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ABSTRACT

Graphics systems using three dimensional models, and
computing a colour shaded image for a raster display are
very common, and range widely in performance and cost.
Despite the numerous variations in rendering techniques,
visibility determinations, illumination models and model-
ling primitives manipulated, it is important to be able to
compare them when rendering similar scenes.

We present here the first results of a series of profiling of
different rendering systems displaying the same scenes on
the same machine. The systems studied arc a ray-caster, a
system using a depth-buffer for visibility determination,
and a system using a scan-line Watkins algorithm. The first
and last systems have an antialiasing option. Two types of
scenes were used, one made of a constant number of
polygons varying in size, and the other made of parametric
surfaces varying in level of subdivision.

The results, mainly usceful for rclative  comparisons,
confirm some predicted behaviours. The depth-bufTer algo-
rithm degrades considerably when the depth complexity
increases. The ray-caster is not much influenced by the
number of polygons, but by the total number of pixels
covered. The most striking result is the large proportion of
time spent on shading. It is a strong indication that work
on ways o make shading computations less expensive, and
to design special hardware for that purpose would be fruit-
ful.

KEYWORDS: display systems, rendering  techniques,
profiling, shading, visibility determinations.

RESUME

Les systémes graphigues qui utilisent des modéles a trois
dimensions ¢t qui produisent des images ombrées en
couleur pour des aflichages rasters sont maintenant trés
repandus et différent Enormément en puissance ¢t ¢n cot.
En dépit des grandes variations dans les techniques de
détermination de visibilite, Ies techniques d'ombrage et Ies
technigues de modcelage quiils utilisent. il est important de
pouvoir comparer leurs performances quand ils rendent la
meme scéng.,
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Nous présentons ici les premiers résultats d'une série de
profilage de diflérents systemes daflichage produisant les
memes seénes sur la meme machine.  Les sytémes Ctudiés
sont un lanceur de rayon, un systéme utilisant une memoire
de profondeur pour déterminer la visibilité, et un systéme
utilisant l'algorithme de Watkins avec la conversion en
ligne de balayage. Le premier et le dernier systéme ont
tous les deux une option d'antialiasing. Deux genres de
scénes ont été utilisées. Un Ctait fait d'un nombre constant
de polygones dont scule la taille changeait, et I'autre de
surfaces paramétriques a des niveaux variés de subdivision.

Les résultats, surtout utiles pour des comparaisons rela-
tives, confirment beaucoup de prévisions. La performance
de l'algorithme de mémoire de profondeur sc dégrade de
facon considérable quand augmente la complexité de pro-
fondeur. Le lanceur de rayon n'est pas trés influencé par
le nombre de polygones, mais plutot par le nombre total
de pixels recouvertes.  Le résultat le plus frappant est la
grande proportion de  temps consacrée aux  calculs
d'ombrage. C'est une forte indication du fait que plus de
recherches pour améliorer I'efficacité de ces calculs et pour
développer du matériel pour cet effet pourrait s’avérer
payant.

MOTS CLES: systémes daflichage, techniques de rendu,
profilage, ombrage, détermination de visibilité.

1. Motivations

A graphic display system, in the context of this study, is a
combination of hardware and software which extracts
object descriptions from an application database, applics
geometric transformations to create instances of objects,
determines their projections in a two-dimensional screen
space, and computes the colour value of cach pixel for the
frame buffer of a raster display device. We will limit our-
selves o the consideration of systems which handle three-
dimensional models of objects; and aim at a realistic pic-
turc. Even with these restrictions, there exist systems
which vary in performance from real-time to real-long-
time (several hundred hours per frame), and from a few
thousand dollars to a few million.

A display system has three main components (note that we
arc not considering the interaction with the user in this
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study). ‘T'he first one is the modelling component, which is
really. part of the application. By modelling here we do
not mean the designing and creation of the models, but
their retrieval and/or generation on the fly. For example
extracting polygons from the database. computing points
on a parametric surlace, gencrating stochastic data are all
modelling operations. ‘The sccond  component involves
geometric operations. This includes clipping, perspective
transformations, mapping to the screen. Two other impor-
tant parts of the gcometric operations are visibility deter-
minations and shading. They are classified within the
geometric operations because they use directly the
geometric properties of the objects and the scenes for
their computations and none of the screen geometric pro-
perties. And finally the third component includes all the
display operations. In a raster system they are mainly the
"scan-conversions”, the sampling and filtering operations,
and writing out the image (to a file or directly to the
frame buffer).

It is important to note that this subdivision is independant
of the rendering scheme. For instance, consider a depth-
buffer system and a ray-caster. They could have the same
modeclling primitives and operations, such as B-spline, sur-
faces and adaptive subdivision; the geometric opcrations
for the depth-bufler system are mainly as described above,
and consist of ray intersection calculations and shading for
the ray-caster; the display operations are scan conversions
and depth comparisons for the depth-buffer, and distribut-
ing into "scan buckets”, subdividing the screen, ctc., for
the ray-caster.

An indirect confirmation of the validity of ths view is that
when new algorithms or new hardware appear, they can
casily be categorized following this scheme.

New modeclling techniques are appearing  regularly
[FOFC82, Reev83, Gard84, Gard85]. In geometry, the
basic operations do not change very much, but the shading
technigues became more sophisticated and more expensive
[Cook81]. 'The visibility problem remains a active area of
rescarch, and even more cflort is expended to make it
more difficult [Whit80]. In this respect ray-tracing and
ray-casting are properly rendering methods, that is they
involve the whole rendering scheme.  Therefore  they
include the modelling, geometric and display opcrations.
Recently the display side (notably the sampling and filter-
ing operations) have reecived the most attention within
that technique [Aman84, CoPC84, DiWo85, LeRUSS].
Hardware developement, besides the wholesale implemen-
tation in hardware of the graphics display system for real-
time flight simulators [Scha83], has scen attacks on specific
components: the purcly geometric operations [Clar82] or
the scan conversion component [FGHSSS]. The design of
specialized  hardware for modelling,  especially  complex
modelling. has been only started [PiFo84]. Notable by its
absence is the lack of hardware design for shading.

For most systems the goal is the greatest amount of real-
ism for the least cost (m time and hardware to run it on).
Given this, it is surprising that the literature is not more
abundant on the performance evaluation of such systems.
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differ by more than a given threshold.
1.

The information available so far, besides various raw tim-
ings for pictures ("Figure X took 450 hours of Vax time")
is limited to profiling results on one particular system
[ReBI85] and numbers and analysis of the performance of
visibility determination algorithms [SuSS74]. Crow com-
pared the times spent on modelling, geometric operations,
shading and filtering [Crow81], which was mainly oriented
towards a comparison of the latter operations.

While most of the work in performance analysis bore on
visibility determination, there was mounting evidence that
the cost of modelling, and even more shading was rapidly
getting larger. Alrcady Crow pointed out that trend in
[Crow81]. The result of that is that we have to consider
carcfully the illumination models and the shading
methods, especially as they relate to the visibility algo-
rithms and the display operations. A fast visibility algo-
rithm will degrade in performance if the depth complexity
increases and it continues computing the shade for many
invisible areas. At this point, an algorithm that computes
the shading only for the visible surfaces might win, even if
the visibility determination is less cfficient.

The first task in comparing various systems is choosing the
scene they will be run on. Here again it is a fairly complex
problem, with not as many published results as its impor-
tance and interest  require.  Kaplan  and  Greenberg
[KaGr79] and Parke [Park80] addressed the problem for
the analysis of depth buffer algorithms in conjunction
with various processor architcctures. Schmitt [Schm81] did
the same, but this time to determine empirically the com-
plexity of various visibility algorithms. More recently
Whelan [Whel85] considered the problem again within th
context of multiprocessor architectures.

Or course the problem of choosing the right test data is
not unique o graphics. The problem here is twolold. One
problem is to determine how to measure scene characteris-
tics, and the other is to decide what are the characteristics
of "typical” scencs.

2. Methodology

For this first report we tried to keep the number of vari-
ables under control. but to have cnough variety and
relevance to be of use to practitioners. The tactic we have
adopted is to have three different renderers displaying the
same scenes on the same hardware. The difference
between the renderers is mainly in their methods to deter-
minc visibility.

The first renderer is a ray-caster, which we will call RC',
To speed up ray interscction, it subdivides screen space
into buckets, and each polygon is added to a bucket list if
its bounding box intersects the bucket. For each ray only
the polygons listed with the bucket intercsected by the ray
are examined. It has an antialiasing mode, where pixels
are adaptively subdivided if the shades at each corner
It can adaptively
The ray-caster is based on software originally written by Mike
Sweeney at the University of Waterloo Computer Gmpl{ics la-

boratory. An improved version is now a component of the Alias |
rendering module.
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subdivide parametric surfaces that way, but this was not
used here to allow casier comparisons.

The other two renderers share the same front end, known
as J3d [AmBi80] at the University of Toronto Dynamic
Graphics Project. The sccond renderer, which we  will
designate as DB, uscs a file depth-buffer to determine visi-
bility. It does not have an anti-aliasing option.

The third renderer uses Watkins algorithm  [Watk70] to
compute a scanline per scanline visibility. We will call it
WS. It has an antialiasing option which uses the full preci-
sion in the X direction, and four subscanlines in the Y
direction.

They both use a varicty of rendering options, with a
choice of illumination model, and include texture map-
ping, except for DB.

2.1. Modelling Primitives

Since the systems have to render the same scenes, they
will have to use the same modelling primitives. They are
polygons and B-splines patches, the most prevalent in
current practice. The scene description actually is defined
in a scene description language, and various filters generate
the files for cach renderers.

2.2. Geometric Primitives

Even though it was not mandatory for this study, the three
systems all use triangles internally as geometric primitives.

Pl P2 P3
Modelling
Polygons 244 244 244
Geometric
Triangles 488 488 488
Effective
‘T'riangles 485 485 . 482
Average Depth 0.60 232 8.32
Avcerage Pixels
Covered 321 1253 4526
Average Arca 326 1313 5376

Table 1. Scene characteristics for polygons

2.3. Display Primitives

The three renderers produce a raster image, and were all
set Lo output the image to a run-length encoded file. They
thercfore have basically the same output method. They
were set to output a 512x512 image of 8 bit each of red,
green and bluc pixels.

3. Scene Characteristics

In order 1 isolate only a few variable, we decided to keep
the number of modelling primitives constant for each
serics of scenes. In the first series, we distributed 40 cubes
(6 faces each) roughly uniformly over the window. The
spacing was chosen so that there was little overlap

Graphics Interface 86

between cubes. Then for the subsequent scences the cubes
were lincarly doubled around their centres so that the
depth complexity, the average arca of the polygons and
the number of covered pixels all increased regularly.

In the second series, we designed a "glass™ made of a 6 by
6 array of B-splinc patches, and made three copics of it.
There are thercfore 3 primitives if primitives are control
point networks, but 108 primitives if cach patch is con-
sidered a primitive. The level of subdivision was sct at 2,
4, 8 and 16 scgments o a side. In this series the depth
complexity and the wtal number of pixel covered is practi-
cally constant. The number ol geomcetric  primitives
increases and the average size of cach decreases to keep
the product almost constant. Table 1 and 2 gives the main
numbers for each series. Figures 1 to 3 and 4 to 6 are line
drawings of the first six scenes.

The statistics given here were chosen to indicate the com-
plexity of the scene. The depth complexity is the average
number of object in one pixel, and will allow to gauge the
efficiency of visibility determination and of shading. The
average area of the polygons, computed analytically from
the screen coordinates of the vertices, will help in deter-
mining the "polygon set-up time" vs the cost of pixel cal-
culations. A pixel is deemed covered by a polygon if its
center is inside the polygon. For the scenes used here the
last two numbers are almost equal, but as the polygons
become thinner, the difference can become important.
Other statistics which are not included here can also be
important. The number of edges, and the number of pixels
containing cdges is an example. In further studics about
the role of filtering and antialiasing, we will have to con-
sider them, as well as distinguish between silhouctte edges
and internal edges. If the scenes are used to test parallel
algorithms, the distribution of the primitives in space, and
their aspect ratio should be taken into account.

V1 V2 V3 \Z
Modelling
Patches 108 108 108 108
Gceometric
Triangles 804 3744 15552 63360
flective
Triangles 864 3744 15552 63358
Average Depth 0.01 0.59 0.59 0.59
Avcerage Pixcls
Covered 185 4] 9 2
Average Arca 185 41 10 2.4

Table 2. Scene characteristics for B-splines

The scenes were all lit by three local light sources. The
ilumination model used was the same across systems,
being the Lambert cosine law for the polygons, and Phong
ilumination model for the patches, with a shinyness of 50.
The backlacing polygons were not culled. and  cevery
polygon was uniformly shaded (no Gouraud shading).
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Figure 1. Scene Pl

Figure 2. Scene P2
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Figure 3. Scene P3
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Figure 4. Scene V1

Figure 5. Scene V2

Figure 6. Scene V3
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4. Hardware and operating system characteristics

All three systems were run on a Celerity C1200 with 4MB
of main memory and three 120 MB disks2. The processor
also has a 64K cache. The operating system was Unix
version 4.2 BSD. The three systems were compiled with
the standard C compiler, using the profiling, optimization
and hardware floating point options. The only difference
was that RC had to use the option which prevents single
floats to be cast into double, and the other two could not
be run with that option. It is one more reason to be cau-
tious about any comparison of the absolute times.

5. Results

Each of the seven scenes were displayed S times (RC, RC
antialiased, DB, WS, WS antialiased). The last two scenes
did not run with WS, because the allocated memory was
not big enough. In the interest of brevity, we will only
give two tables and three plots. ‘

The time directly spent on 170 was not included in the
tables, but is fairly constant for cach system across scenes.
The first thing to note is that modclling plays no role in
the first series of scenes, and the geometric transformations
play little role. The dominant factors are shading and visi-
bility determinations. In fact shading takes from 20 to
more than 90% of the total time. The plots of Figures 7
and 8 show the times for visibility determination and shad-
ing for all five renderings as a function of the average
polygon coverage. The plot of Figure 7 shows that the
cost of visibility determination continues o climb briskly
for the ray-caster even in the 5000 polygon range. It is
clear from the plot of Figure 8 that DB pays the price for
shading many non-visible areas as the depth complexity
increases. Since all the other systems tend to flatten out as
the depth complexity increases, the depth-buffer is the
worse from the middle of the range explored here.

Figure 9 gives the plot of the tmes for visibility determi-
nation and shading for RC, RCa and DB. The main
leatures of the statistics for the scries of patch scenes are
that while shading is still an important factor, the visibility
determination becomes more important for the non ray-
casting systems as the polygons get smaller, In fact, as
expected, the RC and RCa are relatively insensitive to the
size of the polygons, especially for the shading. The
growth of the cost of visibility determination is less than
could have been expected. In fact the ray-caster is a
winner from around 5000 triangles (remember the warning
against taking these absolute numbers too seriously). For
the first time the cost of modelling begins to be felt, in
particular for RC in scene V4. But it should be stressed
that we are using fairly simple primitives here. It should
also be kept in mind though that sooner or later the
storage requirements will hinder RC, and they prevented
us to run WS and WSa on the last two scenes.

2. Al the profiling was done an one disk 90% full.

T Unix s atrademark of AT& T Bell aboratories
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6. Conclusions

These results are only a small sample of the profiling done
so far. We tried here to define two series of scenes and
choose three renderers so that the number ol independent
variables was relatively small. Most numbers confirmed
our prejudices.  Renderers using depth buflers do poorly
when the depth complexity increases (here it had prob-
lems above 2) and ray-casters do well when the polygons
become small. They confirmed that shading is a large part
ol the cost of the rendering, and it is therelore important
to help with efficient routines and specialized hardware. 1t
is important 0 note that DB and WS spend 10% or more
of their time doing vector normalization. The computer
used has hardware square root, so it was not as much a
factor as it usually is in that type of programs.

The data for antialiasing is also mainly indicative. For
both RC and WS antialiasing about doubles the cost and
the increase comes mainly from more shading computa-
tions. We did not study here the relative cost of different
ilumination maodcls and shading techniques, but we will
do so as part of this study. Considering the high cost of
shading, it has a significant impact on the wtal cost.

This brings up the issue of the quality of the picture. Of
course most of these costs are assumed in the belief that a
better picture will ensuc. Our test pictures were as identi-
cal as we could expect. and therefore are not much help in
this respect. We plan o complete a similar study  with
complex objects that have been modelled for other pur-
poses with shophisticated shading and up w0 several hun-
dred thousand polygons.  Then  the  picture  quality,
especially as it relates to antialiasing will have to be
judged subjectively.
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/ RC
4 L
Times RC % |RCa % |DB % |[WS % |WSa % /
Pl '
Total 152 100 | 409 100 | 181 100 | 120 100 | 234 100
Geometry 6 3 6 1 2 1 2 1 2 0 §
Visibility 81 53 | 292 71 5 2 11 9 3 14 ' s
Shading 50 32 96 23 | 167 92 | 103 85 | 194 82 //
P2 // _
Totl 346 100 | 624 100 | 542 100 | 292 100 | 497 100 / -
[ —
Geometry 12 3 12 1 2 0 2 0 2 0 A ——1] =
Visibility 184 53 | 409 65 8 1 21 7 13 14 “x= 5000 0 -y- 500
Shading 135 39 188 30 [529 97|25 90 | 418 84 |Figure 7. Visibility determination vs polygon coverage
P3
Total 614 100 | 794 100 | 964 100 | 365 100 | 645 100
Geometry 32 5 33 4 2 0 2 0 2 0 5
Visibility | 403 65 | S68 71 8 0 43 11| 160 24 /
Shading 164 26| 178 22 (950 98 | 316 86 | 4177 73
Table 3. Some statistics for the polygon scenes //
Times RC % |RCa % | DB % | WS % | WSa % /
vl e
Total 156 100 | 307 100 | 176 100 | 166 100 | 338 100 /r—"‘"’"'
Modeclling 1 0 1 0 1 0 1 0 1 0 -
Gceometry 6 3 6 1 0.2 0 0.2 0 0.2 0 ' | 1
Visibility 79 50 | 215 70 12 6 36 21 | 102 30 /‘_——
Shading 63 40 77 25 | 162 92 | 129 77 | 235 69 / - e
//—'——‘
V2 |
Total 168 100 [ 320 100 | 204 100 | 240 100 | 538 100
Modelling 4 2 3 0 2 0 2 0 2 g| “F=sen BoEI
Geometry | 105 9 2] 02 0| 02 0| 02 0 Figure 8. Shading vs polygon coverage
Visibility 85 50 | 223 69 27 13 | 103 42 | 249 46
Shading 62 36 73 22 | 175 85 | 134 55 | 286 53
V3
Total 213 100 | 378 100 | 287 100 -
Modclling | 13 6| 13 3 55 1 = A
Gceometry 33 15 33 0.2 0 = e
Visibility 98 46 | 249 65 | 84 29 - /
Shading 62 29 74 19 | 19 68 - o
V4 /
Total 376 100 | 591 100 | 574 100 -
Modclling 46 12 45 7 23 4 - - -
Geometry | 121 32| 122 20 0.2 0 s
Visibility | 136 36 | 336 56 | 303 52 - - =
Shading | 63 16| 78 13 |247 43| - — |
Table 4. Some statistics for the patch scenes . iy
0% B0 0 - 400
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Figure 9. Visibility and shading vs subdivision
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