
represented according to the needs of applica
tions. The pointer "This" can also point to a
'primitive object' which is a collection of pro
cedures. In this case, we say the DAG element is
'primitive' •

TIlE INTERMEDIATE STRUCTURE

An octree model [8, 10, 25 and others] divides a
cubic region of space recursively into eight
sub-cubes at each level of a tree structure.
Each leaf of the tree represents an undivided
cube which is either 'full' or 'empty'. 'Full'
elements can have other associated information
e.g: colour. A modified structure has also been
described, in which the leaves of the tree con
tain a strictly limited set of surface elements
[4, 25]. This has the advantage of compactness.
Also less information is lost in transforming to
this model.

Our intermediate structure is a modified octree
in which space is divided until each leaf:

1. is Full,

2. is Empty,

3 . contains boundaries between empty space and
one primitive object,

4. contains boundaries between full space and
one primitive object (In this case the ob
ject is being subtracted from full space),
or

5. represents a volume of space less than the
limit of system resolution.

Nodes of the tree, other than leaves, represent
cubes which are further divided into eight sub
cubes recursively until a leaf node is reached.
Such cubes and nodes are called 'partial'. Note
that the leaf nodes in (5) above, would also be
partial and have 'children' but for the limit on

resolution. We refer to these cells as "nasty"
as there is no easy way to extract information
from them. Because they occupy only a small pro
portion of the total space, this is acceptable.

See also, that this structure differs from [4,
25] in that the leaf nodes refer to a primitive
solid object and not to part of a plane, edge or
vertex.

Part ial nod e

Lea f nod e :

Cy lind"r A

Leaf node:

Cylinder B

Diagram 3. Modified Octree Structure .

Note the shar i ng of leaf nodes.

TIlE CREATION ALGORITHM

Creation of the octree is accomplished in two
phases. First the DAG structure is traversed
top-down using a current transformation matrix,
'forward' which describes the position and
orientation of the current object in the world
space. There is also a 'return' matrix which is
the inverse of the 'forward' one.

As each DAG element is encountered, this current
matrix is pre-multip1ied by the element's own
matrix to obtain the transformation for the
sub-components of the DAG. At the same time a
new 'return' matrix is computed by pre
multiplying the 'return' matrix of the DAG ele
ment and the current 'return' matr i x. This pro
cedure is repeated, recursively on the DAG until
a primitive element is encountered. At the
primitive element, therefore, we have a matrix
which describes the position of the prim1t1ve
object in world space, and also a matrix for the
inverse transformation.

When a primitive element is encountered, we
create an elementary octree structure consisting
of a single leaf. The matrices are copied into

Graphics Interface '85

the octree leaf node and the mode is set to
PLUS. These elementary structures are merged
into a single tree in phase two.

The traversal algorithm can be summarised thus:

1. If DAG is empty, return the empty octree.

2. Traverse DAG.next recursively to obtain an
octree for the background to which this ele
ment will be added or subtracted.

3. Calculate new matrices for DAG.

4. If DAG is primitive create an octree leaf
element called foreground.

5. If DAG is not primitive, traverse DAG.this
recursively using the new matrices to return
an octree called foreground.

6. If the mode of DAG is PLUS, add the fore-
ground to the background and return the
result.

7. If the mode of DAG is MINUS, subtract the
foreground from the background and return
the result.

The addition and subtraction phase is thus
separate from the traversal only in a conceptual
sense. Add and subtract are called as sub
procedures of the traversal algorithm.

To add two octrees a,b we proceed as follows:

1. If a is empty, result is b, otherwise :

2. If b is empty, result is a, otherwise:

3. If a is full, then the objects interfere.
This is not allowed.

4. If b is full, the objects interfere, other-
wise:

5. If we have reached the limit of resolution,
create a nasty (type 5) cell, otherwise :

6. Subdivide a and b. If a or b is a partial
node, this just means we access its child
nodes. If a or b is a leaf node, we create
child nodes for it.

7. Add the eight sub-elements of a,b recursive
ly.

Notice that we do not permit conventional set
union. It is a feature of the system design
that we imitate nature. We do not permit two ob-
jects to occupy the same space. This check for

- 332 -

i nterference also is the basis for our approach
to tool path generation.

ro subtract two octrees a,b we proceed as fol
lows:

1. If a is empty, result is empty, otherwise:

z. If b is empty, result is a, otherwise:

3. If b is full, result is empty, otherwise:

4. If a is full and b is a leaf node, return
the inverse of b, otherwise:

5. If we have reached the limit of resolution,
create a nasty (type 5) cell, otherwise:

6. Subdivide a and b as for addition.

7. Subtract the eight sub-elements of a,b recur
sively.

When we subdivide a primitive octree, we con
struct the co-ordinates of the boundaries of the
eight sub-cubes. Now using the 'return' matrix
of the leaf element, we transform the co
ordinates of the voxel boundary back into the
space belonging to the primitive. These
transformed points are passed to the appropriate
primitive routine which returns one of three
values:

IN indicates
pletely
voxel is
mode.)

that the voxel boundary is com
contained. This means that the

full. (Empty in subtractive

OUT indicates that the voxel boundary is com
pletely outside the space occupied by
the primitive; the reverse of IN.

BORDER means that the child voxel still contains
part of the primitive boundary.

Thus some of the child nodes will be full or
empty and this enables the recursive calls of
add and subtract to do their job. Others will
require further subdivision.

The only information required of the primitives
to build the intermediate structure, is defined
through one uniform procedure interface. This is
an example of the value of our meta-structure.

THE RAY TRACER

To illustrate the octree algorithms, we have
'Written a simple ray tracer which operates on an
octree structure. Since each leaf voxel refers
to only one primitive, the ray tracer does no
searching among objects. Instead, each ray is

Graphics Interface '85

- 333 -

followed through the structure until it en
counters a non-empty voxel. At this point, a
primitive function is called to deal with the
intersection.

The rest of the ray tracer's function requires
knowledge of surface properties which are
described in the DAG and octree structure and
are independent of the primitives. This informa
tion comes fom the octree leaf.

To achieve a reasonable speed, it is important
that we skip over empty voxels fast. Our 'next
voxel' algorithm is a refinement of Glassner's
(7).

TIlE NEXT VOXEL ALGORITHM

Like Glassner [7], we find a point which is
guaranteed to be in the next voxel. But we avoid
most of the computation of solving plane inter
sections as follows. (Uppercase is used for vec
tors so P[z] is the z component of P.)

Consider a ray from P to Q within a voxel v. Let
D=Q-P and note that D does not change during the
traversal of many voxels.

Now find R such that R[i] (i-x,y,z) is the dis
tance from P to the exit point of v in direction
i. R[i] will have the same sign as D[i].

Now find t such that t is the minimum value of:

abs(R[x]/D[x]), abs(R[y]/D[y]) and abs(R[z]/D[z])

The point P[x]+tD[x], P[y]+tD[y], P[z]+tD[z] is
guaranteed to lie on the voxel boundary. This,
of course, assumes that we can perform the divi
sions in an exact mathematical way with no
rounding error.

To avoid floating point calculation and its at
tendant uncertainties we have to rearrange the
calculation slightly. For a voxel bounded by L,H
(bottom southwest and top northeast corners) we
consider P to be inside v if L[i]<=P[i]<H[i],
(i-x,y,z). If D[i] is positive, then:

R[i]=H[i]-P[i] but if D[i] is negative, let:

ordinate. The new P is thus found from the old
as follows:

for i: "'X to z do
if D[i]>-o then R[i]:=H[i]-PO[i]
else R[i]:-L[i]-PO[i]-l;

k:"'X;
for i:-y to z do

if abs(R[k]*D[i]»abs(R[i]*D[k]) then k:=i;
for i:=x to z do

if i~k then P[i]:-PO[i]+R[i]
else p[i]:aPO[i]+(D[i]*R[k])/D[k];

This works even when the smallest voxel is only
one unit wide. The truncation error in the divi
sion is always a fraction of a unit. And in the
awkward case where the ray reaches two or three
boundaries simultaneously, there is no error.

Since we consider only the exit surfaces of the
voxel for the ray, we repeat this calculation
for each voxel always using the original value
of P, PO. Thus the truncation errors from the
divisions do not accumulate and each P is
guaranteed to be in the correct voxel. Notice
that R[i] can never be zero, so that D[k] can
only be zero in the trivial case where D[xj,
D[y], D[z] are all zero.

This algorithm uses only eight integer mUltipli
cations and two divisions per voxel.

Once we have a point guaranteed to be in the
correct voxel, finding the voxel is straightfor
ward (see Glassner[7]).

Q

R[y]

pL.<::::'--------~~----i
D[y)

R[i]zL[i]-P[i]-l D[x)

so R[i] is the minimum movement on axis i which
takes us into the next voxel.

The divisions (above) don't work with integers.
D[i] is usually greater than R[i]. So instead we
find the direction of movement by cross multi
plication. For example: if R[x]D[y] < R[y]D[x]
it indicates that the ray will intersect the
voxel on the x co-ordinate before the y co-

Graphics Interface '85

Diagram 4. 2-D Example of Next Voxel.

- 334 -

THE RAY TRACING PRIMITIVE ROUTINES

Having found a non-empty voxel, the ray tracer
must analyse the ray impact. This is done by a
procedure from the appropriate pr~m~t~ve. First
the intersection points of the ray with the vox
el boundary are found. These points are then
transformed back into the primitive's space us
ing the inverse matrix associated with the oc
tree leaf. The primitive procedure, therefore,
is presented with the end points of a short ray.
It returns TRUE or FALSE depending on whether
the ray intersects the ideal object between its
end points. When intersection occurs, it also
returns the intersection point, and two others
from which the ray tracer finds the surface nor
mal. We don't -allow the primitive routine to
find the surface normal, because that would lim
it us to transformations which preserve angles.
Our DAG building routines include stretching
operations so that we can make ellipsoids from
spheres and cylinders.

A

B

Diagram 5. An idealised mil l ing tool, A and its

associa ted object . B is added . C is subtracted .

The arrow s hows the tool path .

THE SYSTEM PRIMITIVES

An important feature of our system is the logi
cal separation of procedures which describe
primitives from the rest. These procedures pro
vide us with a very flexible way to describe the
nature of th~ primitive objects.

To date, we have implemented only a plane half
space and a cylinder as primitives. Because the
only functions of our system are octree building
and ray tracing, each of these primitives has
only two associated procedures: "in" and "inter
sect" •

"In" takes as arguments, eight points which are
the transformed corners of a voxel. It tells us
whether the voxel is completely inside the prim
~t~ve, completely outside or neither. "Inter
sect" takes two points as arguments and finds
intersections as described above.

Other routines which could
pr~m~t~ves would perform
to the needs of a system's
ample:

be associated with
functions appropriate
applications. For ex-

1. A volume procedure returning the proportion
of a voxel's volume occupied.

2. A sketch procedure which generates line seg
ments for sketching that part of a primitive
lying inside a voxel.

3. A tooling procedure which creates elements
for tool path generation.

TOOL PATH GENERATION

One of the objectives in our design is to fac i l
itate the generation of tool paths for the au
tomatic machining of objects described by the
system. Yamaguchi, Kunii et a1. [25] have
described the generation of a simple tool path
from an octree. Our system is designed to gen
erate tool paths from the description in the
DAG. The octree is used only as a check for in
terference.

Consider the operation of a drill. The volume
cut out is described by a (subtracted) cylinder.
The volume swept out by the chuck holding the
drill can similarly be described by a cylinder,
possibly with a shaped front end. We can
describe the drilling action as the subtraction
followed by adding the cylinder representing the
chuck. If the chuck movement interferes with any
part of the work piece, this will be detected
during the octree construction.

Similarly a milling operation can be described
by combining the shapes of diagram 5.

The use of a tool is described thus :

1. Subtract tool volume.

2. Add 'head' volume.

3. Subtract 'head' volume.

This should produce the same object as step 1
alone. For tool path generation , we start by
describing the work piece. We then describe the
finished shape by subtracting from the work
piece, a sequence of objects each having an as
sociated tool path component. Then we generate

Graphics Interface 'S5

- 335 -

an octree and if no interference is detected, we
have described an object which can be created by
using the specified cutting operations in se
quence. Finally, we can use the ray tracer to
display the object. If it appears correct, then
we have a sequence of machine operations to pro
duce it.

In complicated cases, we can combine objects
which represent a sequence of cutting opera
tions. The tool path sequence is then determined
by a top down traversal of the DAG.

DISCUSSION

The simple octrees of Tanimoto[8) and
Meagher[lO) have a number of leaves approximate
ly proportional to the surface area of the ob
jects represented. Our octrees have a number of
leaves approximately proportional to the sum of
the lengths of all the edges of the objects. An
edge is, by definition, a line along which two
primitive objects meet. It would be interesting
to experiment with a system which permitted up
to two primitive objects per voxel instead of
one. Long edges would then be contained in large
voxels and the 'nasty' cells would be confined
to places where three or more primitives inter
sect.

Our algorithms are not particularly fast or
space saving. For example, in the ray tracer, we
transform each ray into a different space for
processing by the primitive. Perhaps it is pos
sible to create a package of data at octree
creation which the primitive can use to operate
on the ray in its original coordinates. This
might take longer, but it need be done only once
for each leaf in the octree, rather than many
times in the ray tracer.

Although our ray tracer is not fast (50-100 rays
per second on a VAX 750), it must be remembered
that each intersection is calculated with
respect to an ideal primitive object. We do not
get the faceted look of cylinders aproximated by
swept polygons.

We do not handle colours very well. When we make
a hole, for example, by subtracting a blue
cylinder from a red cube, the inside of the hole
is blue! This is because we have only one kind
of 'full' voxel. Arranging proper inheritance of
colour or other properties is a substantial
problem demanding attention.

The need for sets of points in space to be regu
lar has been pointed out by Tilove [17, 18] and
Voelcker and Requicha [14). In essence a regu
lar set of points is one from which dangling
points, lines and planes of no thickness have
been removed. Since our system allows for arbi-

trary set subtraction, it is capable of generat
ing such dangling points and they are represent
ed by unnecessary 'nasty cells' at the limit of
resolution. These cells can be eliminated and we
call this process regularisation. At the time of
writing, we have designed a regularisation algo
rithm, but it has not been tested. Regularisa
tion of an octree with superfluous cells reduces
the storage needed. It may prove desirable to
regularise the octrees during creation. We hope
to report on this later.

ACKNOWLEDGEHENT

We are grateful to The Software Research Centre
of Ricoh Co., Ltd. for financial support in
this project.

CONCLUSION

A very simple pilot system for CAD by CSG has
been produced to test some new principles and
algorithms. Preliminary results suggest that
this is a promising approach but more experimen
tation is needed to assess its performance . A
new octree related structure has been designed
and algorithms appropriate to its explo"itation
have been written. This new structure retains in
its leaf elements, references to descriptions of
the system primitive objects. This avoids the
loss of information usually associated with this
kind of structure.

REFERENCES

1. Atherton Peter R.
"A Scan-line Hidden Surface Removal Pro
cedure for Constructive Solid Geometry"

Computer Graphics
Vol. 17 No. 3 July 1984 pp 73-82

2. Boyse, J.W. and Gilchrist, J.E.
"GMSolid: Interactive Modelling for Design
and Analysis of Solids"

IEEE Computer Graphics and Applications
Vol. 2 No. 2 March 1982 pp 86-97

3. Brown, C.M.
"PADL-2: A Technical Summary"
IEEE Computer Graphics and Applications
Vol. 2 No. 2 March 1982 pp 69-84

4. Carlbom, Ingrid; Chakravarty, Indranil;
Vanderschel David
"A Hierarchical Data Structure for Rep
resenting the Spatial Decomposition of 3D
Objects"

Frontiers in Computer Graphics: Proceedings
of Computer Graphics Tokyo '84
Springer-Verlag 1985

Graphics Interface '85

- 336 -

5. Dippe. Mark; Swenson. John

6.

"An Adaptive Subdivision Algorithm and
Parallel Architecture for Realistic Image
Synthesis"

Computer Graphics
Vol. 18 No. 3 July 1984 pp 149-158

Frieder. Gideon; Gordon, Dan;
Reynolds, Anthony R.
"Back-to-front Display of Voxel-Based Ob-
jects"

IEEE Computer Graphics and Applications
Vol. 5 No. 1
January 1985 pp 52-60

7. Glassner. Andrew S.
"Space Subdivision for Fast Ray Tracing"
IEEE Computer Graphics and Applications
Vol. 4 No. 10 October 1984 pp 15-22

8. Jackins C.L.; Tanimoto S.L.
"Oct-trees and Their Use in Representing
Three Dimensional Objects"

Computer Graphics and Image Processing
Vol. 14 No. 3 November 1980 pp 249-270

9. Liblong B; Hutchison N
"PG A Graphical Editor"
University of Calgary. CPSC project 1982

10 . Meagher D.
"Geometric Modeling Using Octree Encoding"
Computer Graphics and Image processing
Vol. 19 1982 pp 129-147

11. Myers. W.
"An Industrial Perspective on Solid Model
ing"

IEEE Computer Graphics and Applications
Vol. 2 No. 2 March 1982 pp 86-97

12 . Norio Okino. Yukinori Kakazu,
Masamichi Morimoto
"Extended Depth-Buffer Algorithms for Hid
den Surface Visualization"

IEEE Computer Graphics and Applications
Vol . 4 No. 5 May 1984

13 . Requicha. A.A.G. and Voelcker. H.B.
"Geometric Modelling of Mechanical Parts
and Processes."

IEEE Computer
December 1977 pp 48-57

14. Requicha. A.A.G . and Voelcker. H.B.
"Solid Modeling : A Historical Summary and
Contemporary Assessment"

IEEE Computer Graphics and Applications
Vol. 2 No. 2 March 1982 pp 9- 24

15. Roth, S.D.
"Ray Casting for Modelling Solids"

16.

17.

Computer Graphics and Image Processing
Vol. 18 1982 pp 109-144

Sequin C.H.; Strauss
"Unigraf ix (three
mode 1 ling)"

ACM IEEE 20th Design
1983 pp 374-381

Tilove, R.B.

P.S.
dimensional graphics

Automation Proceedings

"Set Membership Classification : A Unified
Approach to Geometric Intersection Prob
lems"

IEEE Trans. Computers
Vol. C-29 No. 10 October 1980 pp 874-833

18. Tilove, R.B.; Requicha, A.A.G.
"Closure of Boolean Operations on Geometric
Entities"

Computer Aided Design
Vol. 12 No. 5 September 1980 pp 219-220

19. Tuy , Heang, K.; Tuy, Lee Tan
"Direct 2-D Display of 3-D Objects"
IEEE Computer Graphics and Applications
Vol. 4 No. 10 October 1984 pp 29-33

20. Voelcker. H.B.
"Algorithms and Applications"
Tutorial on Solid Modelling
SIGGRAPH '82 (ACM)

21. Whitted, J. Turner
"An Improved Illumination Model for Shaded
Display"

CACM
Vol. 23 No. 6 June 1980 pp 343-349

22. Wolfe, R •• Fitzgerald, W. and Gracer F.
"Interactive Graphics for Volume Modeling "
Proceedings of the IEEE Eighteenth Design
Automation Conference
pp 463-470

23. Wyvill, B.L.M.
Pictures-68 MK1
Software: Practice and Experience
Vol. 7 No. 2 1977 pp 251-261

24. Wyvill, G
"Pictorial Description Language 2"
Interactive Systems
Proceedings of The European Computing
Conference
BruneI University 1975

25 . Yamaguchi, K.; Kunii, T.L .; Fujimura. K. ;
Toriya, H.
"Octree Related Data Structures and Al go
rithms"

IEEE Computer Graphics and Applicat i ons
Vol. 4 No. 1 January 1984 pp 53-59

Graphics Interface '85

2

3

4

5

1. A crankshaft shown at low resolution (Oc
tree depth 8). The 'nasty' cells appear
black. Note that the webs are elliptical
and not circular.

2. The same crankshaft at higher resolution
(Octree depth 10). The surface has been
made reflective and the 'nasty' cells have
been disguised by colouring them the same
as an adjacent pixel. The shaft rests on a
polished red table and reflections in the
various surfaces add a touch of realism.

3. A short shaft in which a keyway has been
cut.

4. The idealised Milling tool used to cut the
keyway.

5. The tool path object which represents the
cutting of the keyway. The yellow part
represents the path of the tool to be sub
tracted from the shaft. The red part is the
shape which is added to test for interfer
ence.

