
- 381 -

NAPGEH - AUTOMATIC NAPLPS PAGE GENERATOR 

Michel Plante 
Research & Development Group, Industrial Technical Services 

Montreal, Quebec RSB IB3 

ABSTRACT 

The creation of videotex pages from already 
enc od ed in format ion (genera lly in the form of 
ASCII or EBCDIC codes) involves most of the time 
a large amoun t of work from the peop le do ing it 
and usua lly they are bound to s imp ly retype the 
whole information in the new videotex page using 

some page creation equipment (hardware and/or 
software). What is needed then is a simple tool 
that would automate the process of inserting this 
information (from an ASCII database) into the 
final videotex page without having to redo all 
the encoding by hand. 

The following paper deals with the issue and 
explains NAPGEN (NAPLPS Page GENerator), the 
application program that was written specifically 
to perform the conversion function from ASCII to 
NAPLPS with the addition of graphics made possi­
ble by the NAPLPS videotex standard itself. 

The paper starts by explaining exactly the 
purpose of this tool and our goals in making it, 
and we then follow with a description of the 
project itself, NAPGEN. 

llESUHE 

La creation de pages videotex a partir d'infor­
mation deja encodee (sous format ASCII ou EBCDIC) 
requiert la plupart du temps une assez grande 
quantite de travail des gens effectuant la 
conversion et presque tout le temps ils en sont 
contraint a simplement retaper toute cette 
information dans la nouvelle page videotex en 
utilisant un equipement de creation de pages 
videotex. Le besoin serait donc d'essayer d'auto­
matiser le procede d'insertion de ces informa­
tions (provenant de banques de donnees ASCII) 
dans les pages finales videotex sans avoir ales 
retaper manuellement. 

L'artic le qui suit adresse ce probleme et 
explique le fonctionnement de NAPGEN (NAPLPS Page 
GENerator), le programme d'application qui a ete 
con~u specifiquement pour la conversion d'infor­
mations ASCII en pages NAPLPS avec l'ajout, 
naturellement, d'objets graphiques rendus 

disponibles par le standard videotex NAPLPS 
lui-meme. 

L'article debute avec une explication du 
pourquoi de cet outil et de nos buts en le 
construisant et se poursuit ensuite avec une 
description du projet lui-meme, NAPGEN. 

IRTRODUCTIOR 

People in the computer industry already have 
an incredible amount of information stored on 
magnetic tape or on disc or on whatever media 
you can think of. The information is there, 
stored somewhere and awaits to be examined. But 
each information has been stored in some parti­
cular way and to retrieve it requires some 
skill. And often enough the presentation of the 
data on the screen is terse and can be difficult 
to interpret. From this we realized that it 
would be nice to be able to take parts of these 
existing databases, any database, and to combine 
them with some graphics elements into one 
entity, a NAPLPS videotex page. 

The NAPLPS standard (North American Presenta­
tion Level Protocol Syntax) is powerful in that 
it fully specifies how to encode graphics and 
text strings for an eventual exchange of this 
information in between computers. 

But the NAPLPS standard is only a tool. To be 
ab le to communicate videotex information we 
suppose that there must be at least three 
communicat ing partners : the database manager, 
the one who owns the database and maintains it, 
the information provider, who puts some of his 
information in the database in the form of 
NAPLPS pages and finally the information recei­
ver, the end-user who examines the final pages 
of informa t ion. 

For those information providers that do not 
require that their information be updated too 
often (one shot advertising for instance), the 
cost of creating a few NAPLPS pages of informa­
t ion is very reasonab le. But most of them wi 11 
in fact require that their information be 
updated on a monthly, weekly or even daily 

Graphics Interface '85 



- 382 -

basis. But as we know the generation of any kind 
of coded information (NAPLPS pages or any 
encoded data , ASCII, EBCDIC ... etc) i. e. "put­
ting it in the computer" is very time consu­
ming. And the time it requires to maintain even 
the smallest amount of pages up to date, becomes 
rapidly too prohibitive for any information 
provider and therefore too costly. 

Idea lly, the da tabase manager wou Id like to 
offer to its information providers a very time 
and cost effective way to maintain all those 
pages of information alive and well without 
having to invest in any kind of page creation 
equipment. 

OUR GOALS 

NAPGEN was deve loped to provide the database 
manager with a tool to automatically produce 
NAPLPS pages and our basic goals for this project 
was twofold : 

To be able to convert the already stored data 
from plain ASCII code to NAPLPS code. 

Once these new NAPLPS pages have been created 
we also need a tool that will assist us in main­
taining the data presented in them up to date. 

NAPGEH 

What we have developed is a way to interface 
every possible database to our application pro­
gram, regard less of the way it was stored. To 
do it NAPGEN needs basically four different 
information that will accordingly be stored in 
four separate files as follows: 

The interface file (IF), contains the data 
itse 1f, in the form of ASCII text, to be copied 
into the videotex page. 

The Field Description File (FDF), contains the 
information on how the data was stored (the 
format) in the IF. 

The Data Description File (DCF), contains the 
information on how the data will be presented in 
the fina 1 videotex page. It is itse If a NAPLPS 
page. 

And finally, the Graphics Element File (GEF), 
contains different graphics elements (objects) 
stored in the form of NAPLPS codes. 

The interface file (IF) will make the connec­
tion between our application program and the 
database in question. The IF will be provided by 
the information provider and involves very 
little effort to create. The IF is a simple 

sequential, variable length record file that 
contains a header record and the data itself 
that the information provider wants to insert in 
his NAPLPS pages. The header record contains 
among other things the names of the DCF, FDF and 
GEF files. 

The work involved then for the information 
provider is the creation of the IF from his 
existing ASCII database. It is simply a matter 
of reformatting the stored information in his 
database (unknown format to NAPGEN) to a known 
format in the IF that NAPGEN will understand. 

The known format of the IF is entered in a 
second file, the FDF, the Field Description 
File. The FDF will contain, among other things, 
the exact starting position of each field in an 
IF record, its length and its type. At this 
po in t NAPGEN knows exac t ly where the da ta is 
located within the IF but it still does not know 
where to place it in the final NAPLPS page. 

We need a third file, called DCF, the Data 
Characteristic File. This file is a NAP LP S 
created on a page-creation equipment that con­
tains descriptors in the form of text strings at 
the exact position in the page where the infor­
mation provider will want his data to be loca­
ted. Not only do the descriptors define the 
place where the data is going to be placed, but 
they also define the attributes the data will 
have. 

Let's say the information provider wants such 
and such data to appear on the screen as a 
double size, blue and blinking character he may 
do so by simply creating his descriptor as being 
a double sized, blue and blinking character on 
the page creation equipment. 

The DCF is really a template that will be used 
by NAPGEN to create the final NAPLPS page. This 
template gives the user a very efficient way to 
easily change the attributes of his data by just 
changing the attribute of the descriptor of the 
desired data. 

Since NAPLPS provides very powerful graphics 
capabilities it is obvious that we would like to 
add a few graphics elements to the final pic­
ture. This is also easily done by specifying the 
names of graphics elements that the user wants 
to see included in his page. The names of these 
graphics elements are really the names of the 
GEF. 

Graphics elements are also created on a 
page-creation package. They are by themselves 
NAPLPS pages with one or more graphics object 
stored in each one of them. Then, when the 
information provider accumulates a sufficient 

Graphics Interface '85 



- 3 8 3 -

number of these graphics elements, he can easi­
l y combine them as he wishes to create more or 
less complex images, just by specifying to NAPGEN 
the filenames of the graphic elements he wants to 
see in his final NAPLPS page. 

It is allowed however to use only one or even 
no graphics element at all in the final videotex 
page. For instance the user might be interested 
in simply generating a page of text with a dark 
background. Then the output of any text editor 
or word processor (without control characters) 
could be fed directly into NAPGEN to turn this 
purely ASCII text into a NAPLPS page, readable 
by any NAPLPS decode"r. 

Once NAPGEN is properly set up, benchmarks 
here at LS.T have shown it possible to create 
up to one hundred NAPLPS pages, with graphics 
elements and data, in less than 2.5 minutes on a 
DEC VAX 11/750 running VMS. 

It always involves some effort at first from 
the part of the information provider who wants 
to make use of NAPGEN. The first few template 
pages needed probably takes longer to create 
with NAPGEN than with the usual page-creation 
package. But once these "templates" or "models" 
have been created then the product becomes very 
attractive in that it allows the information 
provider to rapidly create new images or to 
update existing ones. 

REFERENCE 

Videotex/Teletext Presentation Level Protocol 
Syntax (North American PLPS). 
ANSI Standard X3.110-l983/CSA Standard T500-l983; 
December 1983. 

Graphics Interface '85 


