
- 188 -

LEARNING GRAPHICS PROGRAMMING BY DIRECT COMMUNICATION

Martin Tuori
Tim Pointing

Defence and Civil Institute of Environmental Medicine
PO Box 2000

Downsview, Ontario, M3M 3B9

ABSTRACT

The process of learning the graphics functions of a
computer graphics workstation environment is both
assisted and hampered by the presence of an intermediary
programming language. Assistance comes in the form of
programming language functions for preprocessing,
storage declaration, expression evaluation, control flow,
and system libraries . Working against the student,
compilation of programmed examples is slow, and errors
may arise both from the syntax and semantics of the
graphics functions , and from those of the programming
language.

We propose an approach to learning the graphics
functions that temporarily separates the graphics
component from other aspects of the overall programming
environment; in a sense, we are proposing training wheels
for the graphics subsystem.

This approach was used in creating, for the IRIS
series of workstations, 1. a graphics interpretter that
allows a student to test out graphics concepts, without the
need to write programs. Subroutine calls typed to the
interpreter are carried out immediately, allowing a quick,
trial-and-error approach. We argue that this approach is a
useful addition to conventional learning techniques, and
that its success can be attributed to bringing the student
programmer into more di rect communication with the
graphical components of the programming environment.

l. IRIS is a trademark of Silicon Graphics Inc.

Graphics Interface '86

INTRODUCTION

A student learning the details of a new computer
graphics programming environment may employ many
different techniques. He may begin by reading the
manufacturer's documentation, which, if well written,
conveys basic concepts, syntax, semantics and
suggestions for efficient use of the computer graphics
system. While this is an important stage in the student's
training, it is not enough to give him fluency as a
graphics programmer. Writing small test programs is
good way to proceed, and is made much easier if a
sample skeleton program, or stub, is provided. As Duff
says, "Whenever possible, steal code." [Duff 1985]. The
student can extend the stub to exercise individual features
of the graphics environment, or combinations of features ,
thereby gaining familiarity with the concepts and
behaviour of the system.

A high-level programming language provides a
variety of features that can help the student in his
exploration of a system and its functions . Macro
preprocessing serves two useful functions - common
constants and expressions are provided in system files, for
inclusion in new prograrris , and the student can define
macros to suit his own needs. Storage declaration
provides for complex object definition, and for loading
them from external sources. Expression evaluation
allows results from one operation to be used as input to
another; for example, reading pixel values from a raster
display , modifying and redisplaying tht!m. Features for
control flow allow conditional, iterative and recursive
action. Finally, various support libraries for
mathematical, input/output, networking and other
functions offer specific functionality, as needed.
Although the student can defer the use of some language
features, such as specialized subroutine libraries, he
cannot avoid the basic syntax and semantics of the
programming language itself.

VI.81on Interface '86

Many of the basic language features are of little
interest, initially, to the student studying a graphics
subsystem; rather, he needs to concentrate on the graphics
subroutine calls . The programming approach is error­
prone, tedious and time-consuming. The student's efforts
at writing even small , correct programs are invariably
delayed by errors in the syntax or semantics of the
programming language; these must be corrected by
repetitive editing, compilation and testing.

These problems arise because the programming
approach is indirect. The student needs to test his skills
in using the graphics functions, but is forced to do so
through an intermediary, albeit high-level, programming
language (Figure 1). If the programming language is
interpretive (some implementations of Basic, Lisp, APL,
etc.), test runs can proceed quickly; in many cases,
however, the programming language is compiled (most
implementations of C, Pascal, Fortran, etc.) , and
considerable time is spent waiting for compilation to take
place. Since the student's efforts are highly exploratory,
characterized by tens or hundreds of trial and error steps,
considerable time and system resources may be wasted.

- 189 -

A DIRECT INTERPRETIVE APPROACH

Recent literature on Human-Computer Interaction
(HC!) has promoted the use of direct manipulation
[Shneiderman 1983], [Kay 1984]. [Hutchins, Hollan and
Norman 1986], [Witten and Greenberg 1985].
Shneiderman characterizes direct manipulation by: the
visibility of the object of interest; rapid, reversible,
incremental actions; and replacement of complex
command language syntax by direct manipulation of the
object of interest.

The situation here is different, in that there is no
easily defined visible object of interest. The student is
studying the process, or language of graphics
programming. Perhaps the conventional approach, in
which we use a complex command language (the
programming language interface) should ultimately be
replaced by more more visual, manipulative, or
demonstrative programming methods. We are somewhat
constrained, however, by the present state of
programming support on graphics workstations; the
student must learn to control a graphics system through a
highly linguistic interface. Our objective here is not to
introduce direct manipulation, but to offer direct
communication between the programmer and the graphics
library.

,,-----*".. flow of information in the system
...... the student's actions

Graphics
Device

Figure 1:
Conventional Programming Approach

Graphics Interface '86 Vision Interface '86

A student's initial, exploratory efforts are better
supported by a fast, interpretive interface (Figure 2). The
student should be able to compose requests for graphic
subroutine calls, and have them carried out directly, with
immediate visual results. The approach is not new, but
can be dated back at least to Turtle Geometry [Byte
1982], [Papert 1980] . The work presented here is not
intended to teach children to use computer graphics, or to
teach them problem-solving skills; it is intended to teach
the programming details of two- and three-dimensional
shaded graphics in environments like the IRIS
workstation [Silicon Graphics Inc. 1984].

A graphics interpretter should act as an additional
tool in the student's kit. As he progresses, he will need to
try writing real programs; this transition is easier if the
language of the interpretter corresponds, as closely as
possible, with the style of programming that will
ultimately be demanded of the student. Although there is
a temptation to provide additional functionality in the
form of high-level primitives for drawing, menu-driven
interfaces, etc., this must be resisted, unless those
primitives are part of the toolkit the student will later use.
The objective here is not to create yet another language
for graphical expression, but to mimic, as closely as
possible, the existing graphical component of the high­
level programming language.

- 190 -

We have constructed an interpretter, for the IRIS
workstation, called irisinterp, or ii . In ii the following
sequence of commands produces a perspective view of a
coloured box with a white top:

perspecti ve(600, 1,1 ,2000)
makeobj(1)
1* a tall red box *1
color(l)
polf(5, 0, 0, 0, 10, 0, 0, 10, 0,40,

0, 0,40, 0, 0, 0)
polf(5, 10,0,0, 10,10, 0, 10,10,40,

10, 0,40, 10, 0, 0)
polf(5, 10,10,0, 0,10, 0, 0,10,40,

10,10,40, 10,10,0)
polf(5, 0,10,0, 0,0, 0, 0, 0,40,

0,10,40, 0,10,0)
color(7)
polf(5 , 0,0,40, 10,0,40, 10,10,40,

0,10,40, 0, 0,40)
closeobj
color(O)
clear
lookat(45,45,50,0,0,15,1150)
callobj(I)

~------~/ flow of information in the system
.... the student's actions

Graphics
Device

Figure 2:
A More Direct, Interpretive Approach

Graphics Interface '86 Vision Interface '86

Punctuation, and other syntactic details are relaxed in ii;
trailing semicolons (signifying the end of a statement in
C), parentheses for subroutine arguments, and commas
are treated as white space. Readers familiar with the
IRIS programming environment will recognize that, with
a few changes in punctuation, this sequence could be
turned into a C program to carry out the same function .
In fact, it is part of a longer sequence to draw the
coloured boxes example provided in the manufacturer's
documentation. With this sequence, the student can more
easily follow the documented description of three­
dimensional viewing controls, use of the z-buffer, etc.

Our early experience with ii led us to extend the
basic concept, somewhat, to include the following
features. A script inclusion feature has been added, by
which a file containing ii instructions can be called, for
insertion into a sequence; for example, the following
sequence performs simple animation by calling the boxes
script, and then rotating it by 5 degrees about the z-axis:

(~~ - --- -- - ---------

isis 1-1-, ed boxes. lines

1 2eee

00_00 oo.ee ee.ee
100.00 00.00 ee.ee
100.00 00.00 100.ee
ee.ee ee.ee 1ee.ee
ee.ee oo.ee ee.ee

lee.OO 00.00 oo.ee
lee.ee l00.ee ee.ee
lee .ee lee.ee 1ee.ee
lee.ee ee.ee 1ee.ee
lee.OO ee.oo 00.00
lee.ee lee.ee 00. 00
ee.ee lee.ee ee.ee
ee.oo lee.ee 100.ee

100.00 100.00 100.00
l00.ee 100.00 00.00
ee.ee l00.ee ee.ee
ee.ee ee.ee ee.ee
ee.oo ee.ee 1ee.OO
ee.oo l00.ee 1ee.ee
ee.oo 100.00 e9.00

a pr09l""am to execute iri s sraphi

- 191 -

script(boxes)
color(O)
clear
rotate(50z)
callobj(l)
color(O)
clear
rotate(50z)
callobj(l)
color(O)
clear
rotate(50z)
callobj(l)

This allows longer sequences to be prepared with a text
editor, tested and refined. It also allows the development

of a set of tutorial examples. Scripts may be nested to a
pre-determined limit; but recursion is ineffective, due to
the lack of a method for expressing conditional
termination. Standard defined constants are provided, for
boolean values, colours, and screen limits :

.r,ter·Dr.,tively '-_____ _
nalM! of an iris graphics ro.ut i ne. and appropriate

'help' to get a 1 ist)

Figure 3:
Using ii in a Multiple Window Environment

Graphics Interface '86 Vision Interface '86

color(magenta)
move(O,O,Q)
draw(xmaxscreen,ymaxscreen,O)

We have resisted the temptation to add declarative and
iterative capabilities, partly because of the implementation
effort they would require, and because the student who is
ready to use those features is ready to move on to
programming in C.

A few subroutine calls from the IRIS GL-2 graphics
library are not supported in ii, because they are
inappropriate in this context. For example, the subroutine
callfunc() requires the address of a C subroutine, to be
called from within a graphical object; the student using i i
has no way of determining such an address. Similarly,
the subroutine de/rasterfontO requires an array containing
the bitmap definition of a raster font; the student cannot
be expected to type in such an extensive data structure.

The ii program has been useful in our efforts to
explore and understand the IRIS programming
environment. For example, details of the window-to­
viewport coordinate transformation were initially
confusing; trial and error with ii helped considerably.
Interactions between z-buffer and double-buffered display
techniques were also explored easily using the
interpretter. As our skill at programming the IRIS
increases, we still return to ii occasionally to check out
details of some graphics functions. In the mUltiple
window environment (ME X) of the IRIS, it is easy to
digress from a programming task to tryout an idea using
ii, and then return with the solution in hand. An example
is shown in Figure 3, in which a text editor (upper left) is
being used on the boxes script, the ii program is being
run from a partially obscured window in the bottom left,
and the graphical output from ii is at the upper right.

The development of ii was, not surprisingly, a
tedious task. Data typing in C is sufficiently strong that
subroutine calls, with arbitrary numbers and types of
arguments, cannot be assembled and executed
dynamically . It was necessary to group subroutines by
their calling-sequence patterns, and use a common stub to
assemble appropriate arguments and dispatch the request,
as appropriate. For example, routines that take four short
integers as input form one group, while those that take
four pointers to short integers form another. · In all, the
source code for ii takes 30 pages; the compiled program
is quite large, at 164 k-bytes, since it includes most of
the GL-2 graphics library.

The savings afforded by ii are significant. A short
sample program, that draws a three-dimensional cube
intersected by a plane, occupies 1,390 characters of text
in ii, whereas the C source takes 2,119 characters .
Compilation in C takes 37 seconds on an IRIS-2400 (no
other users), and the compiled program is 61,440 bytes
long.

Graphics Interface '86

- 192 -

CONCLUSION

In this paper, we have described a learning situation
(graphics programming) in which the student's efforts are
hampered by the insertion of an intermediary, high-level
programming language and its support environment. A
direct, interpretive approach improves the speed of
learning, by bringing the student into closer contact, or
communication, with his objective - the syntax and
semantics of the graphics subroutine library he is trying
to learn. Direct communication is an adaptation of the
concept of direct manipulation, for situations where the
user 's objective is not a visible entity, but a linguistic
process .

References

Byte, Special Language Issue on LOGO, McGraw-Hill,
Aug 1982.

Duff, T. , Quoted in Programming Pearls (Ion Bentley),
Comm. ACM 28,9, (Sep 1985),896-901.

Hutchins, E. L., Hollan, 1. D. and Norman, D . A., Direct
Manipulation Interfaces (to be published), in User
Centered Systems Design: New Perspectives in Human­
Computer Interaction, D. A. Norman and S. W . Draper
(Eds.), 1986.

Kay, A., Computer Software, Scientific American 251,3,
(Sep 1984), 52-59.

Papert, S., Mindstorms: Children, Computers & Powerful
Ideas, Basic Books, New York, 1980.

Shneiderman, B., Direct Manipulation: A Step Beyond
Programming Languages, Computer 16, 8, (Aug 1983),
57-69.

Silicon Graphics Inc., IRIS User's Guide, Version 2.0,
Silicon Graphics Inc., Mountain View, CA, 1984.

Witten, I. H . and Greenberg, S., User Interfaces for Office
Systems, Research Report No. 84/161/19, Man-Machine
Systems Laboratory, Dept. of Computer Science, The
University of Calgary, Feb 1985.

Vision Interface '86

