
- 91 -

DESIGN and EXPERIENCE
with a

GENERALIZED RASTER TOOLKIT

Alan W . Paeth and Kellogg S. Booth

Computer Graphics Laboratory, Department of Computer Science
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Tel: (519) 888-4534, E-Mail: A WPaeth%watCGL@Waterloo.CSNet

ABSTRACT

Raster manipulation software is often viewed as an ad
hoc means to fine-tune the appearance of digital
images , or as a means to reformat them to conform to
specific hardware requirements . A universally
accepted, machine readable, device-independent
specification of a raster image is seldom employed.
This stands in contrast to the variety of " standards" for
higher-level scene representation. We define a general
raster " type" , which unifies the design of a tool kit of
raster-based software. Operations performed by the
tools are closed in the sense that operators map objects
having the raster type onto new objects having the
raster type. This closure encourages a synthesis of
function by allowing composition of operators.
Sequences of these operators are surprisingly powerful
and have wide application .

Les logiciels de manipulation d'images " raster" sont
souvent consideres comme un moyen ad hoc
d'ameliorer l'apparence d'images digitales , ou comme
un moyen de les modifier de fac;on a ce qu'elles se
conforment a un appareil specifique. La representation
universelle d'une image "raster", ne dependant pas
d'une machine particuliere, est rarement utilisee; ce qui
contraste avec le grand nombre de normes qui existent
pour representer des images de plus haut niveau. Nous
definissons un type "raster" qui permet la creation
d'une serie d'outils operant sur celui-ci. Les outils en
question forment un ensemble ferme dans le sens qu' ils
operent sur des images de type " raster" pour produire
des images de type " raster". Cette fermeture perm et la
creation de fonctions par la simple juxtaposition
d'operateurs plus simple. Ces compositions de fonctions
se revelent etonnament puissantes et ont un vaste
domaine d 'applications .

Keywords: bitmap, digital compositing. imaging. raster .

Graphics Interface '86

INTRODUCTION

The ultimate goal of any software system should
be the creation of a harmonious set of tools in which
each tool embodies a conceptually simple operation.
This is true for the case of raster image manipulation ,
but such a set is not in widespread use. To have
generic utility, each tool must operate on an abstract
raster type. For instance, a " cropping" tool should trim
rasters regardless of their dimension or pixel attributes.
Additionally, the tool's output should be, in all cases, a
valid raster file so that tools may be composed
arbitrarily.

To achieve this , we define a universal file format
and implement general raster access routines. With
these, the creation and coding of each new tool is
p-eatly simplied, and the proliferation of disposable
software can be alleviated. This scenario is also a boon
to the user: generic tools imply a simple conceptual
model. In some cases, they even suggest new ways of
"plumbing" together raster operators. This approach is
appealing in an academic/research environment, where
creative experimentation is encouraged, but where
software maintenance remains on a tight budget.

This paper discusses the design and
implementation of a comprehensive raster manipulation
system, based on the raster file format, that has been
operational for over a year and is the mainstay of
raster-based activities within the Computer Graphics
Laboratory at the University of Waterloo. In that time,
it has completely subsumed the various ad hoc raster
file formats previously in use and has provided a
unifying framework for new research.

OVERVIEW

The tool kit contains programs to support abstract
operations (rotation and scaling) , as well as interfaces
to a number of hardware devices and software systems.
These include I/O tools for Adage/Ikonas and Raster
Technologies frame buffers , the ApplelMacintosh, and
Versatec and Imagen hardcopy printers. In this usual
setting, tools model the UNIX text/filter paradigm ,
whereby the output of anyone tool may be piped

Vision Interface '86

...

....

- 92 -

directly to the input of the next. This is particularly
important when intermediate raster files may be quite
large.

The tools are written in standard C , use no
assembly code or specialized C packages (such as yacc) ,
and have been ported successfully to machines with
different word length and severe compiler restrictions.
Conditional compiler code is used to represent the
specifics of byte order. This allows the system to
maintain both a uniform presentation of data for the
low-level tool builder and an identical external
representation (as a byte stream) for disk files .

Most users are not tool writers , but use the raster
tools freely in a conceptual fashion. An artist working
on the Macintosh might print bitmap files on the
Imagen laser printer, or use them as picture input for
the comprehensive Orcatech-based Palette HHigg8Sll
colour painting system. Here the user may disregard
the different pixel precisions, (lack of) colour, or
machine word-lengths, all of which differ for each
hardware system. Because the file format has been
designed carefully , it has become the format for
exchange as well as for archival storage.

We begin by identifying and evaluating the design
criteria first for the underlying raster format , then for
tools. The paper concludes by demonstrating the
synthesis of a new function (digital half toning) through
application of the atomic tools.

BACKGROUND

The widespread availability of digital raster
devices has spawned a large progeny of "raster
formats", often with no unifying design principles. It is
not uncommon for a format to represent a digital
" dump" (on external media) , patterned after a device's
(or program's) internal data structures. It can be
argued that this raster format is finely tuned to the
hardware characteristics of its respective device, with
subsequent advantages in terms of run-time efficiency .

Our findings do not support this argument.
Rather than allowing the specifics and availability of
hardware or software to drive our choice of design , we
make an a priori raster file design , and then argue its
advantages. We begin by identifying useful design
criteria for both the file format and for the general
software system in which it is employed.

In contrast to some proposed formats, our design
philosophy has been toward a universal file format
which is " moderate" in providing sufficient attributes to
model any display device, but without any unnecessary
or redundant file attributes: it is minimal. This
philosophy encourages the construction of tools which
embody raster functions in as abstract a setting as
possible . As a direct consequence, tools which deal
with only a subset of valid raster files will not exist.
This approach is a major departure from many other
raster systems.

Graphics Interface '86

DESIGN OF THE FILE FORMAT

Raster Specification and Operation

No raster specification is present that might be
<Imbiguously interpreted as a raster operation. Thus,
" width" and "height" are essential raster specifiers;
raster " orientation" is not, because the raster rotation
function exists as a tool, and thus is not (by design) a
~pecification. As a consequence, the raster rotation
code belongs to a single tool, which aids in software
maintenance. This model frees the user from the
dilemma over choice of representation and tool
<Ipplication. In previous systems, a custom tool (e.g ., a
laser output tool) might accept rasters of only a specific
()rientation, based on speed considerations.
Alternately, that output tool might provide a high-speed
implementation of rotation independent of a raster
:rotation tool. In the first case, the user is left with a
question of specification to guarantee operation of the
printing tool. In the second, the locus of code which
provides raster rotation is not well defined.

Some scene representation languages take the
opposite extreme. Functional specification is allowed in
the most general sense. Here " tools" don't exist per se;
their function is present in the interpreter which reads a
fIle . An example is the Xerox Interpress standard
~ Spr081n. Here the general implementation of the file
format on a printer implies the existence of supp<>rting
code to perform rotation. renderine and all other
operatiooa potentiaUy specified by the document.
Because this interpreter is monolithic, operations are
not free-standing programs. Thus, integration of new
software is difficult for a diverse software community.

In our experimental setting, we do not advocate
that our raster file allow for "programming" in this
sense: we envision situations where one function might
be applied to many sets of data, and vice versa. Non
radical manipulation of rasters capitalizes heavily on
this separation, and we insist on it. In our setting, our
well-defined files embody the raster data, and a toolkit
of machine-executable files (or UNIX shell scripts)
embodies the raster operations.

Pixel Specification

The format provides for the formal specification
of a pixel , which allows generic tools (such as crop or
rotate) to operate on arbitrary data sets , with
independence both from raster dimension and pixel
specification. The importance of this should not be
underestimated. Historically , formats <I11ow for a
maximum of three .or four pixel components (often not
even within the same file, but as " separates") . Pixel
precision is usually taken from a small set, such as one,
eight, and twelve bits . Experience has shown that it is
impossible to predict a priori what or how many
attributes comprise a pixel - new models are not to be
discouraged. Besides the obvious RGB colour
components, traditional data sources often carry multi-

Vision Interface '86

- 93 -

spectral data or Z-depth information. The last few
years have brought "alpha" coverage factors and sub
pixel masks to the forefront.

For instance, the Orcatech-based Palette system
treats pixels as a sixty-four bit quantity, by encoding
both foreground and background primary colour
information, plus other parameters including masking
and transparency, thus modeling artist's use of paint.
Our format embraces this experimental system easily.
It is worth noting that the system has both a different
word length and integer byte order than the original
V AX implementation , but this is entirely invisible to
the tool creator. Images created by Palette may be
moved using standard tools (UUCP) to the V AX and
rendered on V AX-based graphics engines.

Syntactically, we define pixels as collections of
"fields", used to identify the components , in a manner
analogous to the record structure type in languages such
as Pascal. The pixel attribute is recorded in the file
header as a text string. Pixel components consist of an
alphabetic identifier and an associated integer which
defines the field precision (up to thirty-two bits per
component). The identifier is occasionally used
externally to specify pixel components to certain
software tools. For example, lmextract merges and
extracts pixel components from multiple input files into
an output raster, based on the user-specified field set.
The precision compopent is rarely presented to software
tools. as the low-level routines allow correct arithmetic
operation across ftles of differing pixel precision (but
usually with conforming field names) . This is a
function unique to our package, and enhances general
compositing of files from diverse sources.

Interpretation of Pixel Data

The interpretation of the data fields is at the
user's discretion. In many cases, data is taken to span
the closed interval [0 . . lJ. This interval is closed
under multiplication and complementation. The low
level tools provide a data presentation level which
returns floating-point values for pixel components on
the range [0 . . lJ , so the actual field precisions can be
kept invisible. This interval is consistent with the
design of a number of colour spaces such as RGB,
CIELAB and HSB USmit78ll , in which the three
independent colour axes are placed within the interval
[0 . 0 . . 1.0J .

Unfortunately , many software tools in existence
wrongly (often implicitly) use the interval [0 .. 1) .
The latter follows directly when software employs bit
shifts to map between pixels with differing numbers of
significant bits. In that model , a one bit pixel image
(to take the worst case, albeit a very common one) ,
[0 .. 1) allows only the intensity values 0.0 and 0.5.
When taken to higher significance, the binary value . 1
becomes . l0. This system never allows "full-on" to be
represen ted.

Graphics Interface '86

A useful mapping has two important properties:
reconstruction and representation . Reconstruction
means that data can be mapped into any higher
precision, and when subsequently mapped back to the
original precision, reconstructs the original data exactly.
It is not hard to see that bit shifts are lossless operations
and therefore have this useful property. Representation
means that pixel data of lower precision can be mapped
to a system of higher precision, with the pixel values
mapping exactly onto identical intensity values . In
general, perfect representation is not possible when
moving to higher systems, but it can be achieved in
many cases, while providing reconstruction universally .

The proper approach regards the interval as being
of length 2D-1. In general , our mapping always
provides exact values for intensities o. 0 and 1. 0, so
our interval of representation is the closed interval
[0 .. 0 .. 1 . OJ. Note that binary (one bit) data in our
system represent 0.0 and 1 . 0 exactly. Adoption of
this system means replacing bit shifts (multiplies and
divides by 2m) by general multiplying and dividing.
This is not a severe speed penalty. In practice, a
scaling table can be constructed and a lookup operation
used to find the appropriate mapped value. Our
method also provides for reconstruction , because a scale
up of one bit provides 2n+l new bins, where n existed
before, and uniform distribution means that no two
values collide.

Exact representation is possible whenever
whenever m is a factor of D . To illustrate this , 4 is a
factor of 12, so we assert that four bit data has an
exact representation in a twelve bit system. To prove
that 24-1 is a factor of 212_1, express them as bit
streams: '111111111111' can be divided by ' 1111 '
glvmg '000100010001 ' , or 273. Thus,
4095=15*273, and the representation for white is still
exact. More generally, multiplying any value in the
four bit system by 273 yields exact representation in the
twelve bit system.

Textual Header

Another departure from many "standard" raster
file formats is the exclusive use of case-independent,
human-readable text within the header. The use of
small "binary" headers with magic word values is still
common. . Yet in raster files, the header typically
constitutes less than 1 % of the total storage. The
advantage we gain is a parser made common to all user
software (and thus is part of the low-level raster
primitives) . Because our header is minimal , this is a
simple task . Direct viewing of the attributes of a file
means merely viewing the first few lines of it - no
special tool is used.

Beca use both
represented by a
independence) , we
specifica tions to the

the header and raster data are
byte stream (giving machine
mandate that no " alignment"
raster be made - the physical

Vision Interface '86

- 94 -

raster immediately follows the textual header.
Experimentation with UNIX-based systems indicates
.that non-alignment to disk boundaries makes almost no
difference to software throughput, particularly where
the blocking size on disk transfers is large.

The representation of our header data structure in
human-readable ASCII text is a trend increasingly
common in good software practice. The design of the
highly-successful CIF2.0 by Sproull and Lyon [Hon80D
as a VLSI exchange format mandated use of ASCII to
allow electronic mailing of design geometries. The
format has gained widespread acceptance outside this
realm, as it can be implemented easily on machines of
differing character representations and word precisions.
Sproull previously designed the Xerox AIS [Baud77D
raster format (replete with binary header information),
and now argues convincingly [Spr083ll that this trend
toward textual representation should be universally
adopted , even where the need for exchange is of
secondary importance.

Compact Representation

Archival storage of raster images relies on data
compaction. Because we desire a universal format
requiring no explicit (de) compression steps , our basic
format must provide for compression as part of the pixe!
specification, and implement this operation as part of
the basic access routines.

After two attempts at general data compression,
we chose a " compaction" operation, which operates on
a level beneath pixel specification, and immediately
above the level of physical data movement to external
media . Our compaction scheme is a general run length
coder , which replaces identical runs of n bytes with n+l
bytes of code, representing the original run, plus a
count in the range [1 .. 256]. We choose the term
" compaction" over "compression", as the operation
may take place without regard to pixel boundaries.
Early experiments indicate this may have value where
images containing data that is cyclic across a scan-line
(halftoned images, stipple patterns) are to be encoded.
The compression size can then be set to span a
collection of adjacent pixels .

General and Special Cases

The raster proper is encoded in a manner which
maximizes speed of raster (un)packing by aligning pixel
groups onto regular boundaries. Although the specifics
are detailed , this underlying code guarantees packing
efficiencies of more than 84% for pixel sizes up to 12
bits, approaching 100% for arbitrarily large pixels. This
design choice minimizes overhead in the data extraction
loop, as the shift and mask values are constant over the
data set.

Graphics Interface '86

The criteria set forth above allow "special cases"
to fall out directly from the more general specification,
without soecial caveats being coded in. This is
intentional. For instance, the external representation of
an 640x480 size raster of twenty-four bit RGB pixe!
values is quite simple: a textual header, followed by
640*480*3 bytes of data , arranged in R,G ,B order, by
scan-line, without any padding . Although we don't
advocate that tools write rasters independently of the
low-level software which defines the header
specification, it does indicate the simplicity and
generality of our approach. For instance, a videotex
station could dump out a hard-coded header string,
followed by a byte dump of its screen contents thus
creating a well-formed " cannonical" raster format file_

TOOL DESIGN

General Philosophy

Brooks' findings [Br007Sll show that as a rule a
long-lived systems consist of software which outlives the
intention of its original use. Because we cannot
anticipate the user's ultimate needs or goals with the
raster tools, we should choose to craft each tool into an
atomic , composable function with no implicit
assumptions of the user's intentions. From this
"metaobjective", a number of practical considerations
immediately become clear.

ConsUtency of Design

Overall design consistency leads to tremendous
ease of use for both implementor and user. In
particular, the time spent in learning the tools used for
simple operations becomes proportional to the user's
objectives; what little " start-up overhead" exists is
common to all tools , and need not be relearned:
Similarly, the tool designer can fashion a new tool
based on the existing package, thus implicitly inheriting
uniformity of the user interface (such as commonly
used command line switches) and operation.

As an example of consistency , all software tools
dealing with the concept of an axis-aligned rectangle
specify this entity in terms of origin and size, not as
diagonally opposed corners . In contrast , corner-based
specifications leave the ambiguity of semi-open intervals
for the user to resolve . For instance, the corner
specification model might describe a 512x512 display
as spanning the region (0,0) to (511,511) , whereas
our model describes the display as a window of size
(512,512) with origin location (0,0)_ Thus, we
remove the burden of potential "off by one" errors; in
fact the casual user will probably be unaware that any
ambiguity could exist. This " correctness by design" is
a ... ery powerful concept in implicitly steering the user
along a correct path of conceptualization.

Vision Interface '86

- 95 -

Minimal Atomic Set

The tools are atomic, composable functions which
deal with raster data in the most abstract way
conceivable for each respective function . They strongly
resemble Guibas's concept of a bit map calculus
UGuib82ll with the accompanying language MUMBLE.
Our implementation provides for pixels of arbitrary
precision, as do his; our " language" consists of UNIX
commands in which tools play the part of keywords to
perform manipulations on the data . A compiler for a
large subset of MUMBLE using the toolkit as "machine
code" would be a straightforward exercise.

Just as computer languages advocate a small
number of composable keyword constructs, we
encourage the user to synthesize function from tools
already within the kit. When this fails, he should seek
the most general tool necessary to extend the coverage
of the tool set to contain this specific operation. Besides
allowing for a new function with the least amount of
new software, a minimal addition to the toolkit can be
very revealing to the deep structure of the problem.

THE TOOLS

Although space does not permit a description of
each tool , we may summarize the operation of the
toolkit. It is useful to characterize classes of tools by
common operation. These form our taxonomy.

Storage CoIUidentiOlll

Because tools are composable, they operate on
data presented serially . However, some tools require
internal raster storage to perform their intended
operation. We classify these as " level 0" (constant
pixel storage needed) , "level I" (constant scan line
storage needed), and " level 2" (arbitrary storage). In
each case, these are worst-case raster storage
requirements. A generous number of tools belong to
classes 0 and 1. Sequences of operators may therefore
manipulate images on secondary storage whose size
exceeds system main memory.

Input/Output Characterization

Because tools are operators, we may classify them
as "unary", "binary" or "tertiary" tools, based on the
number of simultaneous inputs used. Two additional
classes: " source" and " drain" represent tools which
interface between the toolkit universe and some other
means of representation. These include display output
tools , text input tools and pattern generators. With the
exception of drain tools (these typically render images) ,
a tool will have one " standard" output in the form of a
universal image file. This class characterization is
formally specified in the source code of each software
tool , thereby activating library routines common to all
tools within this class . Such code governs the number
of expected input files and enables command line
switches generic to that class.

Graphics Interface '86

Other Characterizations

A final characterization is whether a tool
preserves pixel integrity. Most tools do, and this is
important when a tool is used to manipulate non
intensity pixel fields, particularly when the tool is used
in settings far removed from traditional imaging
applications. Cropping can be performed on data which
contains Z (depth) information, but a low-pass filtering
of such data is not intuitive because the latter does not
preserve pixel integrity. At present, few tools which
violate pixel atomicity exist. Pixel-preserving functions
fit in well with our design philosophy of generic tools.

TOOLS BY EXAMPLE - HALFTONING

The following examples demonstrate a series of
experiments used to perform digital half toning (the
creation of bi-level images) from high resolution
sources. The presentation is an idealized "lab session",
but it is also a recapitulation of the historical
development of the tools.

Experiment #1 - Plate #1

We begin by half toning through simple
thresholding. We envision thresholding as a binary tool
which does a test for magnitude of its two inputs. The
source tool lmconst. is used to provide a reference
level for the secondary input. Generally , thresholding
can be modeled &I a subtract operation, with a
subsequent test to map x>O values into white, else
black. This last function already exists as lmt.omask.
We thus perform the test a>b as (a-b) >0 stepwise on
the image file containing a " milkdrop":

lmconst -d ml1kdrop.lm -v 128 I
lmsubtract ml1kdrop I lmtomask >out

Experiment #2 - Plate #2

Thresholding to a uniform, constant value
produces poor (as expected) images, so we write a
program lmhalft.one to do ordered dithering,
comparing input pixels against a cyclic, periodic set of
dynamic threshold points to vary the thresholding
ffJarv76ll . The program is not clean: the 4x4 matrix of
threshold weights is hard coded, and the software must
permute the array internally to conform to the arbitrary
widths and heights of the input file .

lmhalftone ml1kdrop . lm >out

Experiment #3

The halftone results look good, but we need
avenues of further exploration. The permuted internal
weight table replication code is in fact a "tile"
operation first conceived for use with much larger
images. We write lmt.l1e. As a bonus, the tiler is
fast , and includes offset switches to be fully general.
These correspond to phase shifts in the half toning dot, a
desirable feature in colour digital half toning , in which

Vision Interface '86

- 96 -

halftone screeDl fex succeuive colour separations are
staggered with respect to previous screens. The
threshold table is now recoded as the file kernel . lm.

Imtlle kernel . lm -w 128 -h 128 I
lmsubtract mllkdrop I lmtomask >out

Experiment #4

The 4x4 kernel , now represented as kernel . 1111
in Experiment #3 was cumbersome to make. We had
also planned software which would to do a "text dump"
of raster files ; here we wish to do the opposite: convert
the "dump" into a raster representation. Realizing that
the scope of this software is more than merely one of
diagnostic service, we write both lmtabln and
lmtabout. The hard coded ASCII constants of
lmhalftone have now found a niche. One can
envision a standard tool sequence (e.g. a UNIX shell
script) to halftone arbitrary images against a textually
encoded table of weights.

Imtabln -w
240 176

96 16
160 32
192 112
-0

4 -h 4 -p
80 208
48 128
o 64

144 224

n8 >kernel . lm

Experiment #5 - Plate #3

The typing 0(constants in Experiment #4
suggests a mechanized means to generate random
numbers , and we are curious to see the appearance of
such output. The creation of an array of random
numbers (not specific to halftoning) is all that is
needed: the other code is already in place. We rewrite
of copy of lmconst which substitutes random values
for constants. The -default switch in our example
borrows the dimensions and pixel specification of
ml1kdrop .1m, so that lmrandom can produce
conforming output. The output shows superimposed
high-frequency noise URobe62ll , resembling the grain in
film emulsions " pushed" too far during development.

lmrandom -d mllkdrop I
Imsubtract mllkdrop I lmtomask >out

Experiment #fJ - Plate #4

The results inspire the use of a thresholds with
Gaussian distribution. We recall that the "coin
tossing" method [Kalb79ll generates such sets by
averaging small sequences of evenly distributed
numbers. This requires binary operators other than
subtract (such as average and sum) , so we extend the
scope of lmsubtract. The tool is renamed lmaop
because it now allows for arbitrary arithmetic operations
from two input sources. We also rediscover that
rerunning lmrandom generates identical values , so we
employ lmcrop to give us a set of different random
numbers.

Graphic. Interface '86

1.rando. -d .11kdrop -h 512 >m~.t.r
1acrop master -1 0 -h 128 >ml
1.crop master -1 128 -h 128 >m2
1acrap master -1 256 -h 128 >m3
1acrop master -1 384 -h 128 >m4
1aaop ml m2 -op aver >tl
1aaop m3 m4 -op aver >t2
1aaop tl t2 -op aver >gauss
1aaop ml1kdrop gauss -op sub I Imtomask >out

Experiment #7

The brevity of most command lines is pleasing,
but lmtomask is ever-present. Because it is a unary
operator immediately following lmaop in each case, we
e][tend lmaop to include a thresh function. The
code integration is trivial: three additional lines and a
new switch statement label. As a bonus , the
thresholding works "automatically" for colour files - a
feature unanticipated at the outset. Thus, illhLlftone
has now been made obsolete. '

1maop m1lkdrop gauss -op thresh >out

CondusiOllS

The evolution of the imaging software
demonstrates a few important principles. For one,
generality of function aUowed ' a means to verify
hypotheses, without any programs having to be written .
As a clearer understanding of the desired goal
emerged, specific tools were crafted. For instance , we
created random numbers with Gaussian distribution by
a simple synthesis of operation, thus allowing the user a
glimpse into their properties. Should this become a
desirable feature to support in general, -gauss or
-seed switches may be added to lmrandom, but for
current applications this is unnecessary.

These examples show that when a new operation
is sought, it can often be melded into the function of a
tool in existence, thus widening th.e scope of operation
for the original tool. This creates a tremendous synergy
of function. By studying why more than one path
toward a goal exists, we can botll pare down what
constitutes a minimal set, and simultaneously get new
insights into the deep structure of the problem.

Acknowledgements

The complete raster toolk:.it has been d istributed
on a limited basis to a number of installations. A more
formal release is in preparation , pending the completion
of a comprehensive technical report.

The authors wish to thank the many members of
the Computer Graphics Laboratory wh.o commented on
this research , especially Michael W. Herman with
whom many discussions were held during the
preliminary stages of the design . The research reported
here was supported by the Natural Sciences and
Engineering Research Council of Canada under a
variety of grants . The first author was partially
supported by a University of Waterloo bursary.

VI.lon Interface '86

- 97 -

REFERENCES

[Baud77U Baudelaire, P., Israel , J., Sproull, R.

[Bro075U

"Array of Intensity Samples - AIS" Xerox
PARC Internal Report, February 1977
(Rev. by K. Knox, 1980)

Brooks, F . P. Jr. The Mythical Man-Month
- Essays on Software Engineering Addison
Wesley , Reading, MA (1975) pp. 120.

[Floy75U Floyd, R. W., Steinberg, L. " An Adaptive
Algorithm for Spatial Gray Scale" Society
Inf. Displays Int. Symp. Digest of Technical
Papers (1975) pp. 36.

[Guib82U Guibas, L., Stolfi, J. A Language for
Bitmap Manipulation" ACM Transactions
on Graphics 1(3) July 1982, pp. 191-214.

[Higg85U Higgins, T. M. "A Cel-Based Model for
Paint Systems" Master's Thesis, Universi ty
of Waterloo, Waterloo Ontario, May, 1986

[Hon80U

[Jarv76U

[Kalb79U

[Robe62U

[Smit78U

[Spr081U

rrSpr083U

Hon, R. W. , Sequin, C. H . " A Guide to
LSI Implementation" Xerox PARC
Bluebook SSL-79-7 (2nd edition January
1980).

Jarvis, J. F., Judice, N., Ninke, W. H.
"A Survey of Techniques for the Display of
Continuous Tone Pictures on Bilevel
Displays" Computer Graphics and Image
Processing 5(1) March 1976, pp. 13-40.

Kalbfleish , J . G. Probability and Statistical
Inference (Vol I), Springer-Verlag 1979 ,
Sec 6.7 pp. 234-239.

Roberts, L. G . " Picture Coding using
Pseudo-Random Noise" IRE Trans . Info .
Theory IT-8 (February 1962) pp. 145.

Smith, A . R . " Color Gamut Transform
Pairs" ACM Computer Graphics
(SIGGRAPH '78) 12(3), August 1978, pp.
12-19.

Sproull, R . F. , Lampson, R ., Warnock, J.,
Reid, B. "Interpress: A Standard for
Communicating and Storing Print
Graphics" Xerox PARC Private Document
ISL-81-1 (Subsequently released and made
available by Xerox Corp).

Sproull, R. F. Private Communication ,
Xerox PARC, May , 1983.

Graphics Interface '86

PLATES

1. Simple Threshold

3. Linear Random

5. [Floy75U Diffusion

r
, .. ""'") iro. ' .. ~. I .• "..,...

-Arn, all-...ily So"P'- - AIS"X_
rAAC I_I 11.-,. F""-J 1'"
(Rc-o . ~It.K_ . I_)

r-lSj _ . F. P. Jf, "'""", M_N_
-£ __ ~E"",-..... Add""

... -,,11._ • . MA 0",' 1:tO.

{PIo,15) """. R. W .• ~.LWA.""pIi ...
A~!of Sf*iool On , Sa"- s.r~
1.,. ~'-C. ", .. ,. ~dTIJdooIltaI
...... (lm)

lo..M21 Ollht, L. , SOft, •. A Loo.,. .. ,..
.... , WattipoLo"- ACIt T __

_ ~. kJlNy 1'Nl, pp. '''-21t .

fHiulSJ HI T . W. - A Cd-... WooId b
.... .cSy_- W'O_ .• n..iI.~
oIW-.W Oa .. rio.~ , I ...

~I _ . JI. ~ •. CH. -AO
LSI lIII ... _ .. _- x_ '''l'iC 11_ aa,.,.., (hd __ ~

"." 1100,.,.) J. P.,)Ma, N., Ni.., H .
- A ,..,...., .. T...-.- OoIIofMI .. eo.a- Tc- I"IQw., _

~- C_ a..,Mu .. ,_
1'_ 11_1"', ... 1).«).

~.,.I ltalllAe/lllt.. I . O . ' '-'' _~ __
1""".,,,(Vol ll, ~·Veriat l"',
$oo:upp.z.w·m .

l.......ul La. ~ CatIoot -.
........ R N_~ 11l~ T,_ . ""..
,..,....,1T~(F_.,I96lI ... I..,.

1s.lI1.P s.iIIrI. A. R. ""CcIat 0 . .. ", Tno ___
"" .. ~ ACII C-,-, 0
tSlOORAPH·7tj utJl, A...-Im, Pr.
IZ-I'.

1"""1) "..,... , Il. F., Lo It ., w • .-, •. J ••
Raot ... ~I .. ~ A SIooodanl for c--.......... _ SI PriM
on,pWn" x AJr.e 0.:..-L5l.-&1.I (SIo,. __ ._

..,x_c-.!.

1"..,1 ~. Jr.. F. '"- C_ .
X-.AJr.e , . ItS).

L

2. Ordered Dithering

4. Gaussian Random

6. Typical 6x6 Dot

~:r_
L ~ l.a.....IOi--'

m·,·"" , C!' b'~"" l ~"'" :-I%:'tj. " "
' .

l.u.......... 40._a_

• -"[floJ<II~

7. Example of General Composition

Vision Interface '86

