
- 235 -

CONNECTED COMPONENT LABELING
USING MODIFIED LINEAR QUADTREES

Xiaoning Wang and Wayne A. Davis

Department of Computing Science
The University of Alberta

Edmonton, Alberta, Canada T6G 2Hl

Abstract!

Using the modified linear quadtree proposed in
[1,9], this paper presents an O(n·N) algorithm for
labeling connected components of a region consisting
of N BLACK nodes in a 2n by 2n binary image. As a
direct application of the algorithm, a method for
computing the perimeter of a region is also described.

1. INTRODUCTION

The identification of all connected components of a
region is a fundamental operation in image processing
and geographic systems [4, 5]. Samet [6] presents an
algorithm for labeling all connected components of a
region represented by a quadtree, and shows that its
average execution time is O(T + N·log N), where T
and N are the total number of nodes and the number of
BLACK nodes in the quadtree, respectively. That
algorithm outperforms the traditional method which
has an execution time proportional to the number of
pixels of the image [5] . Gargantini [3] also describes
an entirely different algorithm using a linear quadtree
[2]; however, that algorithm has limited power as it is
only applicable to regions with very special
configurations.

In this paper, an algorithm adopting a novel
approach for labeling all connected components of a
region using a Modified Linear Quadtree (MLQ) is
presented. It is capable of handling regions with
arbitrary configurations. Furthermore, the algorithm
is of time complexity O(n·N), and hence compares
favorably to Samet's algorithm [6]. As an application
of the algorithm, this paper will show that, with the
same time complexity, the perimeter of a region can
also be computed.

2. DEFINITIONS AND NOT A TION

This section contains some basic definitions and
terminology for region representations that are
fundamental for the remainder of this paper.

1 This research was supported in part by the Natural
Sciences and Engineering Research Council of Canada
under Grant NSERC A 7634.

Graphics Interface '86

Definition 1: An image is a 2n by 2n array of unit
square pixels each of which can assume one of 2k
values, where n is called the resolution parameter of
the image.

Definition 2: An image is called a binary image
when its pixels assume either 1 or 0 values. A pixel is
BLACK if it has the value of 1, otherwise it is WHITE.

Without loss of generality, only binary images will
be considered in this paper since all of the algorithms
can be extended to nonbinary images.

Definition 3: The region of a binary image is
composed of all BLACK pixels, and the background of
the region is composed of all WHITE pixels.

Definition 4: Let (i, j) represent the location of a
pixel p in a given image, where i and j are the column
and row positions respectively. Then p has four
horizontal and vertical neighbors located at: (i-I, j),
(i,j-l), (i,j+l) and (i+l,j). These pixels are called
the 4-neighbors of p, and are said to be 4-adjacent to p.

Definition 5: For two BLACK pixels, p and q, of a
region, p is said to be connected to q if there is a path
from p to q consisting entirely of pixels of the region.

Definition 6: For any BLACK pixel p, the set of
pixels connected to p is called a connected component
of the region. If a region has only one component,
then it is called "connected".

Based on the principle of recursive decomposition,
an image is decomposed in the following manner to
separate a region from its background[lO]. If the
region does not cover the entire binary array, the
array will be subdivided into four equal-sized square
blocks. This process will be applied recursively, until
blocks are obtained that are either totally contained in
the region or totally disjoint from it. The recursive
decomposition of an image produces blocks that must
have standard sizes (powers of 2) and positions.
Similar definitions can now be formulated in terms of
blocks.

Vision Interface '86

- 236 -

Definition 7: A block is said to be BLACK if it
contains only BLACK pixels, WHITE if it contains
only WHITE pixels, and GREY if it contains both
BLACK and WHITE pixels.

The four sides of a block are referred as to its
North, East, South and West sides, or N, E, S and W
for short. Let OPSIDE(T) be the side opposite to T,
e.g., OPSIDE(E)= W.

Definition 8: Two blocks P and Q are said to be
4-adjacent along the side T of P if the side T of P
touches the side OPSIDE(T) of Q.

Definition 9: BLACK blocks P and Q are said to be
connected if there exists a path consisting entirely of
BLACK pixels from a pixel of P to a pixel of Q.

Definition 10: For two integers I and J given by
n-l n-l

1= I(lr2i), and J = I(1r2i), where Ii, Ji E {O,l},
i=O i=O

n-t
SHUFFLE(I,J) = I(lj'2+Ji)·4i.

i=O

To represent a block obtained by the recursive
decomposition method requires the following
definition:

Definition 11: The key of a block or node with 2s

by 2s pixels is SHUFFLE(I, J), where (I, J) is the
location of its left bottom pixel, and s is the resolution
parameter of the block.

It is now easy to show that the two-tu pie <K,s>
uniquely represents a block, where K and s are the key
and resolution parameter of the block, respectively.

A modified linear quad tree (MLQ) is defined
to be a sequence of BLACK nodes in two-tuple form
sorted in ascending key order. This differs from the
usual definition of a linear quadtree in that the key of
the node is stored as a single integer rather than as an
n-digit quaternary code, and the resolution parameter
of the node is given explicitly rather than implied by
the number of don't care characters in the quaternary
code. This modification results in space efficiency and
improved execution time [9].

In presenting the connected component labeling
algorithm, each BLACK node in the MLQ is stored as
a record consisting of three fields. The first two
fields , termed KEY and RES, contain the key and the
resolution parameter of the node, respectively. The
third field, termed ID, identifies the connected
component containing the node. It is set as a result of
the algorithm to be presented. An array M is used to
represent the MLQ. Therefore, M has the property
that for any

i, j = (l ,2, ... ,N) , if i < j then M[i]'KEY < M[j]·KEY.

Graphics Interface '86

The predicate UNEXPLORED(P,T) is true if
and only if the side T of node P has not been marked
"explored" in the progress of the algorithm. The
predicate LABEL(P) is true if and only if P .ID has
been assigned a value.

3. AN OBSERVATION

Given a node P in M, its four adjacent or
neighboring nodes can be determined in O(n) steps
[1,9]. Suppose Q is the adjacent node to P in the west
direction. The color of Q can be determined as
WHITE, BLACK or GREY in O(log N) time [1,9].
The BLACK or WHITE color of Q provides the
information regm-ding whether Q is connected to P or
not. Very little knowledge, however, of what is
happening between P and Q is known when the color
of Q is GREY_ Simply, this is because there can either
be no BLACK node or as many as up to 25 BLACK
nodes in Q adjacent to P, where s= P·RES, i.e., P is a
block of 25 by 25 pixels.

This implies that up to 25 further searches on M
must occur in order to exhaust all possible adjacencies.
In fact, this is precisely what Samet's algorithm does.
Assuming a random image, in the sense that a node is
equally likely to appear in any position and at any level
in the quadtree, the neighbor finding operation using a
quadtree is so efficient that the average number of
nodes visited is a constant [8]. Correspondingly, the
neighbor finding operation using a linear quadtree is
less efficient in that the average number of nodes
visited is O(log N) [2]. Therefore, a connected
component labeling algorithm using a linear quadtree
cannot do the same thing as Samet's algorithm does.

Gargantini's algorithm [3] imposes a special
configuration on the region to avoid performing an
exhaustive search. As a result, the algorithm is not
able to deal with regions with arbitrary
configurations. Clearly it is a crucial step, in
achieving an efficient method that when Q, the
adjacent node ofP, turns to be GREY, of how to
preclude further searching on M without losing any
information regarding the adjacencies.

It is this observation that leads to a new method, to
be described in the next section, for labeling all
connected components of a region using an MLQ.

4. AN INFORMAL DESCRIPTION

The connected component labeling algorithm has
three phases. An array called MAP will be used
mainly by the first phase. MAP is constructed from M
such that for any two integers, i, j = (l,2, .. . ,N),
if i < j then M[MAP[iJlRES S; M[MAP[j]]·RES. In
essence, the use of MAP provides the visit of the nodes
in M in ascending size order, while traversing M.

The first phase explores all possible adjacencies
between any pair of BLACK nodes in M and generates

Vision Interface '86

- 237 -

equivalence pairs. The second phase merges all the
equivalence pairs generated during phase one into
equivalence classes. Finally, the third phase assigns
the same identifier (i.e., the label) to those BLACK
nodes that belong to the same equivalence class to
reflect a connected component.

In particular, phase one traverses M in ascending
size order. For each BLACK node P in M being
visited, and T in {N ,E,S, W}, if the side T of P has not
been previously marked, then the adjacency between
node P and the BLACK node of greater or equal size
along the side T of P needs be explored. If such a
BLACK node indeed exists in M, say Q, then the side
OPSIDE(T) ofQ is marked "explored" and is
assigned the same label as that of P to indicate that both
P and Q belong to the same component. Depending on
the configuration of the region under consideration, Q
may already have been assigned a label different from
that of P, in which case, an equivalence pair consisting
of the two labels is generated. This equivalence pair
will be used in the later stages of the algorithm to
update the labels of P and Q so that eventually they
will be assigned the same label. If the side T of P has
already been marked" explored", then the exploration
of the adjacency to the side T of P is no longer needed.

The consequence of this technique is not only to
save one search on M, but rather to save the necessity
of exhausting all possible adjacencies along the side T
of P. The reason for this is as follows. The side T of
P can be marked "explored" only at the time when that
side of P was found to be connected to a BLACK node
that was being visited by the algorithm. The size of
this BLACK node cannot be bigger than P for
otherwise it would not be visited before P. As a
matter of fact, there could be as many such BLACK
nodes as the size of P in M. Regardless how many
BLACK nodes of this nature exist, the "explored"
status of the side T of P, while P is being visited,
simply indicates that the exploration of the adjacencies
across the side T has been previously done.

The distinct feature of this algorithm is that phase
one guarantees that, at most, one exploration of an
adjacency along each side of every BLACK node in M
is sufficient to discover all possible adjacencies
between any pair of BLACK nodes. To see this,
remember that phase one visits the nodes in M in
ascending size order. Consider, for example, the
image in Fig. 1, where the resolution parameter n is
3. By the time BLACK node A is visited, its eastern
adjacency needs not be re-explored, since BLACK
nodes E, D, C and B have already been visited before
A, and the adjacencies were discovered at that time.
Now, however, its northern adjacency must be
explored, since that side of A cannot be marked
"explored" although F was visited before A. As A's
northern neighbor of equal size is found to be GREY,

Graphics Interface '86

the algorithm immediately concludes that there does
not exist a BLACK node adjacent to the northern side
of A, for otherwise the northern side of A would have
been marked "explored". Therefore, no further
search is necessary.

Phase two will merge the equivalence pairs
generated during phase one into equivalence classes in
such a way that each equivalence class contains all
labels assigned to those BLACK nodes that form a
connected component.

Finally, phase three updates the labels assigned to the
BLACK nodes during phase one using the equivalence
classes generated by phase two. Upon completion of
phase three, all BLACK nodes of each connected
component will have unique labels.

M-
B

re- -
A

D
f-- -

E

Fig. 1. An Adjacency Configuration. Fig. 2. A Region With 2 Components.

5. THE FORMAL ALGORITHM

The connected component labeling algorithm will
now be specified by the following procedures.
Actually, only those procedures that correspond to
phases one and three will be presented. Phase two can
be achieved by using the well known UNION-FIND
algorithm [11]. The main procedure is named
LABEL-CC, and invoked with an array M and an
integer N corresponding to the number of BLACK
nodes in M. Steps 1 and 2 construct the MAP and
initialize a list called E-list which will contain the
equivalence pairs as they are generated. Procedure
PROPAGATE implements phase one. It visits the
nodes in M in ascending size order through MAP,
explores the adjacencies between pairs of BLACK
nodes by invoking EXPLORE, assigns labels
produced by ID-GENERATOR, and accumulates
equivalence pairs in the E-list. Procedure EQ­
NEIGHBOR used by EXPLORE computes the key
of MUl's equal-sized neighbor in the direction
specified by the parameter side. The unspecified
procedure SEARCH(M, P) works as follows: if P is
a BLACK node then SEARCH returns an integer
value k such that P is either equal to or contained in
M[k]. However, if P is WHITE or GREY then
SEARCH simply returns a zero. Unique labels are
generated by procedure ID-GENERA TOR, and
assigned to BLACK nodes by procedure ASSIGN-

Vision Interface '86

- 238 -

LABEL. Procedure UPDATE implements phase
three by uniquely labeling each component while
scanning M.

Procedure LABEL-CC(M, N)
begin
1 construct MAP;
2 E-list:={Q>};
3 PROPAGATE(M, N);
4 generate equivalence classes from E-list;
5 UPDA TE(M, N);
end;

Procedure PROPAGATE(M, N)
begin

for i:=1 to N do
begin

j:=MAP[i];
for side in {N,E,S,W} do

if UNEXPLORED(Mfj], side)
then EXPLORE(M[j], side);

if not LABEL(M[j]) then
M[j].ID:= ID-GENERATOR;

end;
end;

Procedure EXPLORE(M, j, side)
begin

neighbor:= EQ-NEIGHBOR(Mfj], side);
k= SEARCH(M, neighbor);
if k > 0 then

begin
mark OPSIDE(side) of M[k] "explored";
ASSIGN-LABEL(Mfj], M[k]);

end;
end;

Procedure ASSIGN-LABEL(node,adj)
begin

if LABEL(node) and LABEL(adj)
then if node.ID *' adj.ID

then add (node.ID,adj.ID) to E-list;
else if LABEL(node)

then adj·ID:=node.ID
else if LABEL(adj)

then node.ID:=adj .ID
else node.ID:=adj.ID:= ID-GENERATOR ;

end ;

Procedure UPDA TE(M, N)
begin

for i:=l to N do
M[i].ID:= FIND(M[i]) ;

end;

Example: As an example of the application of the
algorithm, consider the region given in Fig. 2 whose
block decomposition is given in Fig. 3. The BLACK
nodes have been numbered in the order in which they
were visited by phase one: Thus node 1 has been

Graphics Interface '86

visited before nodes 2, 3, etc. The labels assigned to
the two components by the first phase of the algorithm
are shown in Fig. 4. A short explanation about Fig. 4
is necessary at this point. When node 7 is visited,
neither node 7 nor node 11, its eastern neighbor, has
been labeled yet, thus label d is generated and assigned
to both. When node 8 is visited, it has no label, but its
northern neighbor, node 11, has already been
assigned the label d, and thus node 8 is assigned the
label d as well.

Fig. 4 illustrates the status of the image at the
conclusion of the first phase of the algorithm. It has
four different labels: a, b, c and d, with a equivalent to
b, and b equivalent to c. The equivalence pair (a, b)
was generated when node 9 was visited and its
northern adjacency was explored. In essence, node 9
was labeled with a when node l's western adjacency
was explored, whereas node 1 0 was labeled with b
when node 2's western adjacency was explored.
Similarly, the equivalence pair (b,c) was generated
when node 5 was visited.

Applying the second phase of the algorithm to the
generated equivalence pairs results in the following
two equivalence classes: {a,b,c} and {d}.

Fig. 5 shows the labels updated by the third phase
of the algorithm.

Theorem 1: The time complexity of the connected
component labeling algorithm is O(n·N) .

Proof: Constructing the MAP requires time O(N'log
N). Phase one calls procedure EXPLORE N times,
and procedure EXPLORE requires time
O(n+log N), where n and log N originates from the
invoking of procedure EQ-NEIGHBOR and
SEARCH, respectively. Therefore phase one takes
time O(n'N + N·log N). Phase' 'two requires time
O(N'log N) [9]. Phase three requires time O(N).
Since log N < 2n, the time complexity of the
algorithm is therefore O(n·N).

~ 11 ~ d

~ +
2 3 6 b b b

10 b
5 c

1 4 • c
9 .
Fig. 3. Decomposition of Fig. 2. Fig. 4 . Results of Phase I.

6. COMPUTING THE PERIMETER

Perimeter computation is another basic operation
in image processing. Algorithms computing the
perimeter of a region in a binary image represented

Vision Interface '86

~ 2

~
1 1 1

1
1

1 1
1

Fig. 5. Labels Resulting From Phase 5. Fig. 6. A Connected Region.

either by an array or by a chain code are contained in
[5]. An algorithm for computing the perimeter of a
region encoded as a quadtree has also been developed
by Samet [7].

The following perimeter computation algorithm
traverses the MLQ in ascending size order. For each
node P in the MLQ being visited, the length of each of
its four sides is first included in the value of the
perimeter. Then the neighbor nodes of P which have
not been previously visited need to be considered. For
each adjacent node Q that is BLACK, twice the length
of the common side is deducted from the value of the
perimeter. This reflects the fact that the segment
between P and Q does not belong to the boundary of
the region. The factor 2 occurs because the adjacency
between two BLACK nodes is explored once and only
once due to the traversal strategy used.

For example, given the BLACK node D in Fig. 7,
the common segment between D and its southern
neighbor A is explored by the time D is visited, but the
same common segment is not considered when A is
visited. Therefore the length of this segment DA has
to be deducted in advance when D is visited.

The following procedure PERIMETER specifies the
algorithm.

G

I
cl F

B

A
M-

Fig. 7. Decomposition of Fig. 6.

Graphics Interface '86

- 239 -

Procedure PERIMETER(M, N)
begin

construct MAP;
perimeter:=O;
for i:=1 to N

begin
j:=MAP[i];
segment:=2** M[j].RES;
perimeter:= perimeter + 4 * segment;
for side in {N, E, S, W} do

if UNEXPLORED(M[j], side) then
begin

neighbor:= EQ-NEIGHBOR(M[j], side);
k:= SEARCH(M,neighbor);
if k > 0 then
begin

perimeter:=perimeter - 2 * segment;
mark OPSIDE(side) of M[k] "explored";

end;
end;

end;
return(perimeter) ;

end;

The key to this algorithm is that each node in the
MLQ is visited once and, at most, its four neighbors
need be explored. Such an advantage is achieved by
traversing the MLQ in ascending size order.
Otherwise, in the worst case, when the node being
visited is of size 2n-l by 2n-1, 2n-l nodes need be
searched as in Samet's algorithm [7].

Example: Consider the region given in Fig. 6. The
corresponding block decomposition is shown in
Fig. 7. The MLQ contains six BLACK nodes
representing blocks A, B, C, D, F and G. Assuming
n=3, the perimeter is 30. Procedure PERIMETER
visits the BLACK nodes in the order: B, C, D, F, G
andA.

The following table contains a step-by-step trace
through the algorithm for this example. The symbols
'<I>' and '-' stand for don't care and non-existance,
respectivel y.

Theorem 2: The time complexity of the algorithm
PERIMETER is O(n·N).

Proof: Similar to the proof of Theorem 1.

Note that if the region is not connected, i.e., it
contains more than one connected component, then the
algorithm will return the sum of the perimeters of
each connected component. It is, how.ever, not
difficult to compute the perimeter of every connected
component of the region simultaneously in the same
time complexity with a minor modification of the
algorithm, provided that all connected components
have been labeled.

Vision Interface '86

- 240 -

node side neighbor segment contribut. perim.

B 4 4
N - 4
E C BC -2 2
S A BA -2 0
W - 0

C 4 4
N - 4
E - 4
S A CA -2 2
W q, 2

D 4 6
N F DF -2 4
E - 4
S - 4
W A DA -2 2

F 8 10
N G FG -4 6
E - 6
S q, 6
W - 6

G 8 14
N - 14
E - 14
S q, 14
W - 14

A 16 30
N q, 30
E q, 30
S - 30
W - 30

7. CONCLUSION

Techniques for labeling connected components and
computing the perimeter of a region have been
described. The algorithm for labeling connected
components is superior to the one using a standard
linear quadtree [3] in the sense that it is capable of
handling regions with arbitrary configurations. By
the same token, the perimeter computation algorithm
shares the same advantage.

Graphics Interface '86

REFERENCES

1. Davis, W.A., and Wang, X., "A New Approach to
Linear Quadtrees", Proceedings Graphics
Interface '85, pp. 195-202, Montreal, May
1985.

2. Gargantini, I., "An efficient way to represent
properties of quadtrees", Comm. ACM,
Vol. 25, pp. 905-910, Dec. 1982.

3. Gargantini, I., "Detection of Connectivity for
Regions Using Linear Quadtrees", Comp. &
Math . with Appl., Vol. 8, pp. 319-327, 1982.

4. Rosenfeld, A., "Connectivity in Digital Pictures",
J.ACM, Vol. 17, pp. 146-160, 1970.

5. Rosenfeld, A. and Kak, A.C., "Digital Picture
Processing", Academic Press, New York,
1976.

6. Samet, H., "Connected Component Labeling Using
Quadtrees", J.ACM, Vol. 28, pp. 487-501,
1981.

7. Samet, H., "Computing Perimeters of Regions in
Images 'Represented by Quadtrees", IEEE
Trans. Pattern Analy. & Mach. [ntel.,
Vol. PAMI-3, pp. 683-687, 1981.

8. Samet, H., "Neighbor Finding Tecll~iques for
Images Represented by Quadtrees", C om put.
Graphics and Image Process., Vol. 18, pp. 37-
57,1982.

9. Wang, X., "Some New Approaches for Linear
Quadtrees", M.Sc. Thesis, Department of
Computing Science, University of Alberta,
1985.

10. Klinger, A. and Dyer, c.R., "Experiments in
Picture Representation Using Regular
Decomposition", Computer Graphics and
Image Processing. Vol. 5, pp. 68-105,1976.

11. Aho, A., Hopcroft, 1. and Ullman, 1.0 ., "The
Design and Analysis of Computer Algorithms" ,
Addison-Wesley, Reading, Mass., 1974.

Vision Interface '86

