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ABSTRACT 

Anum ber of spectral modeling approaches in the engineering 
and estimation lit.erature are potentially applicable to stochas­
. ic synthesis in computer graphics. Two specific approaches 
are developed. The orthogonality principle of estimation 
theory is used to derive a stochastic subdivision construction 
with specified autocorrelation and spectrum properties; this 
approach also provides an alternative theoretical basis for the 
popular fractal subdivision algorithms. A shaped Poisson 
point process is a second approach which conver:iently 
separates the spectral and graphic modeling problems. Syn­
thetic textures and terrains are presented as a means of visu­
ally evaluating the constructed noises . 

KEYWORDS: stochastic models, texture synthesis, fractals , 
terrain modeling. 

RESUME 

Les methodes de modclisation spectrales empruntees aux sci­
ences de l'ingenieur, ou derivees de la theorie de l'estimation 
peuvent etre appliquees a la synthese stochastique dans le 
champ de l'informatique graphique. Deux points de vues sont 
presentes dans cette communication. A partir du principe 
d 'ortbogonalite de la theorie de l'estimation on peut deriver 
une methode de subdivision stochastique possedant certaines 
specifications d 'autocorre1ation et proprietes spectrales; cette 
approche fournit aussi une base theorique nouvelle pour la con­
struction d 'algorithmes de subdivision fractale . Un processus 
utilisant un filtrage de l'impulsion de Poisson fournit une 
deuxieme approche, qui perm et de determiner une separation 
claire des problemes de nature spectrale de ceux lies a la 
modelisat ion graphique . Les textures sy ntbetiques et les 
modeles de terrains presentes perm ettent d 'evaluer visuelle­
ment les bruits ainsi generes. 

MOTS CLEFS: ~1odeles stocbastiques, Textures synt betiques, 
fr acta l, modelisation de terrain. 
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1. Introduction 

Stochastic techniques have assumed a prominent role in 
the synthesis of complex and naturalistic imagery, for 
example, [1][2][3][4][5][6][7] . This role has been termed 
amplification [5] : the image modeler specifies a pseudo­
random procedure and its parameters; the procedure can 
then automatically generate the vast amount of detail 
necessary to create a realistically complex scene. The 
success of stochastic modeling depends both on its econ­
omy and on our ability to construct stochastic models to 
approximately emulate a variety of phenomena. The full 
power of stochastic modeling has not been achieved in 
existing techniques. For example, the widely-used sto­
chastic fractal t ec hniques model only spectra of the form 
f - d , and thus cannot describe phenomena with scale­
dependent detail or directional or oscillatory characteris­
tics . 

The problem of modeling a random process (" noise" ) 
with an arbitrary spectrum is well understood. Basically , 
the procedure is to filter an un correlated noise (as 
obtained from a random number generator) to obtain the 
desired spectrum. The spectrum of the filtered noise is 
simply the squared magnitude of the transfer function of 
the filt er. Using this synthesis procedure, many of the 
filt ering and spectral analysis approaches described in the 
literat ure are potentially applicable to the problem of sto­
chastic modeling in compu ter graphics. This paper 
adopts two approaches, optimal mean-square estimation 
and a shaped point process model , to produce stochastic 
sy nth esis algorithms which are computation ally suitable 
for computer graphics applications . . 

2. Generalized Stoc:hastic: St.bdivision 

The stochastic subdivision construction described by 
Fournier et. a l. [I] may be generalized to synthesize a 
noise with an arbitrary presc ribed spectrum (the 
generali zed subdivision technique is d eSc '-Jh~d in more 
detail in [8]). The basis of the Fournier et. al. construc­
t ion is a midpoint estimation problem: given two samples 
considered to be on the noise, a new sample midway 
between the two is estimated as the mean of the two 
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samples, plus a random deviation whose variance is the 
single noise parameter. The construction is based on two 
properties of fractional Gaussian noise: 

1) When the values of the noise at two points are known, 
the expected value of the noise midway between two 
known points is the average of the two values. 

2) The increments of fractional Gaussian noise are Gaus­
sian, with variance which depends on the lag and on the 
noise parameter. 

Since only the immediately neigh boring points are con­
sidered in making the midpoint estimation, the noise 
autocorrelation information is not used, and the con­
structed noise is Markovian. This is not a limitation as 
long as the construction is used as an approximate (sta­
tionary) model for Brownian motion. However, the con­
struction has been applied to the non-Markovian frac­
tional noises f - d, d:l=2 [9]; in these cases, disregarding 
the autocorrelation produces "creases". 

The general problem of estimating the value of a stochas­
tic process given knowledge of the process at other points 
is the subject of estimation theory and of the Wiener and 
Kalman filtering techniques [10] . The orthogonality prin­
ciple indicates that the mean-square error of a stationary 
linear estimator will be minimum when the error is 
orthogonal in expectation to the known values on the 
process . It is also known that when the estimated process 
is Gaussian (as in the case of fractional noises), the linear 
estimate is optimal in the sense of being identical to the 
best non linear estimate given the same number of obser­
vations [11][12]. Stochastic subdivision is specifically 
similar to the application of digital Wiener filtering in the 
linear-predictive coding (LPC) of speech [13], since in 
both of these applications points on a stochastic process 
are estimated , and then perturbed and re-used as "obser­
vations". 

In our case, the midpoint x at each stage in the construc­
tion will be estimated as a weighted sum of the noise 
values x known from the previous stages of the construc­
tion , in some practical neighborhood of size 2S: 

S 

xt +0.5 = ~ ak xt +k 
k-I-S 

(with t indexing the points known at the previous con­
struction stage). The estimated value xt +0.5 will form a 
new noise point with the addition of a random number oC 
known variance; the new points will in turn form some of 
the data in subsequent construction stages. 

The orthogonality principle then takes the form 

E{ Xt + m [xt +0.5 - t ak Xt +k ) } = 0 
k-I- S 

or 
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for l-S ~ m ~ S . Recalling that the expectation of 
Xt +i Xt + j is the value R (i - j) of the noise autocorrela­
tion (unction R (for a stationary noise) , we obtain the 
equation 

S 
R(m -0.5) = ~ akR(m - k) 

k -I- S 

which can be solved for the coefficients ak given R . The 
matrix R (m - k) is Toeplitz, permitting the use of 
efficient algorithms available for the inversion of these 
matrices, such as the Levinson recursion (14]. The 
mean-square estimation error 

S 
E{(x - x )2} = R (0) - ~ ak R (0.5-k) 

k-I- S 

is used to select the noise variance (and optionally the 
neighborhood size) at each construction stage [8]. Fig. 1 
illustrates successive stages in generalized subdivision to 
an oscillatory noise with an autocorrelation 
R(T) = COS(WT) exp(-T2). 

2.1. Subdivision in two dimensions 

The significant difference from the one-dimensional 
solution is that there are now several classes of points to 
be estimated, categorized by their spatial relationship to 
the points computed at previous subdivision levels (this 
depends on the selected interpolation mesh). For the 
planar quadrilateral mesh shown in Fig. 2 the mid-face 
vertex 'x ' will require different coefficients than the mid­
edge vertices '0' . For example, (using our coordinate sys­
tem with the midpoints "indexed" by 1/2) the midpoint 
coefficients are obtained by solving 

R (j -O.5,i - 0.5) 

S S 
~ ~ ar ,cR(j - r ,i - c) . 

r -I-S c -I- S 

. (or I- S ~ j , i ~ S. This equation can be considered as a 
system A x = b by rewriting R (y ,x ) and a,. c as vectors 
by a consistent ordering of the subscripts; the dimension 
oC the matrix A is now tae square of the neighborhood 
size 2S . 

2.2. Evaluation 

The generalized subdivision technique produces high­
quality noises with specified spectra and eli~iilates the 
creases associated with stochastic subdivision to non­
Markovian noises . It also shares the attractive properties 
of the stochastic subdivision construction [1], i.e., the 
consistency properties described in [1] including the abil­
ity to model a noise at different resolutions, and the abil­
ity to model regions of a noise in any order (a "non­
causal " property which is not available in Fourier syn­
thesis and other spectral synthesis approacbes) . When a 
separable Markovian autocorrelation function 
R (x ,y) = exp (- I x 1 )exp (- I y I) is specified, the gen­
eralized subdivision reduces to a Corm oC Cractal subdivi­
sion , in the sense that only the coefficients Cor the nearest 
neighbors oC an estimated midpoint are nOrJ.-zero. ·Subdi­
vision to non-Markovian spectra is computationally more 
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expensive due to the larger neighborhood sizes required . 
Fig. 3 shows several textures produced with the general­
ized subdivision technique and Figs. 4, 5 illustrate two 
height fields produced using this technique, displayed as 
synthetic terrains. 

Several limitations of the generalized subdivision tech­
nique are: 

One must know or invent the noise autocorrelation func­
tion. Since the autocorrelation function is the Fourier 
transform of the power spectrum (Wiener-Khinchine rela­
tion), and the latter must be non-negative, the autocorre­
lation function must be non-negative definite . Unless this 
constraint is well understood, it may be easier to design 
the power spectrum and obtain the autocorrelation by 
transformation, or to restrict one's choice to paradigmatic 
or empirically estimated autocorrelation functions. 

A second restriction of the generalized subdivision tech­
nique derives from the variable-resolution property of 
subdivision constructions. The identification of different 
stages in the construction with different resolutions is 
strictly incorrect. This can be seen from one point of 
view by considering the problem of obtaining a half­
resolution version of a given noise record . A half­
resolution noise which preserves the spectral content of 
the original up to the new, lower N··'lu ist rate is achieved 
by low-pass filtering, followed by Jropping every other 
sample ("decimation"). The half-resolution noise result­
ing from reducing the recursion level in a stochastic sub­
division construction is achieved by decimating without 
filtering. A half-resolution noise does not in general coin­
cide with every other sample of the original noise unless 
the latter has no detail at frequencies above half its 
Nyquist rate. Thus, any spectral energy above half the 
original Nyquist rate is aliased in changing the resolution 
through the subdivision const.~uction depth . 

Significantly, an aliased noise does not form coherent 
artifacts such as Moire patterns; rather, the noise at the 
lower resolution appears as a somewhat different noise 
than the original , so the subject may appear to "bubble" 
during a zoom. The aliasing is limited for noises with 
monotonically decreasing spectra such as fractal noises, 
since the majority of the spectral energy remains 
unaliased in any resolution change. However, serious 
anomalies may occur if the resolution of a noise whose 
spectrum is flat or increasing at some frequencies (as may 
be achieved with the generalized subdivision technique) is 
varied by changing the subdivision recursion depth . 

3. Shaped Point Process 

A second stochastic sy nth es is algorithm is su itable when 
samples of the desired noise are available. An analysis­
sy nth es is app roach would analyze the noise to determine 
parameters of a stochastic model, and then apply the 
model to generate a synthetic noise. If the only goal is to 
sy nth es ize the noise, however, a more direct approach is 
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feasible: the noise x is produced by a (discrete) convolu­
tion 

S 

Xt - E hk ut _k 
k--S 

of a un correlated noise U with the (windowed) noise sam­
ple h of size 2S +1, with h playing the role of a filter 
kernel. The autocorrelation of x is easily derived: 

R (T) = E{xt Xt +r} 

= E EEhk hm Ut - k Ut +r- m 
k m 

The noise U is stationary and uncorrelated so the expec­
tation of the factors Ut - k Ut +r- m is E{ U 2} c5( T+k - m ) , so 

( 1) 

The power spectrum of x is the Fourier transform of R. 
Since (1) is a convolution ht - h _t , its t.ransform is (by 
the convolution theorem [15]) 

S(w) = H(e iW)H(e -iw) = 1 H(e i w) 12 

so the spectrum of x is that of h (as expected). The 
spectrum of the noise sample h will in turn resemble that 
of the prototype noise if it is large enough to include any 
low-frequency components characteristic of the prototype 
and if it is windowed to reduce the effects of discontinui­
ties at the sample boundary. 

Convolution with a large noise sample is inefficient and 
the convolution would usually be implemented in the fre­
quency domain by FFT. Computational economy can 
also be achieved by replacing the noise U with a 'sparse 
noise' or particle system (sampled Poisson point process) 
U which is non-zero at a limited number of points under 
the sample h. The reduced convolution takes the form 

Xt = E uk h (t -tk ) (2) 
k 

where tk is the location of the k th non-zero point of the 
process, and the summation is now over these points 
rather than over h (a similar technique was described as 
one of the methods in [161 but its use as a general spec­
tral modeling approach was not fully developed there) . 
The autocorrelation and spectrum are unchanged pro­
vided the values of u are independent . This "shaped 
point process" resembles both shot noise (in which the 
noise u is defined to be a constant-amplitude Poisson 
impulse process) , and a generalized form of pulse ampli­
tude modulation reconstruction , which requires tk to be 
evenly spaced. 

3.1. Spectral and graphic mode ling 

The primary advantage of this algorithm is not efficiency, 
however, but that it suggests manipulating the point pro­
cess as an enti ty itself. For example, to produce a 'fluid 
texture' by animating the point prOCE:SS requires only 
updating the location of each point by a dynamic equa­
tion , whereas manipulating a uniformly sampled noise 
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field to the same effect requires computations more analo­
gous to those of a fluid flow problem on a uniform grid. 
Similarly , poin ts may be restricted to an area of the plane 
with conceptually simple algorithms such as Monte Carlo 
or an ad hoc placement procedure, whereas restricting a 
noise field requires scan converting the boundary of the 
region or a global windowing operation. 

The non-causal property of subdivision methods is 
achieved in a shaped point process using an appropriate 
(non-causal and consistent) construction of the point pro­
cess . A simple construction is to divide the noise domain 
into numbered cells and approximate the Poisson point 
process by N points in each cell, with the random 
number generator seeded by the cell number. The value 
of the shaped noise at a particular point is obtained by 
(2) summed over only the points in those cells which are 
closer than a radius the size of the kernel. 

The kernel h can also be manipulated independently of 
the point process . The spectral bandwidth of a shaped 

point process is entirely determined by the kernel. If the 
size of the kernel is small compared to the depth in a per­
spective view of a shaped point process noise, the noise 
can be accurately and efficiently anti-aliased by selecting 
appropriate precomputed bandlimited versions of the ker­
nel as a function of depth. The kernel can be varied as a 
function of the position of each point to produce a non­
stationary noise. For example, wind-blown clouds or ter­
rain ridges where the directional tendency varies ov·er the 
scene could be emulated by rotating the kernel as a func­
tion of position. This type of control is not directly 
available in most filtering techniques; e.g. it is achieved in 
a Fourier transform method only by breaking the noise 
into small overlapping stationary regions and interpolat­
ing the synthesis on these regions (overlap-add method 
for short-time Fourier transformation). 

Thus , a shaped point process provides a convenient 
separation between the spectral modeling problem 
(obtaining the kernel) and the graphic modeling problem 
of shaping the noise to form a subject. (A similar separa.­
tion occurs in 'waveform' speech synthesis: a kernel is 
used to model the formant (spectral) shape; it is con­
volved with a impulse sequence or noise representing the 
voice pitch and amplitude [17]). 

3.2. Evaluation 

The shaped point process is a simple means of approxi­
mately " resynthesizing" noises. The method also general­
izes directly to several dimensions . Fig. 6 shows the 
shaped point process resynthesis of several texture sam­
ples from the Brodatz album [18] . Resynthesis is of 
course more intuitive than specifying the parameters of a 
texture model , and it allows the generation of homogene­
ous noises of arbitrary extent. Periodic noises can be pro­
duced by altering the addressing in (2) to wrap around 
specified boundaries; this is a useful property in applica­
tions such as texture mapping. The shaped point process 
can also be applied with an analytically defined kernel; 
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the lower right plot in Fig. 6 is a perspective view of a 
wave-like texture created with a bjdPass kernel of the 
form R (x ,y) = cos (ox +/3y) exp(- x 2+y2). 

The textures in Fig. 6 also suggest the limitations of the 
shaped point process method, and er spectral methods in 
general. The phase spectrum in a spectral synthesis 
method is that of the driving noise, which is random. 
Thus spectral synthesis cannot produce a coherent-phase 
texture such as a brick wall pattern. In fact, given a step 
function for the kernel h , the shaped impulse process will 
result in a f - 2 noise -- the spectrum of the kernel IS 

reproduced but the visual appearance is quite different . 

The grey levels in a texture photograph reflect the illumi­
nation of the texture and may not directly correspond to 
'physical' properties of the texture such as color or relief 
depth. Thus , a texture synthesized from a photographic 
sample will reproduce the spectral character of the tex­
ture as illuminated rather than as we perceive it. One 
common effect is that sharp cast shadows produce discon­
tinuities in the texture kernel and so introduce f -2 noise 
into the synthesized texture. 

Unlike subdivision constructions , a shaped point process 
noise has definite inner and outer scales. The autocorre­
lation (1) is zero beyond the width of the kernel, so the 
noise is un correlated at scales larger than this width (this 
can be seen in Fig. 6 as the scale at which the textures 
become " blotchy") . The inner scale is of course the 
Nyquist rate determined by the (fixed) sample rate of the 
noise. The bandwidth available in a shaped point process 
is nevertheless considerably greater than that available in 
many artificial texturing methods (e.g. [19]) and is ade­
quate for many purposes, since a stochastic model will 
rarely be applicable over a very broad range of scales in 
any case. Also, some phenomena such as waves, fire , and 
bark which might be modeled by stochastic methods are 
often fairly smooth above and below a range of scales . 

4. Non-Gaussian Noises 

By a loose version of the central limit theorem, the pro­
bability density of a noise produced with spectral syn­
thesis will tend to be Gaussian regardless of the density 
of the driving noise, since the spectral shaping operation 
is effectively a linear filter or a weighted sum of the input 
noise values [15] . It is sometimes desirable to model 
non-Gaussian processes. For example, with respect to the 

uniform or normal distributions, a distribution such as 
exp(- I x I) has an increased number of 'events' far 
removed from the mean. Transforming a Gaussian noise 
to have a higher-variance non-Gaussian distribution tends 
to differentially exaggerate the most pronounced portions 
of the noise and so can produce th2 impression of a 'sub­
ject' against a background, or of a non-stationary noise. 
Some of the published fractal landscape pictures depict 
fractional noises passed through a square or cube non­
linearity whio::h improves their appearance. 
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The probability density of a random process can be 
shaped by means of a memoryless nonlinear transforma­
tion 9 (x). For this purpose it is sufficient to consider 
only monotonically increasing 9 (x) . Then, by "conserva­
tion of probability", the probab ility of an event y < y 
where y = 9 (x) is identical to that of the event x < x : 

Fy(g(x)) = P{y < y} 

= Fx(x) = P{x < x} 

or 

so 

g(x) = F ; I [Fx(X)] 

Two cases are particularly useful. When x is uniformly 
distributed in (0,1), F x(x) = x so the nonlinear function 
9 (x) which shapes a uniform noise x to have a desired 
distribution F y is just 9 =F ;1 . When the desired distri­
bution F y is uniform, 9 = F x ' Thus, the procedure to 
transform a noise to have a desired distribution is to first 
pass the noise through its own distribution function to 
make a uniform (0,1) ' noise, and then use the result to 
index the inverse of the desired distribution function. 
Both of these operations can be implemented by table 
lookup for reasonably smooth functions , so distribution 
shaping can be very ~fficient . 

4.1. Effect on spectrum 

The nonlinearity which shapes the distribution can also 
have a powerful effect on the spectrum of a correlated 
noise, however. This can be appreciated by considering 
the potential effect of a non linearity 9 (x) on a single 
" frequency component" cos (wt ). By choosing 
9 (x) = / (cos- I ( x)) , an arbitrary periodic waveform 
/ (wt) is produced at t he output of the nonlinearity 
given the single frequency as input. The envelope of the 
spectrum at the output of the nonlinearity also depends 
on the amplitude of the input signal. A signal passed 
through a nonlinearity does not obey either the superposi­
tion or homogeneity principles of linear systems, so the 
effect of a non linearity on a noise cannot be analyzed as 
th e superpos ition of its frequency components. 

A general exp ression for the autocorrelation function at 
t.he output of 9 (x) is [20] 

R(r)= ffg(xdg(x!!)/ x(xI ,x2 ,r)dx.dx2 

where / x is th e second-order joint probability density of 
the input. The spectrum of the output is the transform 
of this. However, this integral is difficult to evaluate and 
analytic solutions are known only for some special cases , 
including various cases wh ere / x is Gaussian. Beckmann 
[20] gives a expression for the distorted correlation func­
tion of a Gaussian noise as a series involving weighted 
powers of the input autocovariance. The output spec­
trum is t he transform of this series, which by the modula­
tion (or convolu t ion) theorem is a weighted series of 
nth-order self convolution ~ of t.he input spectrum. This 
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effect is illustrated in Fig. 7. In theory it ~hould be pos­
sible to design the spectrum of the undistorted noise so 
that a desired spectrum is achieved after distortion , but 
this approach has not been formulated to the author's 
knowledge. 

We conclude that non linear distortion is a powerful 
means of generating correlated non-Gaussian noises. 
However, this approach should be used carefully if accu­
rate control of the spectrum and probability density are 
required. For example, some of the "fractal Gaussian" 
terrains we have seen are probably neither Gaussian nor 
of the attributed spectral exponent or fractal dimension 
as a result of squaring or other nonlinear distortions (e.g. 
a squared Gaussian noise has a one-sided probability den­
sity 

/ (y) = _1_ e -Y/ 2 y>O 
y ../27rY , -

which is qui te different from the Gaussian densi ty) . 

s. Conclusion 

Two spectral methods for stochastic synthesis were 
described. Spectral approaches allow the synthesis of 
noises with arbitrary power spectra, and so can describe 
both narrowband deterministic-like noises such as [19] 
and broad band random noises such as fractals , as well as 
noises which exhibit a mixture of structure and random­
ness. 
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Fig . 1: (top to bottom) Stages in generalized subdivision to a 
non-fractal (oscillatory) noise. 
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Fig. 2 : Planar quadrilateral subdivision mesh using a 42 neigh­
borhood . The vertices '0' and 'x' are estimated using the sur­
rounding 'observation' points ' .'. 

Fig. 7 : Bandpass noise and spectrum (lower figures) and noise 
and spectrum at the output of a pair of nonlinearities effecting 
a hyperbolic probability density . The self-convolution of the 
input spectrum produced by the nonlinearities results in an 
odd-harmonic spectrum structure. 
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Fig. 3 : Several textures produced using the generalized subdi­
vision tecbnique . Clockwise from top left : Markovian , oscilla­
tory (shaded as an obliquely illuminated height field), Gaus­
sian, and high pass isotropically oscillatory textures . 

Fig. 4 : Generalized subdivision terrain with an isotropic auto­
correlation R(:z ,y) = exp(-(:z 2+y 2)07). This figure resembles 
a power-modified fractal terrain but it can be distinguished (in 
being smoother) in a comparison . 

Graphics Interface '86 

Fig. 5 : Synthetic sky and terrain with directional trend pro­
duced with generalized subdivision. 

Fig. 6 : Several shaped impulse process textures. Counter­
clockwise from top right: rough waves (shaded as an obliq:lely 
illuminated height field) , fieldstone, and straw synthesized 
from Brodatz [18J. The last figure is a perspective view of a 
wave-like texture. 
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