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Abstract! 

Using the modified linear quadtree proposed in 
[1,9], this paper presents an O(n·N) algorithm for 
labeling connected components of a region consisting 
of N BLACK nodes in a 2n by 2n binary image. As a 
direct application of the algorithm, a method for 
computing the perimeter of a region is also described. 

1. INTRODUCTION 

The identification of all connected components of a 
region is a fundamental operation in image processing 
and geographic systems [4, 5]. Samet [6] presents an 
algorithm for labeling all connected components of a 
region represented by a quadtree, and shows that its 
average execution time is O(T + N·log N), where T 
and N are the total number of nodes and the number of 
BLACK nodes in the quadtree, respectively. That 
algorithm outperforms the traditional method which 
has an execution time proportional to the number of 
pixels of the image [5] . Gargantini [3] also describes 
an entirely different algorithm using a linear quadtree 
[2]; however, that algorithm has limited power as it is 
only applicable to regions with very special 
configurations. 

In this paper, an algorithm adopting a novel 
approach for labeling all connected components of a 
region using a Modified Linear Quadtree (MLQ) is 
presented. It is capable of handling regions with 
arbitrary configurations. Furthermore, the algorithm 
is of time complexity O(n·N), and hence compares 
favorably to Samet's algorithm [6]. As an application 
of the algorithm, this paper will show that, with the 
same time complexity, the perimeter of a region can 
also be computed. 

2. DEFINITIONS AND NOT A TION 

This section contains some basic definitions and 
terminology for region representations that are 
fundamental for the remainder of this paper. 

1 This research was supported in part by the Natural 
Sciences and Engineering Research Council of Canada 
under Grant NSERC A 7634. 
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Definition 1: An image is a 2n by 2n array of unit 
square pixels each of which can assume one of 2k 
values, where n is called the resolution parameter of 
the image. 

Definition 2: An image is called a binary image 
when its pixels assume either 1 or 0 values. A pixel is 
BLACK if it has the value of 1, otherwise it is WHITE. 

Without loss of generality, only binary images will 
be considered in this paper since all of the algorithms 
can be extended to nonbinary images. 

Definition 3: The region of a binary image is 
composed of all BLACK pixels, and the background of 
the region is composed of all WHITE pixels. 

Definition 4: Let (i, j) represent the location of a 
pixel p in a given image, where i and j are the column 
and row positions respectively. Then p has four 
horizontal and vertical neighbors located at: (i-I, j), 
(i,j-l), (i,j+l) and (i+l,j). These pixels are called 
the 4-neighbors of p, and are said to be 4-adjacent to p. 

Definition 5: For two BLACK pixels, p and q, of a 
region, p is said to be connected to q if there is a path 
from p to q consisting entirely of pixels of the region. 

Definition 6: For any BLACK pixel p, the set of 
pixels connected to p is called a connected component 
of the region. If a region has only one component, 
then it is called "connected". 

Based on the principle of recursive decomposition, 
an image is decomposed in the following manner to 
separate a region from its background[lO]. If the 
region does not cover the entire binary array, the 
array will be subdivided into four equal-sized square 
blocks. This process will be applied recursively, until 
blocks are obtained that are either totally contained in 
the region or totally disjoint from it. The recursive 
decomposition of an image produces blocks that must 
have standard sizes (powers of 2) and positions. 
Similar definitions can now be formulated in terms of 
blocks. 
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Definition 7: A block is said to be BLACK if it 
contains only BLACK pixels, WHITE if it contains 
only WHITE pixels, and GREY if it contains both 
BLACK and WHITE pixels. 

The four sides of a block are referred as to its 
North, East, South and West sides, or N, E, S and W 
for short. Let OPSIDE(T) be the side opposite to T, 
e.g., OPSIDE(E)= W. 

Definition 8: Two blocks P and Q are said to be 
4-adjacent along the side T of P if the side T of P 
touches the side OPSIDE(T) of Q. 

Definition 9: BLACK blocks P and Q are said to be 
connected if there exists a path consisting entirely of 
BLACK pixels from a pixel of P to a pixel of Q. 

Definition 10: For two integers I and J given by 
n-l n-l 

1= I(lr2i), and J = I(1r2i), where Ii, Ji E {O,l}, 
i=O i=O 

n-t 
SHUFFLE(I,J) = I(lj'2+Ji)·4i. 

i=O 

To represent a block obtained by the recursive 
decomposition method requires the following 
definition: 

Definition 11: The key of a block or node with 2s 

by 2s pixels is SHUFFLE(I, J), where (I, J) is the 
location of its left bottom pixel, and s is the resolution 
parameter of the block. 

It is now easy to show that the two-tu pie <K,s> 
uniquely represents a block, where K and s are the key 
and resolution parameter of the block, respectively. 

A modified linear quad tree (MLQ) is defined 
to be a sequence of BLACK nodes in two-tuple form 
sorted in ascending key order. This differs from the 
usual definition of a linear quadtree in that the key of 
the node is stored as a single integer rather than as an 
n-digit quaternary code, and the resolution parameter 
of the node is given explicitly rather than implied by 
the number of don't care characters in the quaternary 
code. This modification results in space efficiency and 
improved execution time [9]. 

In presenting the connected component labeling 
algorithm, each BLACK node in the MLQ is stored as 
a record consisting of three fields. The first two 
fields , termed KEY and RES, contain the key and the 
resolution parameter of the node, respectively. The 
third field, termed ID, identifies the connected 
component containing the node. It is set as a result of 
the algorithm to be presented. An array M is used to 
represent the MLQ. Therefore, M has the property 
that for any 

i, j = (l ,2, ... ,N) , if i < j then M[i]'KEY < M[j]·KEY. 
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The predicate UNEXPLORED(P,T) is true if 
and only if the side T of node P has not been marked 
"explored" in the progress of the algorithm. The 
predicate LABEL(P) is true if and only if P .ID has 
been assigned a value. 

3. AN OBSERVATION 

Given a node P in M, its four adjacent or 
neighboring nodes can be determined in O(n) steps 
[1,9]. Suppose Q is the adjacent node to P in the west 
direction. The color of Q can be determined as 
WHITE, BLACK or GREY in O(log N) time [1,9]. 
The BLACK or WHITE color of Q provides the 
information regm-ding whether Q is connected to P or 
not. Very little knowledge, however, of what is 
happening between P and Q is known when the color 
of Q is GREY_ Simply, this is because there can either 
be no BLACK node or as many as up to 25 BLACK 
nodes in Q adjacent to P, where s= P·RES, i.e., P is a 
block of 25 by 25 pixels. 

This implies that up to 25 further searches on M 
must occur in order to exhaust all possible adjacencies. 
In fact, this is precisely what Samet's algorithm does. 
Assuming a random image, in the sense that a node is 
equally likely to appear in any position and at any level 
in the quadtree, the neighbor finding operation using a 
quadtree is so efficient that the average number of 
nodes visited is a constant [8]. Correspondingly, the 
neighbor finding operation using a linear quadtree is 
less efficient in that the average number of nodes 
visited is O(log N) [2]. Therefore, a connected 
component labeling algorithm using a linear quadtree 
cannot do the same thing as Samet's algorithm does. 

Gargantini's algorithm [3] imposes a special 
configuration on the region to avoid performing an 
exhaustive search. As a result, the algorithm is not 
able to deal with regions with arbitrary 
configurations. Clearly it is a crucial step, in 
achieving an efficient method that when Q, the 
adjacent node ofP, turns to be GREY, of how to 
preclude further searching on M without losing any 
information regarding the adjacencies. 

It is this observation that leads to a new method, to 
be described in the next section, for labeling all 
connected components of a region using an MLQ. 

4. AN INFORMAL DESCRIPTION 

The connected component labeling algorithm has 
three phases. An array called MAP will be used 
mainly by the first phase. MAP is constructed from M 
such that for any two integers, i, j = (l,2, .. . ,N), 
if i < j then M[MAP[iJlRES S; M[MAP[j]]·RES. In 
essence, the use of MAP provides the visit of the nodes 
in M in ascending size order, while traversing M. 

The first phase explores all possible adjacencies 
between any pair of BLACK nodes in M and generates 
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equivalence pairs. The second phase merges all the 
equivalence pairs generated during phase one into 
equivalence classes. Finally, the third phase assigns 
the same identifier (i.e., the label) to those BLACK 
nodes that belong to the same equivalence class to 
reflect a connected component. 

In particular, phase one traverses M in ascending 
size order. For each BLACK node P in M being 
visited, and T in {N ,E,S, W}, if the side T of P has not 
been previously marked, then the adjacency between 
node P and the BLACK node of greater or equal size 
along the side T of P needs be explored. If such a 
BLACK node indeed exists in M, say Q, then the side 
OPSIDE(T) ofQ is marked "explored" and is 
assigned the same label as that of P to indicate that both 
P and Q belong to the same component. Depending on 
the configuration of the region under consideration, Q 
may already have been assigned a label different from 
that of P, in which case, an equivalence pair consisting 
of the two labels is generated. This equivalence pair 
will be used in the later stages of the algorithm to 
update the labels of P and Q so that eventually they 
will be assigned the same label. If the side T of P has 
already been marked" explored", then the exploration 
of the adjacency to the side T of P is no longer needed. 

The consequence of this technique is not only to 
save one search on M, but rather to save the necessity 
of exhausting all possible adjacencies along the side T 
of P. The reason for this is as follows. The side T of 
P can be marked "explored" only at the time when that 
side of P was found to be connected to a BLACK node 
that was being visited by the algorithm. The size of 
this BLACK node cannot be bigger than P for 
otherwise it would not be visited before P. As a 
matter of fact, there could be as many such BLACK 
nodes as the size of P in M. Regardless how many 
BLACK nodes of this nature exist, the "explored" 
status of the side T of P, while P is being visited, 
simply indicates that the exploration of the adjacencies 
across the side T has been previously done. 

The distinct feature of this algorithm is that phase 
one guarantees that, at most, one exploration of an 
adjacency along each side of every BLACK node in M 
is sufficient to discover all possible adjacencies 
between any pair of BLACK nodes. To see this, 
remember that phase one visits the nodes in M in 
ascending size order. Consider, for example, the 
image in Fig. 1, where the resolution parameter n is 
3. By the time BLACK node A is visited, its eastern 
adjacency needs not be re-explored, since BLACK 
nodes E, D, C and B have already been visited before 
A, and the adjacencies were discovered at that time. 
Now, however, its northern adjacency must be 
explored, since that side of A cannot be marked 
"explored" although F was visited before A. As A's 
northern neighbor of equal size is found to be GREY, 
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the algorithm immediately concludes that there does 
not exist a BLACK node adjacent to the northern side 
of A, for otherwise the northern side of A would have 
been marked "explored". Therefore, no further 
search is necessary. 

Phase two will merge the equivalence pairs 
generated during phase one into equivalence classes in 
such a way that each equivalence class contains all 
labels assigned to those BLACK nodes that form a 
connected component. 

Finally, phase three updates the labels assigned to the 
BLACK nodes during phase one using the equivalence 
classes generated by phase two. Upon completion of 
phase three, all BLACK nodes of each connected 
component will have unique labels. 

M-
B 

re- -
A 

D 
f-- -

E 

Fig. 1. An Adjacency Configuration. Fig. 2. A Region With 2 Components. 

5. THE FORMAL ALGORITHM 

The connected component labeling algorithm will 
now be specified by the following procedures. 
Actually, only those procedures that correspond to 
phases one and three will be presented. Phase two can 
be achieved by using the well known UNION-FIND 
algorithm [11]. The main procedure is named 
LABEL-CC, and invoked with an array M and an 
integer N corresponding to the number of BLACK 
nodes in M. Steps 1 and 2 construct the MAP and 
initialize a list called E-list which will contain the 
equivalence pairs as they are generated. Procedure 
PROPAGATE implements phase one. It visits the 
nodes in M in ascending size order through MAP, 
explores the adjacencies between pairs of BLACK 
nodes by invoking EXPLORE, assigns labels 
produced by ID-GENERATOR, and accumulates 
equivalence pairs in the E-list. Procedure EQ­
NEIGHBOR used by EXPLORE computes the key 
of MUl's equal-sized neighbor in the direction 
specified by the parameter side. The unspecified 
procedure SEARCH(M, P) works as follows: if P is 
a BLACK node then SEARCH returns an integer 
value k such that P is either equal to or contained in 
M[k]. However, if P is WHITE or GREY then 
SEARCH simply returns a zero. Unique labels are 
generated by procedure ID-GENERA TOR, and 
assigned to BLACK nodes by procedure ASSIGN-
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LABEL. Procedure UPDATE implements phase 
three by uniquely labeling each component while 
scanning M. 

Procedure LABEL-CC(M, N) 
begin 
1 construct MAP; 
2 E-list:={Q>}; 
3 PROPAGATE(M, N); 
4 generate equivalence classes from E-list; 
5 UPDA TE(M, N); 
end; 

Procedure PROPAGATE(M, N) 
begin 

for i:=1 to N do 
begin 

j:=MAP[i]; 
for side in {N,E,S,W} do 

if UNEXPLORED(Mfj], side) 
then EXPLORE(M[j], side); 

if not LABEL(M[j]) then 
M[j].ID:= ID-GENERATOR; 

end; 
end; 

Procedure EXPLORE(M, j, side) 
begin 

neighbor:= EQ-NEIGHBOR(Mfj], side); 
k= SEARCH(M, neighbor); 
if k > 0 then 

begin 
mark OPSIDE(side) of M[k] "explored"; 
ASSIGN-LABEL(Mfj], M[k]); 

end; 
end; 

Procedure ASSIGN-LABEL(node,adj) 
begin 

if LABEL(node) and LABEL(adj) 
then if node.ID *' adj.ID 

then add (node.ID,adj.ID) to E-list; 
else if LABEL(node) 

then adj·ID:=node.ID 
else if LABEL(adj) 

then node.ID:=adj .ID 
else node.ID:=adj.ID:= ID-GENERATOR ; 

end ; 

Procedure UPDA TE(M, N) 
begin 

for i:=l to N do 
M[i].ID:= FIND(M[i]) ; 

end; 

Example: As an example of the application of the 
algorithm, consider the region given in Fig. 2 whose 
block decomposition is given in Fig. 3. The BLACK 
nodes have been numbered in the order in which they 
were visited by phase one: Thus node 1 has been 
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visited before nodes 2, 3, etc. The labels assigned to 
the two components by the first phase of the algorithm 
are shown in Fig. 4. A short explanation about Fig. 4 
is necessary at this point. When node 7 is visited, 
neither node 7 nor node 11, its eastern neighbor, has 
been labeled yet, thus label d is generated and assigned 
to both. When node 8 is visited, it has no label, but its 
northern neighbor, node 11, has already been 
assigned the label d, and thus node 8 is assigned the 
label d as well. 

Fig. 4 illustrates the status of the image at the 
conclusion of the first phase of the algorithm. It has 
four different labels: a, b, c and d, with a equivalent to 
b, and b equivalent to c. The equivalence pair (a, b) 
was generated when node 9 was visited and its 
northern adjacency was explored. In essence, node 9 
was labeled with a when node l's western adjacency 
was explored, whereas node 1 0 was labeled with b 
when node 2's western adjacency was explored. 
Similarly, the equivalence pair (b,c) was generated 
when node 5 was visited. 

Applying the second phase of the algorithm to the 
generated equivalence pairs results in the following 
two equivalence classes: {a,b,c} and {d}. 

Fig. 5 shows the labels updated by the third phase 
of the algorithm. 

Theorem 1: The time complexity of the connected 
component labeling algorithm is O(n·N) . 

Proof: Constructing the MAP requires time O(N'log 
N). Phase one calls procedure EXPLORE N times, 
and procedure EXPLORE requires time 
O(n+log N), where n and log N originates from the 
invoking of procedure EQ-NEIGHBOR and 
SEARCH, respectively. Therefore phase one takes 
time O(n'N + N·log N). Phase' 'two requires time 
O(N'log N) [9]. Phase three requires time O(N). 
Since log N < 2n, the time complexity of the 
algorithm is therefore O(n·N). 

~ 11 ~ d 

~ + 
2 3 6 b b b 

10 b 
5 c 

1 4 • c 
9 . 
Fig. 3. Decomposition of Fig. 2. Fig. 4 . Results of Phase I. 

6. COMPUTING THE PERIMETER 

Perimeter computation is another basic operation 
in image processing. Algorithms computing the 
perimeter of a region in a binary image represented 
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Fig. 5. Labels Resulting From Phase 5. Fig. 6. A Connected Region. 

either by an array or by a chain code are contained in 
[5]. An algorithm for computing the perimeter of a 
region encoded as a quadtree has also been developed 
by Samet [7]. 

The following perimeter computation algorithm 
traverses the MLQ in ascending size order. For each 
node P in the MLQ being visited, the length of each of 
its four sides is first included in the value of the 
perimeter. Then the neighbor nodes of P which have 
not been previously visited need to be considered. For 
each adjacent node Q that is BLACK, twice the length 
of the common side is deducted from the value of the 
perimeter. This reflects the fact that the segment 
between P and Q does not belong to the boundary of 
the region. The factor 2 occurs because the adjacency 
between two BLACK nodes is explored once and only 
once due to the traversal strategy used. 

For example, given the BLACK node D in Fig. 7, 
the common segment between D and its southern 
neighbor A is explored by the time D is visited, but the 
same common segment is not considered when A is 
visited. Therefore the length of this segment DA has 
to be deducted in advance when D is visited. 

The following procedure PERIMETER specifies the 
algorithm. 

G 

I 
cl F 

B 

A 
M-

Fig. 7. Decomposition of Fig. 6. 
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Procedure PERIMETER(M, N) 
begin 

construct MAP; 
perimeter:=O; 
for i:=1 to N 

begin 
j:=MAP[i]; 
segment:=2** M[j].RES; 
perimeter:= perimeter + 4 * segment; 
for side in {N, E, S, W} do 

if UNEXPLORED( M[j], side) then 
begin 

neighbor:= EQ-NEIGHBOR(M[j], side); 
k:= SEARCH(M,neighbor); 
if k > 0 then 
begin 

perimeter:=perimeter - 2 * segment; 
mark OPSIDE(side) of M[k] "explored"; 

end; 
end; 

end; 
return(perimeter) ; 

end; 

The key to this algorithm is that each node in the 
MLQ is visited once and, at most, its four neighbors 
need be explored. Such an advantage is achieved by 
traversing the MLQ in ascending size order. 
Otherwise, in the worst case, when the node being 
visited is of size 2n-l by 2n-1, 2n-l nodes need be 
searched as in Samet's algorithm [7]. 

Example: Consider the region given in Fig. 6. The 
corresponding block decomposition is shown in 
Fig. 7. The MLQ contains six BLACK nodes 
representing blocks A, B, C, D, F and G. Assuming 
n=3, the perimeter is 30. Procedure PERIMETER 
visits the BLACK nodes in the order: B, C, D, F, G 
andA. 

The following table contains a step-by-step trace 
through the algorithm for this example. The symbols 
'<I>' and '-' stand for don't care and non-existance, 
respectivel y. 

Theorem 2: The time complexity of the algorithm 
PERIMETER is O(n·N). 

Proof: Similar to the proof of Theorem 1. 

Note that if the region is not connected, i.e., it 
contains more than one connected component, then the 
algorithm will return the sum of the perimeters of 
each connected component. It is, how.ever, not 
difficult to compute the perimeter of every connected 
component of the region simultaneously in the same 
time complexity with a minor modification of the 
algorithm, provided that all connected components 
have been labeled. 
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node side neighbor segment contribut. perim. 

B 4 4 
N - 4 
E C BC -2 2 
S A BA -2 0 
W - 0 

C 4 4 
N - 4 
E - 4 
S A CA -2 2 
W q, 2 

D 4 6 
N F DF -2 4 
E - 4 
S - 4 
W A DA -2 2 

F 8 10 
N G FG -4 6 
E - 6 
S q, 6 
W - 6 

G 8 14 
N - 14 
E - 14 
S q, 14 
W - 14 

A 16 30 
N q, 30 
E q, 30 
S - 30 
W - 30 

7. CONCLUSION 

Techniques for labeling connected components and 
computing the perimeter of a region have been 
described. The algorithm for labeling connected 
components is superior to the one using a standard 
linear quadtree [3] in the sense that it is capable of 
handling regions with arbitrary configurations. By 
the same token, the perimeter computation algorithm 
shares the same advantage. 
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