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ABSTRACT 

Texture mapping is one of the most successful new techniques in high qual­
ity image synthesis. Its use can enhance the visual richness of raster scan 
images immensely while entailing only a relatively small increase in compu­
tation. The technique has been applied to a number of surface attributes: 
surface color. surface normal. specularity. transparency. illumination. and 
surface displacement, to name a few. Although the list is potentially end­
less. the techniques of texture mapping are essentially the same in all cases. 
We will survey the fundamentals of texture mapping. which can be split into 
two topics: the geometric mapping which warps a texture onto a surface. 
and the filtering which is necessary in order to avoid aliasing. An extensive 
bibliography is included. 

KEYWORDS: texture mapping. texture filter. space variant filter. antialias­
ing. 

INTRODUCTION 

Why Map Texture? 

In the quest for more realistic imagery. one of the most frequent criticisms of 
early synthesized raster images was the extreme smoothness of surfaces -
they showed no texture. bumps. scratches. dirt, or fingerprints . Realism 
demands complexity. or at least the appearance of complexity. Texture 
mapping is a relatively efficient means to create the appearance of complex­
ity without the tedium of modeling and rendering every 3-D detail of a sur­
face. 

The study of texture mapping is valuable because its methods are applicable 
throughout computer graphics and image processing. Geometric mappings 
are relevant to the modeling of parametric surfaces in CAD and to general 
2-D image distortions for image restoration and artistic uses. The study of 
texture filters leads into the development of space variant filters. which are 
useful for image processing. artistic effects. depth-of-field simulation. and 
motion blur. 

Definitions 

We define a texture rather loosely: it can be either a texture in the usual 
sense (e.g. cloth. wood, gravel) - a detailed pattern which is repeated many 
times to tile the plane. or more generally. a multidimensional image which is 
mapped to a multidimensional space. The latter definition encompasses 
non-tiling images such as billboards and paintings. 

Texture mapping means the mapping of a function onto a surface in 3-D. 
The domain of the function can be one. two. or three-dimensional. and it can 
be represented either by an array or by a mathematical function. For exam­
ple. a 1-0 texture can simulate rock strata; a 2-D texture can represent 
waves. vegetation [NorS21. or surface bumps [per841; a 3-D texture can 
represent clouds [GarS51. wood [peaS51. or marble [PerS5al . For our pur­
poses textures will usually be 2-D arrays. 

The source image (texture) is mapped onto a surface in 3-D Jbject space 
which is then mapped to the destination image (screen) by the viewing pro­
jection. Texture space is labeled (u.v). object space is (x •• y •• z.). and 
screen space is (x.y) . 
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We assume the reader is familiar with the terminology of 3-D raster graphics 
and the issues of antialiasing [RogS51. [FoIS21. 

Uses for Texture Mapping 

The possible uses for mapped texture are' myriad. Some of the parameters 
which have been texture mapped to date are: surface color (the most com­
mon use) [Cat741. specular reflection [Bli761. normal vector perturbation 
(" bump mapping") [Bli7Sal. specularity (the glossiness coefficient) 
[Bli7Sbl. transparency [Smi791. diffuse reflection [Mil841. surface displace­
ment and mixing coefficients [Coo84bl. 

Illumination Mapping 

Mapping specular and diffuse reflection is rather different from mapping 
other parameters. since these maps are not assoCiated with a particular object 
in the scene. but to an imaginary infinite radius sphere, cylinder. or cube sur­
rounding the scene [Gre86al. Whereas standard texture maps are indexed by 
the surface parameters u and v. a specular reflection map. is indexed by the 
reflected ray direction [Bli761 and the diffuse reflection map is indexed by 
the surface normal direction [MilS41. The technique can be generalized for 
transparency as well. indexing by the refracted ray direction [Kay791 . In the 
special case thar all surfaces have the same reflectance and they are viewed 
orthographically the total reflected intensity is a function of surface orienta­
tion only. so the diffuse and specular maps can be merged into one [HorSI1. 

Illumination mapping. as these techniques are called, facilitates the simula­
tion of complex lighting environments. since the time required to shade a 
point is independent of the number of light sources. Other reasons for its 
recent popularity are: it is one of the few demonstrated techniques for 
antialiasing highlights [WilS31. it is an inexpensive approximation to ray 
tracing for mirror reflection. and to radiosity methods [GorS41 for diffuse 
reflection of objects in the environment. Efficient filtering is especially 
important for illumination mapping. where variations in surface curvature 
often necessitate broad areas of the sky to be averaged. 

Since specular reflection varies as a function of the viewing direction. it is 
most conveniently computed on the fly. as in ray tracing. Diffuse reflection 
of the environment, however. has not yielded to ray tracing even when 
stochastic methods [Coo84al are used. The problem is that diffuse reflection 
scatters light over an entire hemisphere, not a narrow cone. as does specular 
reflection. Fortunately diffuse reflection is independent of viewing direction. 
so the incident illumination at each surface point can be precomputed and 
treated as a texture [Coo84bl. Previous methods have approximated this 
using polygon subdivision to model hard shadows [Ath7S1. soft shadows 
[NisS31. beams of light [HecS41. or indirect illumination [GorS41. With the 
development of more efficient algorithms for its computation. incident 
illumination promises to be a common use for textures in the future. 

Even when direct support for illumination mapping is unavailable. tricks can 
be employed which give a visually acceptable approximation. Rather than 
calculate the exact ray direction at each pixel. one can compute the reflected 
or refracted ray direction only at polygon vertices and interpolate it, in the 
form of u and v texture indices. across the polygon using standard methods. 
This approximation is similar to that made by beam tracing [HecS41. 

t Cumnl address: Pacific Dala Image .. I I I I Karlstad Dr .• SUDDyvale. CA 94089. USA. 
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MAPPING 

The mapping from texture space to'screen space is split into two phases. 
First is the surface parameterization which maps texture space to object 
space, followed by the standard modeling and viewing ttansformations 
which map object space to screen space, typically with a perspective projec­
tion [FoI82). These two mappings are composed to find the overall 2-D tex­
ture space to 2-D screen space mapping, and the intermediate 3-D space is 
often forgotten. This simplification suggests texture mapping's close ties 
with image warping and geometric distortion. 

Scanning Order 

There are three general approaches to drawing a texture mapped surface: 
scanning in screen space, scanning in texture space, and two-pass methods. 

Traversing the screen in scanline order, sometimes called inverse mapping, 
is the most common method. For each pixel in screen space the preimage of 
the pixel in texture space is found and this area is filtered. This method is 
preferable when the screen must be written sequentially (e.g. when output is 
going to a film recorder), the mapping is readily invertible, and the texture is 
random access. 

Traversing the texture in scanline order may seem simpler than scanning the 
screen since inverting the mapping is unnecessary in this case, but doing this 
correctly is subtle. Unfortunately, uniform sampling of texture space does 
not guarantee uniform sampling of screen space except for affine (linear) 
mappings, so for non-affine mappings texture subdivision must often be 
done adaptively . . Otherwise, holes or overlaps will result in screen space. 
Scanning the texture is preferable when either (a) the texture to screen map­
ping is difficult 10 invert, a- (b) the texture image must be read sequentially 
(e.g. from tape) and will not fit in random access memory. 

Two-pass methods decompose a 2-D mapping into two 1-0 mappings, the 
first applied 10 the rows of an image and the second applied to the columns 
[Cat80]. These methods work particularly well for affine and perspective 
mappings, where the warps for each pass are linear or ra~onal linear func­
tions. Because the mapping and filter are 1-0 they are amenable to stream 
processing techniques such as pipelining. Two-pass methods are preferable 
when the source image cannot be random accessed but it has rapid row 
column access, and a buffer for the intermediate image is available. 

Parameterization 

In order to map a 2-D texture onto a surface in 3-~, a parameterization of 
the surface is needed. This comes naturally for surfaces which are defined 
paramettically, such as bicubic patches, but less naturally for other surfaces 
such as polygons and quadrics, which are usually defined implicitly. The 
parameterization can be by surface coordinates u and v, as in standard tex­
ture mapping, by the direction of a normal vector or light ray, as in illumina­
tion mapping, or by spatial coordinates x.' Y., and z. for objects which are 
to appear carved out of a solid material. 

Parameterizing Planes and Polygons 

We will examine mappings for planar polygons in some detail. First we dis­
cuss the pararneterization and later we discuss the composite mapping. 

A ttiangle is easily parameterized by specifying the texture space coordi­
nates (u,v) at each of its three vertices. This defines an affine mapping 
between texture space and 3-D object space; each of x.' Y., and z. have the 
form Au+Bv+C. For polygons with more than three sides, nonlinear func­
tions are needed in general, and one must decide if the flexibility is worth the 
expense. The alternative is to assume linear parameterizations, and subdi­
vide into ttiangles where necessary. 

One non linear parameterization which is sometimes used is the bilinear 
patch: 

[x. Y. z.)= [uv u v I] 

A E I 

B F J 
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DHL 

which maps rectangles to planar or nonpl3!lar quadrilaterals [Hou83]. This 
parameterization has the sttange property that it preserves lines and equal 
spacing along vertical and horizontal texture axes, but preserves neither 
along diagonals. The use of this parameterization for planar quadrilaterals is 
not recommended, however, since inverting it requires the solution of 
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quadratic equations. 

A better parameterization for planar quadrilaterals is the 'perspective map­
ping' [Hec83]: 

[x.w. y.w. z.w. w.)=[u v I) [; ~ ~ ~l 
C F I L 

where w. is the homogeneous coordinate which is divided through to calcu­
late the ttue object space coordinates [Rob66), [FoI82). x.' Y., and Zo are 
thus of the form (Au+Bv+C)/(Ju+Kv+L). The perspective mapping 
preserves lines at all orientations but sacrifices equal spacing. Note that a 
'perspective mapping' might be used for the parameterization whether or not 
the viewing projection is perspective. 

Projecting Polygons 

Orthographic Projecrion 

Orthographic projections of linearly-parameterized planar textures have a 
linear composite mapping. The inverse of this mapping is linear as well, of 
course. This makes them particularly easy to scan in screen order: the cost 
is only two adds per pixel, disregarding filtering [Smi80). 

It is also possible to perfa-m affine mappings by scanning the texture, pro­
ducing the screen image in non-scanline order. Most of these methods are 
quite ingenious. 

Braccini and Marino show that by depositing the pixels of a texture scanline 
along the path of a Bresenham digital line, an image can be rotated or 
sheared [Bra80]. To fill the holes which sometimes result between adjacent 
lines, they draw an extta pixel at each kink in the line. This results in some 
redundancy. They also use Bresenham's algorithm [Bre6S) in a IOtally dif­
ferent way: to scale an image. This is possible because disttibuting m 
source pixels to n screen pixels is arta1ogous' to drawing a line with slope 
nlm. Braccini and Marino use the simplest filtering: point sampling. 

Weiman also uses Bresenham's algorithm for scaling, but does not draw 
diagonally across the screen [Wei80]. Instead he decomposes rotation into 
four scanline operations: xscale, yscale, xshear, and yshear. He does box 
filtering by averaging together several phases of the scaled image. 

Cohen draws texture scanlines diagonally across the screen lile [Bra80], but 
does not use their scaling ttick [Coh84). He is able, however, to eliminate 
the holes and redundancy of [Bra80) by carefully nesting the digital lines. 
Cohen also demonsttates the algorithm's applicability 10 antialiased line 
drawing. 

Persp~ctjve Projecrion 

A naive method for texture mapping in perspective is to linearly interpolate 
the texture coordinates u and v along the sides of the polygon and across 
each scan line, much as Gouraud or Phong shading [FoI82) is done. How­
ever, linear interpolation will never give the proper effect of nonIinear 
foreshortening [Smi801, it is not rotationally invariant, and the error is obvi­
ous in animation. One solution is to subdivide each polygon into many small 
ones. The correct solution, however, is to replace linear interpolation with 
the ttue formula, which requires a division at each pixel. In fact, Gouraud 
and Phong shading in perspective, which are usually implemented with 
linear interpolation, share the same problem, but the errors are so slight that 
they're rarely noticed. . 

Perspective mapping of an affine or perspective parameterized plane is: 

[xw yw w] = [u v I] [; ~ ~l 
C F I 

This mapping is analogous to the more familiar 3-D perspective transforma­
tion using 4x4 homogeneous mattices. The inverse of this mapping (calcu­
lated using the adjoint mattix) is of the same form, as is the composition of 
two of these mappings. Consequently a plane using a perspective parame­
terization which is viewed in perspective will have compound mapping 
which is of the perspective form. The perspeCtive mapping simplifies to the 
affine form when G and H are zero, which occurs when the surface is paral­
lel to the projection plane. 

Aold and Levine demonstrate texture mapping polygons in perspective using 
formulas equivalent to the above [Aok78]. Smith proves that the division is 
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necessary in general, and shows how u and v can be calculated incremen­
tally from x and y as a polygon is scanned [SmiSO]. As discussed earlier, 
Catrnull and Smith decompose perl;pective mappings into two passes of 
shears and scales [CatSO]. Gangnet, Perny, and Coueignoux explore an 
alternate decomposition which rotates screen and texture space so that the 
perspective occurs along one of the image axes [GanS2]. Heckbert promotes 
the homogeneous matrix notation for perspective texture mapping and 
discusses incremental techniques for scanning in screen space [HecS3]. 

Patches 

Texture mapping is quite popular for surfaces modeled from patches, prob­
ably for two reasons: (a) the parameterization comes for free, (b) the cost of 
texture mapping is small relative to the cost of patch rendering. Patches are 
usually rendered using a subdivision algorithm whereby screen and texture 
space areas are subdivided in parallel [Cat74] , [LanSO]. As an alternative 
technique Catrnull and Smith demonstrate, theoretically at least, that it is 
possible to perform texture mapping on bilinear, biquadratic, and bicubic 
patches with two-pass algorithms [CatSO]. Fraser, Schowengerdt, and 
Briggs explore a similar method for the application of geometric image dis­
tortions [FraS5]. 

FILTERING 

After the mapping is computed and the texture warped, the image must be 
resampled on the screen grid. This process is calledjiltering. 

The cheapest texture filtering method is point sampling, wherein the pixel 
nearest the desired sample point is used. It works relatively well on unscaled 
images, but for stretched images the texture pixels are visible as large blocks 
and for shrunk images aliasing can cause distracting moire patterns. 

Aliasing 

Aliasing can result when a signal has unreproducible high frequencies 
[Cro77], (WhiSI] . In texture mapping, it is most noticeable on high contrast, 
high frequency textures . Rather than accept the aliasing which results from 
point sampling or avoid those models which exhibit it, we prefer a high 
quality, robust image synthesis system which does the extra work required to 
eliminate it In practice, total eradication of aliasing is often impractical and 
we must settle for ayprollimations which merely reduce it · unobjectionable 
levels. 

Two approaches to the aliasing problem are: 
a) Point sample at !Ugher resolution 
b) Low pass filter before sampling 

The first method theoretically implies sampling at a resolution determined by 
the highest frequencies present in the image. Since a surface viewed 
obliquely can create arbitrarily high frequencies, this resolution can be 
extremely high. It is therefore desirable to limit dense supersampling to 
regions of high frequency and high contrast [Cr082] by adapting the sam­
pling rate to the local intensity variance [Lee85], [DipS5]. This is not possi­
ble, however, in vectorized algorithms, which must choose a uniform sam­
pling rate a priori and accept any residual a1iasing. Whether adaptive or uni­
form point sampling are used, stochastic sampling can improve the appear­
ance of images significantly by trading off aliasing for noise [CooS6]. 

The second method, low pass filtering before sampling, is preferable because 
it addresses the causes of a1iasing rather than its symptoms. To eliminate 
aliasing out signals must be band-limited (contain no frequencies above the 
Nyquist limit). When a signal is warped and resampled the following steps 
must theoretically be performed [SmiS3]: 

1. reconstruct continuous signal from input samples by convolution 
2. warp the abscissa of the signal 
3. low pass filter the signal using convolution 
4. resample the signal at the output sample points 

These methods are well understood for linear warps, where the theory of 
linear systems lends support, but for nonlinear warps such as perspective the 
theory is lacking and a number of approximate methods have sprung up. 

Space Invariant Filtering 

For affine image warps the filter is space invariant; the filter kernel remains 
constant as it moves across the image. The four steps above simplify to: 

I. low pass filter the input signal using convolution 
2. warp the abscissa of the signal 
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3. res ample the signal at the output sample points 

Space invariant convolutions are often done using an FfT, multiply, and 
inverse FfT [Opp75]. The cost of this operation is independent of the kernel 
size. 

Direct Convolution 

Nonlinear mappings have space-variant· filter kernels (in texture space), 
which require more complex filtering methods. In general, a square screen 
pixel which intersects a curved surface has a curvilinear quadrilateral preim­
age in texture space. Most methods approximate the true mapping by the 
locally tangent perspective or linear mapping, so that the curvilinear preim­
age is approximated by a quadrilateral or parallelogram. In place of the 
ideal low pass filter, a sine, a finite impulse response (FIR) approximation is 
used to form a weighted average of texture samples. 

We now summarize several direct convolution texture filters. 

Catmull,1974 

In his subdivision patch renderer, Catrnull computes an unweighted average 
of the texture pixels corresponding to each screen pixel [Cat74] . He gives 
few details, but it appears his filter is a quadrilateral with a box kernel cross 
section. 

Blinn andNewell, 1976 

Blinn and Newell improve on this with a triangular kernel which forms over­
lapping square pyramids 2 pixels wide in screen space [Bli76]. At each 
pixel the pyramid is distorted to fit the approximating parallelogram in tex­
ture space, and a weighted average is computed. 

Feibush , Levoy, and Coolc, 1980 

The filter used by Feibush, Levoy, and Cook is more elaborate [FeiSO]. 

The following steps are taken at each screen pixel: 

(I) Center the kernel (box, cylinder, cone, or gaussian) on the pixel and 
find its bounding rectangle. 

(2) Transform the rectangle to texture space, where it is warped into a 
quadrilateral. The sides of this quadrilateral are assumed to be 
straight Find a bounding rectangle for this quadrilateral. 

(3) Map all pixels inside the texture space rectangle to screen space. 

(4) Form a weighted average of the mapped texture pixels using a two­
dimensionallookup table indexed by each sample's location within the 
pixel. · 

Since the kernel is in lookup table it can be a gaussian or other high quality 
filter. 

Gangnet , Perny, and Coueignoux , 1982 

The texture filter proposed by Gangnet, Perny, and Coueignoux is quite simi­
lar to [FeiSO], but they subdivide uniformly in screen space rather than tex­
ture space [GanS2]. 

Pixels are assumed circular and overlapping. The preimage of a screen cir­
cle is a texture ellipse whose major axis corresponds to the direction of 
greatest compression. A square intermediate supersampling grid which is 
oriented orthogonally to the screen is constructed. The supersampling rate is 
determined from the longest diagonal of the parallelogr3m approximating 
the texture ellipse. Each of the sample points on the intermediate grid is 
mapped to texture space and bilinear interpolation is used to reconstruct the 
texture values at these sample points. The texture values are then weighted 
by a truncated sine 2 pixels wide in screen space and summed. 

The paper contrasts [FeiSO],s "back transforming" method with [GanS2],s 
"direct transforming" method, claiming that the latter produces more accu­
rate results because the sampling grid is in screen space rather than texture 
space. Other differences are more significant For example, [GanS2] 
requires a bilinear interpolation for each sample point, while [FeiSO] does 
not Also, [GanS2] sanlples at an unnecessarily high frequency along the 
minor axis of the texture ellipse. For these two reasons, [FeiSO] is probably 
faster than [GanS2] (an estimate denied in [GanS4]). 
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Greene and Heckbert, 1986 

The elliptical weighted average filter (EW A) proposed by Heckbert 
[Gre86b) is similar to [Gan82) in that it assumes overlapping circular pixels 
which map to arbitrarily oriented ellipses, and like [Fei80) because the ker­
nel is stored in lookup table, but instead of mapping texture pixels to screen 
space, the kernel is mapped to texture space, as in [Bli76]_ The kernel, a cir­
cularly symmetric function in screen space, is warped by an elliptic para­
boloid function into an ellipse in texture space_ The elliptic paraboloid is 
computed incrementally and used for both ellipse inclusion testing and ker­
nel table index_ The cost per texture pixel is just a few arithmetic operations, 
in contrast to [Fei80) and [Gan82), which both require mapping each texture 
pixel from texture space to screen space or vice-versa. 

Comparison of Direct ConvolUlwn Methods 

All five methods have a cost per screen pixel proportional to the number of 
texture pixels accessed, and this cost is highest for [Fei80) and [Gan82)_ 
Since [Gre86b) has quality comparable to [Fei80) and [Gan82) at mucll 
lower cost, it appears to be the fastest algorithm for high quality direct con­
volution_ 

Prefilteriog the Texture 

Even with optimization, the methods above are often extremely slow, since a 
pixel preimage can be arbitrarily large along silhouettes or at the horiwn_ 
We would prefer a texture filter whose cost does not grow proportionately to 
texture area_ 

To speed up the process the texture can be prefiltered so that during render­
ing only a few samples will .be accessed for each screen pixel. The access 
cost of the filter will thus be constant, unlike direct convolution methods_ 
Two data structures can be used for prefiltering: image pyramids and 
integrated arrays_ 

Pyramidal data · structures are commonly used in image processing and com­
puter vision [Tan7S), [Ros84). Their application to texture mapping was 
apparently first proposed in Catrnull's PhD work [Smi79) . 

We now summarize several texture filters which employ prefiltering. 

DlUIgan, Stenger, and SUlty,1978 

Dungan, Stenger, and Sutty prefilter their texture "tiles" to form a pyramid 
whose resolutions are powers of two [Dun78). To filter an elliptical texture 
area one of the pyramid levels is selected based on the average diameter of 
the ellipse and the level is point sampled. The memory cost for this type of 
texture pyramid is 1 + 114 + 1116 + ... = 413 times that required for an . 
unfiltered texture; only 33% more expensive. 

Smith,1979 

Smith describes the "mipmap", which is a particular layout for color image 
pyramids invented by Williarns [Smi79). Smith points out that the square 
filter area inherent in pyramids is inaccurate if the pixel preimage is 
elongated_ 

Heclcbert , 1983 

Heckbert describes Williarns' trilinear interpolation scheme for pyramids 
(see below) and its efficient use in perspective texture mapping of polygons 
[Hec83). Choosing the pyramid level is equivalent to approximating a tex­
ture quadrilateral with a square. The recommended formula for the diameter 
d of the square is the maximum of the side lengths of the quadrilateraL 
Aliasing results if the area filtered is too small, and blurring results if it's too 
big; one of these two is inevitable. 

Williams, 1983 

Williarns improves upon [Dun78) by proposing a trilinear interpolation 
scheme for pyramidal images wherein bilinear interpolation is performed on 
two levels of the pyramid and linear interpolation is performed between 
them [Wil83) . The output of this filter is thus a continuous function of posi­
tion (u ,v) and diameter d . His filter has a constant cost of 8 pixel accesses 
and 7 multiplies per screen pixe!. Williarns uses a box filter to construct the 
image pyramid, but gaussian filters can also be used [Bur81). 
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Gangnet and Ghazanfarpour, 1984 

In Gangnet and Ghazanfarpour's survey a variation on the image pyramid i( 
proposed which allows unequal filtering in u and v (they call it " asymmetri­
cal" fillering, but is more properly termed "anisotropic"). The image is 
prefiltered to resolutions of the form 2""><2'" , so this pyramid is four di·men­
sional: u, v, 6u and t.v. Its memory requirements are four times that of an 
unfiltered image, three times that of an isotropic pyramid, and the time cost 
is 16 texture pixel accesses and IS multiplies per screen pixel. 

Greene and Heckbert, 1986 

Attempting to decouple the data structure from the access function. Greene 
suggests the use of the EWA filter on an image pyramid [Gre86b). Unlike 
the other prefiltering techniques such as trilinear interpolation on a pyramid 
or the summed area table, EW A allows arbitrarily orimted ellipses to be 
filtered. 

Crow,1984 

Crow proposes the summed Mea table, an alternative to the pyramidal filter­
ing of [Dun78)l!Ild [Wil83), which allows orthogonally oriented rectangular 
areas to be filtered in constant time [Cr084) . The original texture is prein­
tegrated in the u and v directions and stored in a high-precision summed 
Mea table. To filter a rectangular area the table is sampled in four places 
(much as one evaluates a definite integral by sampling an indefinite integral). 
To do this without artifacts requires 16 accesses and 14 multiplies in general, 
but there is an optimization for large areas which cuts the cost to 4 accesses 
and 2 multiplies. The high-precision table requires 4 times the memory cost 
of the original image. The summed area table is generally more costly than 
the texture pyramid in both memory and time, but it can perform better filter­
ing than the pyramid, since it filters rectangular areas, not just squares. It 
clearly outperforms the four-dimensional pyramid in [Gan84). 

Perlin , 1985 

Perlin's selective image filter is an elegant generalization of [Cr084) , 
developed independently [per8Sb). If an image is preiruegrated in u and v 
n times, an onhogonally oriented elliptical area can be filtered by sampling 
the array at (n+I)2 points and weighting them approprUtely. The effective 
kernel is a box convolved with itself n times whose size can be selected at 
each screen pixel. If n = 0 the method degenerates to point sampling, if n = 1 
it is equivalent to the summed area table with its box kemel, /I =2 uses a tri­
angular kernel, and n =3 uses a parabolic kernel. With increasing n the ker­
nel approaches a gaussian, and the memory and time costs increase. 

Comparison of Prefiltering Methods 

The following table summarizes the prefiltering methods we have discussed: 

REF. KERNEL SHAPE DOF TIME MEMORY 

pt samp impulse point 2 1,0 1 
Dun78 box square 3 1,0 1.33 
Wil83 box square 3 8,7 1.33 
Gan84 box rectangle 4 16,15 4 
Gre86b any ellipse 5 ? 1.33 

Cr084 box rectangle 4 16,14 or 4 ,2 4 
Per8Sb triangle ellipse 4 36.310r9,4 6 

The pair of numbers under ' time' is the number of texture pixel accesses and 
the number of multiplies per screen pixel. The OOF (degrees of freedom) of 
the filter provides an approximate ranking of filter quality; the more degrees 
of freedom are available the greater is the kernel shape control. 

We see that the integrated array techniques [Cr084] and [per8Sb) have rather 
high memory costs relative to the pyramid methods, but allow rectangular or 
orthogonally oriented elliptical areas to be filtered Traditionally pyramid 
techniques have lower memory cost but allow only squares to be filtered. 

Since prefiltering usually entails a setup expense proportional to the square 
of the texnue resolution, its cost is of the same order as direct convolution -
if the texture is only used once. But if the texture is used many times, as part 
of a periodic pattern, or appearing 00 several objects or in several frames of 
animation, the setup cost can be amortized over each use. 

Vision Interface '86 



- 211 -

Filtering in Frequency Space 

An alternative to texture space filtering is to transform the texture to fre­
quency space and low pass finer its spectrum. This is most convenient when 
the texture is represented by a Fourier series rather than a texture array. 
Norton, Rockwood, and Skolmoslti explore this approach for flight simulator 
applications and propose a simple ~hnique for clamping high frequency 
terms [Nor82) . Gardner employs 3-D Fourier series as a transparency tex­
ture function, with which he generates surprisingly convincing pictures of 
treeS and clouds [Gar85). 

Perlin's "Image Synthesizer" uses band limited pseudo-random functions as 
texture primitives [per85a). Creating textures in this way eases transitions 
from macroscopic to microscopic views of a surface; in the macroscopic 
range the surface characteristics are built into the scattering statistics of the 
illumination model, in the intermediate range they are modeled using bump 
mapping, and in the microscopic range the surface is explicit geometry 
[per84) . Each term in the texture series can make the transition indepen­
dently at a scale appropriate to its frequency range. 

Filtering Recommendations 

The best filtering algorithm for a given task depends on the texture represen­
tation and scanning order in use. When filtering a texture array in a screen 
order rendering system, the EW A filter [Gre86b), summed area table 
[Cr084), a- selective image filter [per85b) are recommended because of their 
good shape control and high speed Since the above algorithms are still 
under development and the EW A filter has yet to be tested on a pyramid, it is 
too early to make definitive judgements. When the texture is a fourier series, 
filtering is simply a matter of clamping or truncating the high frequency 
terms [Na-82). In the case of arbitrary texture functions, which can be much 
harder to integrate than texture arrays, adaptive stochastic sampling methods 
are called fa- [Dip85). Two-pass algorithms require 1-0 space varianttex­
ture filters. 

Future research on texture filters will continue to improve their quality by 
providing greater kernel shape control while retaining low time and memory 
costs. One would like to find a constant-cost prefiltering method which 
filters arbitrarily oriented elliptical areas using a gaussian kernel. 

CONCLUSIONS 

System Support for Texture Mapping 

So far we have emphasized those tasks common 10 all typeS of texture map­
ping. We now summarize some of the special provisions which a modeling 
and rendering system must make in order to support different varieties of 
texture mapping. 

The primary requirements of standard texture mapping are texture space 
coordinates (u,v) for each screen pixel plus the partial derivatives of u and 
\I with respect to screen.x and y for good antialiasing (assuming that the 
rendering program is scanning in screen space). 

Bump mapping requires additional information at each pixel: two vectors 
tangent 10 the surface pointing in the u and \I directions. For facet shaded 
polygons these tangents are constant acrOss the polygon, but for Phong 
shaded polygons [Fol82) they vary. In order to ensure artifact-free bump 
mapping on Phong shaded polygons, these tangents must be continuous 
across polygon seams. One way 10 guarantee this is 10 compute tangents at 
all polygon vertices during model preparation and interpolate them across 
the polygon [Max86). The normal vector can be computed as the cross pro­
duct of the tangents. 

Proper antialiasing of illumination mapping requires some measure of sur­
face curvature in order 10 calculate the solid angle of sky to filter. This is 
usually provided in the form of the partials of the normal vector with respect 
to screen space. 

Although they are usually much more compact than brute face 3-D model­
ing of surface details, texture maps can be bulky, especially when they 
represent a high resolution image as opposed to a low resolution texture pat­
tern which is replicated numerous times. Keeping several of these in ran­
dom access memory is often a burden on the rendering program. This prob­
lem is especially acute for rendering algorithms which generate the image in 
scanline order rather than object order, since a given scan line could access 
hundreds of texture maps. Further work is needed on memory management 
for texture map access. 
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General 

Texture mapping has become a widely used technique because of its gen­
erality and efficiency. It has even made its way into everyday broadcast TV, 
thanks 10 new real-time video texture mapping hardware such as the Ampex 
ADO and Quantel Mirage . Rendering systems of the near future will allow 
any conceivable surface parameter 10 be texture mapped. Despite the recent 
explosion of diverse applications for texture mapping, a common set of fun­
damental concepts and algorithms is emerging. We have surveyed a number 
of these fundamentals: alternative techniques for pararneterization, scan­
ning, texture representation, direct convolution and prefiItering. 
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