BUILDING AN OCTREE FROM A SET OF PARALLELEPIPEDS

Wm. Randolph Franklin
Varol Akman

Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12180-3590, USA
518-266-6077

ABSTRACT

We give a novel algorithm for building an
octree from a set of parallelepipeds
approximating an object. This is an important
operation in solid modeling systems based on
octrees. The algorithm is simple to program and
easy to understand; in fact we give all the
code., It creates a minimal octree from the
given parallelepipeds. It does not lead to an
intermediate storage swell. It is well-suited
to handle very precisely specified objects which
are made of a large number of parallelepipeds
since it can work with linear files which are
~accessed in an orderly manmer to lessen virtual
memory page faults,

KEYWORDS: solid modeling, octrees,
parallelepiped approximation,

INTRODU CT ION

The volume of a solid object, Q, bounded by
planar or curved surtaces is easily computed by
numerical integration. Q is first approximated
by a set of elements bounded by planes (e.g.,
rectangular parailelepipeds, or PPs for short) .
These PPs are assumed without loss of generality
to be evenly spaced in the xy—plame but to have
varying length along the z—axis, Then, the sum
of their volumes gives an approximation of the
volume of Q. Theoretically, the exact volume of
Q is the limit of this sum as the number of PPs
approaches to infinity assuming that Q's
boundary consists of well-behaving surfaces.

To compute the PPs from Q, onme casts
parallel rays through the xy-plane [6]. The
2-dimensional spacing, g, of rays in the
xy-plane defines two dimensions of the PPs. The
third dimension is specified by the entry/exit
points ot a ray to/from the object. In this
papet} we demonstrate the usefulness of
parallelepiped approximation in a different
context, namely, solid modeling via octrees [1,
3, 4, 5, 10, 12].

Octrees are data structures for modeling
solids by symmetric recursive indexing [8].
Assume that Q is inside a cubic universe, W,
with edge length u = 2 LMAX integer
(typically 10). The universe is divided into u?
cubes of unit size called voxels. To obtain the
octree, 2, W is symmetrically subdivided into
ei1ght octants of equal volume. Each of these
octants will either be homogeneous (fully
occupied by Q or void) or heterogeneous
(partially occupied by Q). The heterogeneous
octants are further divided into suboctants.
This procedure is carried out recursively until
octants (possibly single voxels) of uniform
properties are obtained. The approximate nature
of @ in modeling Q is inherent in the decision
step at the voxel level; a partial voxel must
either be labeled as full or empty. It is
useful to visualize octrees as a generalization
of quadtrees [7].

In this paper we give a novel algorithm
called STACK for building an octree from a given
set of PPs approximating an object. The
advantages of STACK are as follows. It is
simple to program and easy to understand. It
creates a minimal-sized (in a sense to be
detined later) octree from the given PPs. It is
well-suited to handle very large (i.e., very
precisely specified) objects since it can be
programmed to work with linear files which are
always accessed in an orderly fashion. It does
not lead to an intermediate storage swell.

Relevant papers on this subject are quite
recent. In [7), a special case, the comversion
of 2-dimensional binary arrays to quadtrees has
been considered. In [13], an algorithm is given
for constructing the tree of a d-dimensional
binary image from the trees of its
(d - 1)-dimensional cross sections. In [9], an
algorithm is given for comverting from the
boundary representation of a solid to the
corresponding octree model utilizing a connected
components labeling technique.

Graphics Interface '85

- 354

DATA STRUCTURES

Aset, s={x, 5 ..., x1], isa
collection of distinct elements. An interval,
[j..k], is a sequence of integers, j, j+l, ...,
k. A list, q, is a sequence of elements [x,,

x Element x, is the head of q and
x is the tail. The empty list is denoted by

[J]. There are three fundamental operations on
lists:

a ey xn].

i) Access: Given a list q = [x,, x,, ...,
xn] and an integer i, return the i-th
element q(i) = x; of the list.

ii) Sublist: -

«ees X'] and a pair of integers i amd j,
return the list ql[i..j] = [x

50,

Given a list q = [x,, x
i’ xi+1, ce ey

iii) Concatenation: Given two lists

q = [x,, x,, ..., xn] and r = [y;, Y3, cves
Ypl, return their concatenation q.r = [x,4,
X3y ecos Xns Y1, Y2, e ym]. If r has
only one element this operation is called
append.

We denote the cardinality, n, of a list q
by lql. (The same notation is used for sets and
for the ordinary absolute value function also.)
An n-tuple, <x,, x,, ..., x > denotes n elements
in that order. In general, the notation of this
paper closely follows that of [11].

We start with a description of our inmput
and output data structures, n and Q,
respectively. It is assumed that u = ZLMAX and
g = 2K where K ¢ [0..LMAX]. The elements of =
are 4—-tuples called PPs:

n={<x, vy, z2,, 2,0 | x, y, z,, z, ¢
[0..v-1], 2z, <= z,, and x, ¥y, z,, z,+1 are
all divisible by g}.

The elements of n will also be denoted by P,
i=1, Inl. The x, y, z,, and z, values of a
particular p ¢ ® will be denoted by p(x), p(y),
p(z,), and p(z,), respectively. It is assumed
that a1l PPs in n are mutually disjoint.

We reter the reader to [11] for relevant
terminology on trees. In a tree, the level of a
node, v, is defined recursively as:

level(v) = 0, if v is the root, and
level(v) level(f(v)) + 1, otherwise,

Here f(v) denotes the father of v. A node with
no sons is a leat. The level of a tree is
understood as the level of its deepest leaf.

The output O of our algorithm is an octree (a
tree in which every nonleaf node has eight sons)
with the following properties:

i) the nodes of Q are labeled with three
types: empty, full, and partial,

ii) the root of Q is always partial except
when n is trivially equal to a completely
full (resp. completely empty) W in which
case it becomes full (resp. empty),

iii) the level of 2 is LMAX' = log u - log
g = LMAX - K (In this paper log always
denotes log,),

iv) the leaves of Q are either empty or
full, and

v) the nonleaf nodes of Q are partial.

Before we describe our main data structure,
we give a few definitions to make the upcoming
algorithmic description easier. A row at level
i is a 3-tuple <x, y, z> where z is divisible by

h = 2LMAX-i. 4yi is a shorthand for PP <x, y,
Z, Z,) where z;, = z + h— 1, It is noted that
the z—length of a row at level i is always h
units or h/g spacings. Two rows r, = <x,, y,,
z) and r, = <x,, y,, z> at the same level are
called adjacent if x, = x, and ly1 - y,l =B
(Note that this definition requires that they
have the same z—length.) 2! (i e [1..LMAX])
rows at level LMAX - i are combinable if when
sortea iny to be r,, r,, ... then every

intermediate r. jin this sequence is adjacent to
its predecessoi and successor,

For example, the rows <0, 0, 0>, <0, 1, 0>,
<0, 2, 0>, and <0, 3, 0> at level LMAX - 1 are
combinable while the rows <0, 1, 0>, <1, 1, 0>,
<2, 1, 0>, and <2, 0, 0> at level LMAX - 1 are
not.

Let r;, r,, ... be 2! combinable rows at
level LMAX - i. A square, s, at level LMAX - i

of 2LMAX-i o JLMAX-=i 40 1 voxels is obtained by
combining them into a single 3—tuple <x, y, z>

where s(y) = min.(r.(y)), and s(x) = ry(x) and
s(z) = r,(z). Two %quares s, = x4, y,», z> and
s, = <x,, y,, z> at the same level are called to
be adjacent if y, = y, and |x, - x,| = g. (They
have the same z—length.) 2! (i e [1..LMAX])
squares are combinable if when sorted in x to be
Sy, S3, ... then every s, in this sequence is
adjacent to its predecessor and successor.

For example, the squares <0, 0, 0> and (1,
0, 0> at level LMAX - 1 are combinable while the
squares <0, 0, 0> and <0, 3, 0> at level
LMAX - 1 are not.

Graphics Interface ’85

Let s,, s,, be 2 combinable squares
at level ;MAX = 13 4 cube, c, at level LMAX - i
of 2LMAX—1 by 2LMAX-’ by ZLMAX-I voxels is

obtained from their combination as a 3-tuple <x,

¥, z> where c(x) = minj(t.(x)), and c(y) = r,(y)
and ¢(z) = 1,(z). J

If a row, <x, y, 2>, at level i, i < LMAX,
is split in the z direction then two rows, (x,

y, z> and <x, y, z + h>, are obtained at level
i+ 1, If a square, <x, y, z>, at level i is
split in x and y directions then four squares,
<x, ¥, 2>, <x, y+ h, z>, <x +h, y, 2>, {(x + b,
y + h, z>, are obtained at level i + 1. In both

cases, h = 2LMAX=i=1 = 1 0014 be clear that
the idea of splitting is genmeralizable to cubes
and hypercubes.

The maximal components of a PP p form a
list [m;, m,, ...] of rows where each m, is a
component. To find the components, first search
for tne longest (in z) row in p. This is a
component. Remove it from p. This either
reduces p to a shorter (in z) PP or partitions
it into two PPs which are also shorter than p.
In any case, this procedure recurses until a
created component has z—length g. In this case
it is not further partitioned. It is noted
that, once the maximal components are found it
should be impossible to obtain a longer
component by combining two components.

For example, the maximal components of the
PP <1, 1, 17, 93> are the list of rows [<1, 1,
17> at level LMAX, <1, 1, 18> at level LMAX - 1,
<1, 1, 20> at level LMAX - 2, <1, 1, 24) at
level LMAX - 3, <1, 1, 32)> at level LMAX - 5§,

<1, 1, 64> at level LMAX - 4, <1, 1, 80) at
level LMAX - 3, <1, 1, 88> at level LMAX - 2,
<1, 1, 92> at level LMAX].

Our main data structure consists of a set
of at most DMAX(LMAX’ + 1) - 1 lists that we
will call dA-lists (dimension—level lists).
Here, DMAX is the maximum dimension of W and
LMAX' = LMAX - K, as before. A SA-list at
dimension D and level L is denoted as tD Le

There are LMAX’ 1-dimensional 8A-lists, LMAX'
2-dimensional dA-lists, and LMAX' - 1
3-dimensional 8A-lists when D = 3. (In general,
the number of the highest dimensional lists will
be one less than their predecessors.) The
elements of tD,L are rows if D=1, squares if
D=2, cubes if D = 3, and hypercubes if D) 3.
Although our algorithm will still be correct for
D > 3, we will not be concerned with this
anymore since its practical value is
questionable in the absence of affordable 4-D
display devices.

Graphics

355

When In| is very large it may be
advantageous to employ linear disk files to hold
the dA-lists. In this case, only three files
w1ll be open during the execution of our
algorithm: tp,1L for read and they,L 20d tp 1.9
both for write. Since reads always take place
sequentially and writes are always carried out
as appends the algorithm is on solid ground
against virtual memory page faults.

Finally, although we have a language with
dynamic data structuring facilities in mind to
implement this algorithm, for static languages
(such as Fortran) a list space to hold
2(LMAX' + 1) 8A-lists would be enough for any
DMAX > 2. This is due to the fact that once the
combine/split operation (to be explained later)
is finished with 1-dimensional dA-lists one can
allocate for the 3-dimensional lists the same
space occupied by them, and so on.

ALGORITHM

In the following, to express our algorithm,
an Algol-like language combining Dijkstra's
guarded command language and SETL is used. This
language is described in [11] in detail and will
not be explained here.

Throughout this paper DMAX will denote the
maximum dimension which is typically 3; D is
the current dimension. LMAX denotes the maximum
level which is typically 10 for a spacing value
g =1; L is the current level. The universe,
W, is at level 0 and an LMAX-level full octree
has 8LMAX ;.0 st level nodes. Using a larger
spacing it is possible to reduce the maximum
level to LMAX' = LMAX - log g.

A briet summary of our algorithm, STACK, is
as follows., First, STACK tries to combine
adjacent rows into squares. (Assume that, each
PP has been divided into its maximal components
and these have already been inserted into
relevant 1-dimensional &8A-lists using MAXCOM
below.) If a row cannot be combined then it is
split into two smaller (half-size) rows and they
are tried, until the remaining pieces are at
level LMAX'., These are inserted into Q since
there is no way to combine them.

Then, STACK tries to combine adjacent
squares into cubes. Any square that cannot be
combined is split into four smaller
(quarter—size) squares and the process is
repeated until the remaining pieces are at level
LMAX', and they are added to @. Finally, all
the cubes that were produced are added to Q. We
will show in the next section that this builds Q
in its reduced form. (An octree is in reduced
form if it has no partial nodes having all empty
or all full sons.)

Interface 85

= 356 -

In the following we give the main program
and the other components of STACK. (This name
is chosen to conjure up a vision of what this
algorithm is doing, i.e., stacking up things to
build larger things.)

PROC stack(SET n, TREE Q); PROC maxcom (TUPLE p, INTEGER lo, hi, L,
COMMENT main procedure to create an octree MODIFIES LIST tl)i

from a set of PPs; COMMENT find and add maximal'components of p
INTEGER L, D, g, K, LMAX, LMAX'; to 1-dimensional 8A-lists;
TUPLE p; COMMENT lo and hi are the initial bounds of
LIST t LA a maximal component.
COMMENT 1initialize (assume that LMAX := 10 IN1EGER nlo, nhi, tmp;

and K := log(g)); COMMENT nlo and nhi are the running bounds of
I[;OMQXI') ==[|]:.MA§]- E.‘ a maximal component.

€ - = IF p(z,) = 10 AND p(z;) = hi =) t =t .[pl
FOR L & [0..LMAX'] -> | s 5 1o ANDPp(zz) Pagie 1 ¢ AL
t L =T [l L :=L+1;

ROB nhi := (hi + lo + 1)/2 - 1;
ROF; nlo := nhi + 1;
Q := NULL; tmp := L;

COMMENT read n and insert its maximal components
into 1-D 8A-lists;

FOR p ¢ n -> maxcom(p, 0, 2LMAX _ 1 0) ROF; I

COMMENT start combine/split operation;

FOR D ¢ [1..2] = |

FOR L & [0..LMAX'-1] ->

IF p(z,) <= nhi AND p(z,) (= mhi -)
maxcom(p, lo, nhi, L)

p(z,) >= nlo AND p(z,) >= nlo -
maxcom(p, nlo, hi, L)

p(z,) (= nhi AND p(z,) >= mnlo ->
maxcom(<x, y, z,, nhi), lo, mhi, L);

IFD =1 ->SORT t;, | BY y,z,x; csrow(L) L := tmp;
F]II D =2 -> SORT tD,L BY z,x,y; cssqr(L) maxcom(<x, y, nlo, z,), nlo, hi, L)
FI;
ROF; L := tmp
add elements of tD LMAX' to @ FI;
ROF; ! RETURN
FORL e [0..LMAX'-1] =) END maxcom;
add elements of t3 Lto®
ROF; '
COMMENT at this point Q is obtained;
RETURN
END stack;

Graphics Interface ’85

PROC csrow(INLTEGER L,
MODIFIES LISTS t t t);
. . . 1,0 B 1 1,141’
COMMENT combine/split 8A-list t, |:
INTEGER i, j , e, he, n, D; ’
TUPLE r, s, q;

e := 2LMAX—L’. he := e/2; D :=1; n := |t l;
. D,L!s
i :=0;
DO UNIIL i = n =)

i =1+ 1;

COMMENT let r = <x,, y,, z,> be the i-th
element of tD L
’

IF mod(z(x), e) <> 0 =
t =t .(r, <x,, y,, z,+he>]
| moatelxy, 9"
j =i+ elg -1;
IF j > n =)
FORm e [i..n] ->
COMMENT let s = <(x, Yy,
element of t

z)> be the m—th

D,L*
t =t .[s, <x, y, zt+he)]
ROB','L+1 D, L+1
BREAK
FI;

COMMENT let q = <x;, y,, z;) be the j—th

element of t ..
I qly) < (y) OR qP&) & va) =

t .

S 3 B t dr, <xa1, 1, zi+the)]
| q?y&' = r(y)DAkBIq(z) = r(z) =
COMMENT combine;

t va s & em d

1,L =t JArl; i =

FI D+1,L D+1,L

F1
0oD;
tD.L = [1;
RETURN

END csrow;

357

PROC cssqr(INTEGER L,

MODIFIES LISTS t t t);
. . 2,L t3 10 ta2,14177
OOMMENT combine/split &dA-list t, 1:
INTEGER i, j , e, he, n, D; ’
TUPLE r, s, q,
e:=2m-;he:=e/2;D:=2;n:=|t l;
s D,L
i :=0;
DO UNTIL i = n =
i =i+ 1;

COMMENT let r = <x,, y,, z,> be the i-th
element of tD,L"
IF mod(r(y), e) <> 0 =>
tD,L+1 1= tD,L+1'[t‘ (X3, Y3, zythed,
<x1+he- Y1 Z37,
{Xi+he, yi, zi+hed]
| mod(z(y), e) =0 ->
j =i+ elg-1;
IF j > n =
FORm & [i..n] =
COMMENT let s = <x, y, z> be the m—th
element of tD,L"

t =t .[s, <x, y, z+he),
Palitt Hjlad crite, v, 2>,
(x+he, y, z+he)]
ROF;
BREAK
FI;

COMMENT let q = <x,, y_, z,> be the j—th

element of t ;
IF q(x) <> r(x) OR q?'z&‘ O or(z) =
tp, L1 = tppep-[Tr <X1s Vi. zythed,
<X +he, yy, 2,7,
{x,+he, y,;, z,+he)]
| q(x) = r(x) AND q(z) = r(z) -
COMMENT combine;

pital o Epeg e 15 L 2=

FI
FI
0D;
ty L = (1
RETURN
END cssqr;

Graphics Interface ’85

In STACK, the high—level operation 'SORT
list BY key’ is lexicographic since key is
composite. In the same procedure, the '"addition
of a full node to 2" is intentionally left as a
high-level step. This is due to the fact that
an octree is basically a digital search tree
(also known as trie) and handling insertion in a
trie is well-known [2].

We state several properties of STACK
deduced from these procedures.

Lemma 1: 1level(Q) <= LMAX'.
Proof: Obvious since the minimum cube must have

an edge length >= g.

h £t
The elements o 1,LMAX’ and tZ,LJMX'

cannot be combined and hence are full nodes of
Q.

Lemma 2:

Proof: Triviai.
Lemma 3: There is no need for t3 IMAX'-
Proof: Any input to t3,LMAX' may come only from

t5 LMAX' which is [] at that point.
Additionally, the latter cannot send the former
anything since it cannot combine due to Lemma 2.

Lemma 4: Q0 is always in reduced form atter
STACK is applied.

Proof: Assume that this is not true, Take any
partial node of Q at level L which has eight
fall noaes. (Eight empty nodes are treated
similariy.) These certainly imply 2LMAX-L
combinable squares at level L + 1 which must
have been correctly computea by CSROW procedure.
But then CSSQR would correctly combine them to a
full cube at level L.

EFFICIENCY

To estimate the efficiency of STACK we
examine its individual steps. Since we are
trying to see the worst-case complexity assume
that g = 1, thus LMAX' = LMAX.

For a given PP there may be as many as
2(LMAX - 1) maximal components. Therefore,
MAXCOM initializes all the l-dimensional
8A-lists with rows in O(LMAX [nl) operations
under the assumption that appends take 0(1)
time.

Sorting a dA-list is a common operation in
STACK. The important point is that for D > 1,
lists tp,L will not be completely scrambled
prior to sorting., Because of the way that new
elements are appended into them in almost sorted
order, they will have some order in them. (We
reter the reader to CSROW and CSSQR to see this
clearly.) On the other hand, one can assume

358

that there will be no order in 1-dimensional
8A-lists initially; they are in random order.
This would not be true if the elements of = are
listed in some order; this may happen if the
ray-casting is implemented in some methodical
manner such as via do—loops while computing the
PPs. It is also noted that l1-dimensional splits
introduce some order to l-dimensional §A-lists
also. To exploit the last fact onme can use
Shell sort which is of average-case 0(n1'25).
It is known that Shell sort has worst—case of
O(n~*’) and furthermore does less work when the
file is partially ordered [2].

Finally, it is emphasized that atter the
sorting step, CSROW and CSSQR execute very
etficiently since they make a single pass over
the list and spend 'tD,LI time since appends are
carried out in constant time.

IMPLEMENTATION RESULTS

We implemented STACK in Ratfor (a
structured dialect of Fortram). For a
1/8-sphere, the elapsed CPU time of the
algorithm is 9.2 seconds on a Prime 750. This
object is built from 833 PPs with LMAX = 10 and
g = 16. The final octree has a total of 6569
nodes (4090 full, 1664 full with surface normals
-— see the explanation of surface normals
below). For a paraboloid built from 916 PPs
with LMAX = 10 and g = 32 the final octree has a
total of 5913 nodes (3248 full, 1832 full with
surtace normals). This takes 7.4 seconds of CPU
time. In agreement with our predictions, the
I/0 time is low in both cases (0.9 and 0.3
seconds, respectively). For a precisely
specified 1/8-sphere consisting of 12985 PPs,
STACK takes about 3 CPU minutes to build the
final octree which has 106833 nodes and
LMAX = 8. The node distribution is 67570 full
nodes, 13354 partial nodes, and 25909 empty
noaes. This object is larger than many of the
examples cited in [9] and [13].

In the sequel we describe an enhancement
(which we also implemented) of this algorithm.

Since an octree created by STACK must
eventually be displayed, most of the time PPs

will also have surtace normal vectors, D, and

n,, associated with their z, and z, endpoints,
respectively. That is, p is a 6-tuple <(x, y,
Z,, Z,, Dy, n,) where:
n, = n,(x)i+ n,(y)j + n,(z)k, and
n, = n,(x)i+ n,(y)j + n,(z)k. (Here, i,
j, and k are the unit vectors in x, y, and
z directions, respectively.)

Graphics Interface '85

- 359

In this case, to create Q from n, the following
approach may be used. Create for each p &€ =«

three PPs p,, p., and p’' where:

P, = <x, Yy,
normal n,,
P, =<¢x, ¥y, 2, - g +1, z,> with implied
normal n,, and
p' =<x, ¥, 24
normal s,

Z,, 2z, + g — 1> with implied

+ 8, Z, — g) with no

assuming that p = <x, y, 2z,, z,, n,, n,),
z, -z, > g - 1. (If for a particular p,

Z, -z, = g — 1 then only p, is created with
implied normal n,, This happened twice in the
above 1/8-sphere as can be seen from the number
of full nodes with normals,) Once this
partitioning is done, the idea is to add p, and
p, along with their normals to Q directly since
these must not be combined. Then for n’' (which
is the set including all p’) STACK is applied as
before. Basically, what we are doing can be
summarized as ''peeiing off the skin"” of = to
obtain n’.

ACKNOWLEDGMENTS

This material is based upon work supported
by the National Science Foundation under grant
number ECS 83-51942 and the Office of Naval
Research, Information Sciences Division,
contract number N00014-82-K-0301. This
information does not necessarily reflect the
position of the govermment, and no official
endorsement should be inferred. The second
author is also supportea in part by a Fulbright
award.

REFERENCES

1. DOCTOR, L.J., AND TORBORG, J.G. 1981.
Display techniques for octree—encoded objects.
IEEE Computer Graphics and Applications 1, 3,
29-38.

1984. Handbook of Algorithms
International Computer
Reading, Mass.

2. GONNET, G.H.
and Data Structures,
Science Series, Addison-Wesley,
3. JACKINS, C.L., AND TANIMOTO, S.L. 1980.
Octrees and their use in representing
three—-dimensional objects. Computer Graphics

and Image Processing 14, 249-270.

4. JACKINS, C.L., AND TANIMOTO, S.L. 1983.
Quadtrees, octrees, and K-trees: a generalized
approach to recursive decomposition of Euclidean
space. JEEE Transactions on Pattern Analysis
ana Machine Inteiligence 5, 5, 533-539.

5. MEAGHER, D. 1982. Geometric modeling using

octree encoding. Computer Graphics and Image
Processing 19, 129-147.

6. ROTH, S.D. 1980. Ray casting as a method
for solid modeling. Tech. Rep. GMR-3466,
Computer Science Dept., General Motors Research
Labs, Warren, Mich.

7. SAMET, H. 1980. Region representation:
quadtrees from boundary codes. Communications
of the ACM 23, 3, 163-170.

8. SRIHARI, S.N. 1981. Representation of
three-dimensional digital images. ACM Computing
Surveys 13, 4, 400-424.

9. TAMMINEN, M., AND SAMET, H. 1984. Efficient
octree conversion by connectivity labeling.
SIGGRAPH'84 Proceedings (published as ACM
Computer Graphics 18, 3), 43-51.

10. TANIMOTO, S. 1980. Image data structures.
In S. Tanimoto and A. Klinger (Eds.),
Structured Computer Vision, Academic Press, New
York.

11. TARJAN, R.E. 1983. Data Structures and
Network Algorithms, CBMS—-NSF Regional Conference
Series in Applied Math. 44, SIAM, Philadelphia,
Pa,

12. YAMAGUOHI, K., KUNII, T.L., FUYIMURA, K.,
AND TORIYA, H. 1984. Octree-related data
structures and algorithms., IEEE Computer
Graphics and Applications 4, 1, 53-59.

13. YAU, M., AND SRIHARI, S.N. 1983. A
hierarchical data structure for multidimensional
images. Communications of the ACM 26, 7,
504-515.

Graphics Interface '85

