
- 361 -

Interface Abstractions for an naplps Page Creation System

Ernest Chang
Department of Computer Science

University of Victoria
Victoria, B.C. V8W 2Y2

ABSTRACT

Computer programs that allow humans to create
pictures are called paint systems. Those that use
geometrical shapes as building blocks, rather than
brushes, are element-based, rather than canvas-based.
The naplps graphics encoding standard, used primarily
for videotex, lends itself to the creation of element­
based paint systems. The user interface for such a sys­
tem can be rather complex, because of the need to
choose shapes, colours, textures, and the need for edit­
ing functions. This paper presents some interface tech­
niques that present the user with a number of easily
understood abstractions such as a colour bar and func­
tion buttons, that facilitate the creation of naplps
graphics.

RESUME

11 y ales systemes de peinture qui permit aux
humains de fa~onner les images. Ces qui utilize les
configurations geometrique au lieu des pinceaux
s 'appelent element-based, au lieu de canvas-based. La
convention nap/ps, qu'on utilize dans le principe pour
videotex, est convenable a realization des systemes de
peinture fondants sur les elements. L'interaction avec
ses systemes deviendrait difficile a cause de la necessite
de choisir les configurations, les couleurs, les textures,
et la complication des fonctions pour changer ces
detai ls. Nous presentons quelques methodes de faire
presenter plusieurs abstractions comme un segment de
couleur et les poussiors pour fonctions, qui facilitent la
creation des images nap/ps.

1. Introduction

A paint system[3,4,6] is a computer program that
facilitates the interactive creation of graphic images,
using techniques analagous to those found in traditional
artistic media. Some paint systems treat the screen as a
simple canvas, which is successively covered with
colours and textures. The software, and user interface,
is correspondingly simple since there is only one major
function to support, that of adding more colour. The

performance of this class of canvas-based paint systems
is very fast when implemented on a frame buffer.

More flexible paint systems can define graphic ele­
ments, that are remembered as unique entities in
display lists, even if they are covered on the screen by
other elements. These entities, and subsets of them, can
be selected, deleted, copied, moved, or modified. These
element-based paint systems typically require more
complex software, and a user-interface that is no longer
analogous to traditional t echniques in art. This problem
is compounded by the addition of facilities for entering

. text in different sizes, colours, orientations and fonts.
This paper deals with the demands that an element­
based paint system makes of the user interface, in the
context of the naplps[l] videotex environment, and the
use of abstractions in its implementation.

2. naplps and Videotex

The North American Presentation Level Protocol
Syntax[l], known commonly as naplps, is a communica­
tions standard using 7-bit or 8-bit codes to represent
graphical and text images. The idea is to use the same
bit combinations to define multiple code sets, with a
mechanism for invoking a particular set as the active
code set. Graphic elements, and their attributes, are
represented by one code set, alphanumeric text bv
another, and so on. .

An underlying assumption in naplps is that a
function or attribute, once invoked, remains active
until specifically reset. There is always a current graph­
ical element, a current colour, etc. Another fundamen­
tal premise is that graphical images are constructed
from dots, lines, arcs, rectangles and polygons. These
are the building blocks for the image creator. The
naplps approach to colour is also important: it
assumes that a colour map is used, which permits a
small number of colour entries to take on values from a
larger range of colours.

Some implications of these characteristics are that
the encoding is sequential, that the user selects the
current active attributes, and that colours can be
modified. To understand how these affect the user-

Graphics Interface '85

- 362 -

interface, we must refer to the physical context in
which naplps is used.

To date, naplps has been used mainly in
videotexf21, which transmits combined text and
graphics as pages over low-speed communications lines
to large numbers of subscribers. The cost-performance
characteristics of the videotex market has produced
hardware naplps decoders costing about $1000 that
typically give 256 X 200 resolution, support 16 display­
able from 4096 colours, communicate at 300 to 9600
baud, and use 8-bit microprocessors. This relatively
slow graphics system yields figures that take a long
time to fill, especially if texture patterns are used. Pic­
tures are therefore built up sequentially over long
periods of time, possibly several minutes. To get the
actual effect of a page, the page making system must
use a decoder similar to the end-user's. Thus, slowness
and sequentiality is an inherent property of such sys­
tems, which cannot make use of the speed of frame
buffers, nor the kinds of icon-based menu interfaces
that they can support[2,4].

3. User Interface Requirements for Page-Making
Systems

Although it is possible to simply establish a one­
to-one correspondence between naplps codes and
page-creation commands, such a system would be so
cumbersome as to be unusable. A more appropriate
interface should reflect both the characteristics of the
st ructures being used, as well as the forms of human
motion and perception. Functionally, it must support
three classes of operations: creating a new element,
modifying the current picture, and changing the active
environment.

The major user-interface design problems lie in the
implementation of this informal set of specifications.
They are: methods for accepting input, displaying and
changing the current active environment, dealing with
colours, and editing the current picture. The user inter­
face must integrate the solutions in as clear and simple
a manner as possible.

4. PCS-UVIC and Interface Abstractions

The Page Creation System developed by the
author at the University of Victoria is based on an IBM
Personal Computer, using an external decoder with a
graphics monitor and optional input devices. The
graphics monitor is treated as the drawing and page
display screen, and the IBM monitor as the menu
screen. The user-interface is based on a small number
of abstractions, which present the user with easily
understandable objects that are simple to manipulate.

The most important of these are: the cursor, virtual
buttons, and the colour bar.

4.1. The Cursor Abstraction

The user interacts with the system either through
the cursor or by entering text with the keyboard. The
cursor is active and displayed on only one of the draw­
ing or menu screens. The functions for moving the cur­
sor, 'accepting' its present position, and switching it
between screens are mapped onto either the keyboard
or the optional pointing device, which is a mouse or
digitizer tablet. Accepting the cursor while in the draw­
ing screen includes the point into the current graphical
element, and in the menu area activates its correspond­
ing function.

4.2. The Virtual Button Abstraction

The menu screen [Figure 1] is an object used to
display amd change the current active environment, to
invoke functions for editing the page, and to support
the colour map. It is divided into a number of contigu­
ous virtual buttons, each of which has a display mode.
A button is 'pressed' by moving the menu cursor there
and 'accepting ' it. As the cursor moves, the current
button is outlined in high intensity.

There are four flavours of buttons: select buttons,
toggle switches, action buttons, and function buttons.
Select buttons allow the user to pick one of a group to
set an attribute. For example, the user selects one of
the buttons DOT, LINE, ARC, RECTANGLE, to set
the current drawing element. The selected button is
displayed in reverse video.

A toggle button is shown on the menu screen as a
box with <a> / on it, where <a> and
are its possible values. Only one of these is active, with
its descriptor in high intensity. Pressing the button
ca.uses the other attribute to become active.

An action button is similar to a firing trigger,
whose action is invoked each time it is selected. Every
time an action button is pressed, it flashes in reverse
video. A colour can be modified by changing its HSV
va.lues using action buttons.

Some functions in PCS-UVIC may cover several
steps. For example, to modify the current colour, it can
be continuously varied until the user is satisfied. When
a function button is pressed, it flashes continuously in
high intensity, and the function remains in effect until
the button is pressed again.

4.3. The Colour Bar Abstraction

The set of displayable colours are presented as a

Graphics Interface '85

- 363 -

series of contiguous rectangles on the drawing screen,
with the current colour outlined. The user can select a
different colour by invoking the 'New Colour' function,
moving the cursor to the colour, and accepting it. The
colour bar can be scaled in size, oriented horizontally or
vertically, and repositioned, or removed. The system
covers its previous position with the background colour,
which may render the picture temporarily incorrect,
until redrawn. Actions which require the colour bar to
be present, such as selecting a new colour, will redraw
it on the screen if necessary.

To support the use of only 16 displayed colours
out of 4096, the current colour value is displayed on
the menu screen in its RGB and HSV coordinates, and
can be modified either by entering the exact RGB or
HSV values, or step by step using rate buttons. The
step size can itself by changed with the menu. What
the colour bar represents is a colour map from display
space (16 possibilities) into value space (4096). The
current colour map can be included in the naplps
encoded picture, to support colour map animation[5].
This also provides a mechanism for the page creator to
save and recall previously used colour maps.

4.4. O ther Interface Abstractions

Other techniques used in the user-interface include
the provision of a keyboard to menu mapping, so that
buttons can be selected using keys assigned by a user­
definable configuration file. Sequences of such keys­
trokes can be remembered as keyboard macros. The
system can define a sequence of elements as a group,
which can be given a name, saved on file, and included
in new pictures. The system also has the concept of a
background of up to ten previously created pages,
which can be used for inheriting colour maps, texture

draw

find

maps, text fonts, as well as a mechanism for showing
commonly used visual backdrops.

5. Discussion

The naplps environment is by no means a simple
one, and many page creation systems require a
significant period of time to learn. PCS-UVlC has been
used by novices after only 15 minutes of instruction to
create non-trivial pictures. An interesting aspect of
designing user interfaces is to allow entry level skills to
be acquired quickly, while providing mechanisms for
the professional user to build short cuts. This is the
reason why tree-structured menus were rejected in <'
favour of buttons and configurable keyboards with
macros.

REFERENCES

1. Canadian Standards Association. Videotex/Teletext
Presentation Level Protocol Syntax. Toronto. 1983.

2. Miller D. Videotex: Science Fiction or Reality?
BYTE:42-56. July 1983.

3. Plebon DA, Booth KS. Interactive Picture Creation
Systems. Department of Computer Sciene Techni­
cal Report CS-82-46. University of Waterloo. 1982.

4. Smith AR. Paint. NYIT Technical Memo. July 1978.

5. Shoup RG. Color Table Animation. Computer
Graphics 13(2):-13. Aug. 1979.

6. Tanner P et al. Colour Selection, Swath Brushes and
Memory Architectures for Paint Systems. Proc.
Graphics Interface 83. Edmonton. 1983.

eraselMOO\MPlselectl

m.sk Icl,..maplctlpdil

hatchl maskAI maskSI
,

0:: tr'

mas kC{

mo ve ,

hsv I
dr::s I
maskoi

i
copy I ,

,..esp. y e s i I n o I I end I
F'CS-UVIC 1984

na p lps vl.O I<',eyboard

b~gin end cur,.. "'gb

x: hsv

y: C+J

Figure 1.
POlnt .nove

Graphics Inte rf a c e '85

