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Abstract 

Asterisk* is a test bed system designed to support the 
development of new kinds of splines. The key concept is the 
integration of symbolic computation facilities with tools for 
interactively modifying and comparing different splines. By 
mode ling a spline as a list of attributes, Asterisk* can be 
used to create and manipulate almost any spline, without 
making assumptions about the future directions of spline 
research. 

Resume 

Asterisk* est un systeme d 'etude cree pour appuyer le 
developpement de nouvelles sortes de courbes a. base de 
splines. Le concept clef est l'integration d'outils interactlfs 
pour modifier et comparer differents courbes, avec un 
systeme de calcul symbolique. En decrivant une courbe par 
une liste d 'attributs, le systeme Asterisk* peut etre utilise 
pour creer et manipuler presque n'importe courbe a. base 
de splines sans presumer les directions de cette recherche a 
l'avenir. 

KEYWORDS: geometric modeling, software, symbolic 
computation, parametric curves. 

1. Introduction and Motivation 

A spline is a mathematical formulation of a curve 
used for a wide variety of modeling applications. Unlike 
polygonal representations, splines provide compact and 
resolution-independent descriptions of complex objects. 
Many splines combine a set of control vertices with a set of 
blending functions to determine the path of a curve through 
space. Different splines have different properties, and the 
choice of which spline to use depends on the problem at 
hand. For example, some splines interpolate (pass through) 
the control vertices, while others approximate (pass near) 

them. 

There is no single type of spline that is ideal for all 
applications; each spline is a tool best suited to some 
particular set of tasks. Current spline research involves 
developing new splines with specific properties as solutions 
to different problems. To create a spline representation 
with a desired set of properties, the blending functions 
must satisfy a set of constraints. Sometimes this involves 
combining constraints from existing splines to arrive at a 
new formulation [4]; in other cases it requires substantial 
trial and error to find a suitable set of constraints that 
produces the desired properties. 

Most splines can be described mathematically in simple 
terms. In spite of this, establishing the constraints that 
correspond to desired properties, and then solving for a 
set of blending functions that satisfy those constraints is 
a task that can easily become overwhelming. Computer 
algebra sYstems such as Vaxima [5] can perform error-
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free symbolic (as opposed to numeric) computations of 
complexity too great for humans to handle. Vaxima. 
takes a description of the constraints and produces a. 
symboli c representation of the blending functions. Recent 
efforts in spline development have taken advantage of such. 
capabilities [1,4J. 

To understand the behaviour of new splines, it is useful 
to draw them, preferably in an interactive setting. This 
generally requires an evaluation routine to compute points 
on the curve, and a collection of routines to graphically 
display and modify the curve. The coding of the evaluatioIl 
routine requires tedious translation from the symbolic 
representation into the implementation language. 

Intuition gained from visual feedback, as well as 
comparison with other spline representations, often leads tc> 
modification of the constraints that define the spline. This 
in turn changes the symbolic representation, necessitating 
a recoding of the evaluation routine. 

We would like to tighten this specification/visualizatioIl 
loop and automate the translation step. Feng & Riesen­
feld [6J describe just 'such a system for the development 
of Boolwn sum surfaces. Although Feng& Riesenfeld had 
access to the symbolic algebra system REDUCE[7J, they 
chose not to use it for two reasons: they were interested 
primarily in simple operations on rational bivariate poly­
nomials, and they f~lt that they could not provide a suffi­
ciently high level of user interaction by running a large sys­
tem like REDUCE. Instead, Feng & Riesenfeld implemented 
a small, specialized algebra system capable of performing 
operations such as operator composition, evaluation, and 
symbolic differentiation of bivariate polynomials. 

This paper describes a testbed system called Asterisk*' 
designed to integrate the power of symbolic computation 
with convenient, extensible, interactive tools for modifying 
and comparing different splines [8J. Asterisk* is intended 
for use by those doing research in spline techniques rather 
than those wishing to design specific objects using splines. 
Our system is similar to that of Feng& Riesenfeld, but 
differs in that the emphasis is on generality. Since future 
spline representations may not conform to all the paradigms 
of current spline techniques, one of our primary goals was 
to avoid making too many assumptions about the future 
directions of spline research. 

Asterisk* supports generality in three ways: the use 
of a complete symbolic algebra system (Vaxima), all 
extensible model of a spline (a list of attributes), and 
an extensible set of interactive spline management and 
graphics routines (written in Lisp). The blending functions 
may be developed and verified within Vaxima, and thell 
used directly to draw or plot the resulting curves. As 
new algorithms are developed to manipulate the spline 
representations, routines to implement these algorithms Call 

be written quickly, thus extending the basic building blocks 
that Asterisk* provides. In this way, spline researchers 
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can adapt the interactive test bed to their particular 
requirements and preferen""s. 

2. The Asterisk· Solution 

2 .1. The Asterisk· Model of a Spline 

Thoughout this paper we use the term spline to mean 
a piecewise parametric function of the form 

m 

Q(u) = E Vi Bi(U) (2.1) 
i=O 

wllere the V i represent a set of m + 1 control vertices and 
the Bi (t£) represent a set of blending ft£nctions. 

Asteris.k* provides a uniform definition protocol for 
spline specification by mode ling a spline as a list of 
attributes. Each attribute is a <name,value> pair. Table 1 
summa.rizes some common attributes. In Lisp, these are 
stored as property lists of the spline's name. For instance, 
the attribute list for a spline named "ucb..spline" is stored 
on the property list for the symbol ucLspline. The 
attribute list in Figure 1 was used to define the spline 
ilIllBtrated in Colour Plate 1. 

(.plinename ucb __ pline 

polycolor GREEN 

poly.tyle DASHED 

polydisplay ON 

curvecolor WHITE 

curve.tyle SOLID 

curvedhplay ON 

controlpolygon « .42 . 41) (.41 . 73) ( .66 . 86) 

( . 86 . 76) ( . 86 . 69) ( .61 . 68) 

(.61 .38) ( . 83 .36» 

evalroutine ucb_eval 

parameteratep 0 .0626) 

Figure 1: The attribute list for ucb_8pline. 

2.~. System Architecture 

Conceptually, the Asterisk* test bed consists of three 
logical parts: 

• A Varima to Lisp translator for automatically generat­
ing evaluation routines from Vaxima descriptions. ' This 
is the transition from the analytic expressions for the 
blending functions (the symbolic representation), to the 
procedures that evaluate the blending functions (the 
numeric representation required for graphical display). 

• Interface routines for support of graphical interactions 
such as geometric input or display of a curve. This mod­
ule provides a device independent graphical interface to 
the rest of the system. 
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Attribute Name Value Type Purpose 

controlpolygon List of vertices V, Rough specification of curve path. 

evalroutine Name of a function Names the function which evaluates points on the curve. 

parameterstep Real number The amount the domain parameter U is varied between 

consecutive calls to the evaluation routine. 

polystyle DOTTED Style used to draw control polygon (curve) 

(curvestyle) DASHED 

SOLID 

polycolor Colour name Colour used to draw control polygon (curve) 

(c urvecolor) 

polydisplay ON Should polygon (curve) be displayed? 

(curvedisplay) OFF 

degree Integer The polynomial degree of the curve. 

knotvector List of real numbers u, Specifies a set of parameter values associated with the break-
points between curve segments. This attribute is useful for B-

spline curves and cubic interpolatory splines (cf. Bartela et aI[3]). 

be tal Real number Shape parameters for geometrically continuous techniques such as 

(beta2) Beta-splinesll,2j. 

Table 1: Common Attributes 

• Spline management routines for manipulating attribute 
lists. The spline management routines facilitate con­
venient modification of the spline attributes. These 
routines invoke the interface routines to interact with 
the user and invoke the evaluation routines to generate 
curve segments for each spline. 

When a draw curve operation is initiated, the spline 
management routines repeatedly invoke the evaluation rou­
tine for the spline, passing in a value of the parameter. The 
parameter step attribute determines which, and how many, 
parameter values are passed in. It is the responsibility of 
the evaluation routine to return the point on the curve cor­
responding to each given parameter value. This is done by 
referring to the specific attributes that are needed - at­
tributes which do not affect the computation are ignored. 
The spline management routines invoke the interface rou­
tines to connect the points on the curve into a piecewise 
linear approximation of the curve. 

Ideally, we would like the spline management and in­
terface routines running within the Vaxima environment. 
This approach was taken in an early implementation; un­
fortunately, the code space requirements of Vaxima caused 
excessive page faulting, resulting in poor performance. This 
problem can be avoided by executing Vaxima and the Vax­
ima to Lisp translator in one process, and the spline man­
agement and interface routines in another. In the current 
implementation these processes run on separate machines 
and communicate via disk files transmitted over a local area 
network. An advantage of the two-process structure is the 
ability to substitute an alternate symbolic computation sys­
tem, such as REDUCE, by supplying an appropriate trans­
lation routine. 
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2.3. Extension Features 

Asterisk* supports extensibility in two ways. Both 
the set of functions that manipulate splines and the data 
structures used to represent splines can be extended as 
needed. 

Functional extension is a byproduct of the Lisp environ­
ment . Extension of spline representations follows from the 
fact that each evaluation routine ignores attributes which 
do not affect its computation. Thus, not all splines require 
all attributes, and new attributes can easily be added for 
evaluation routines which require them. More importantly, 
these additions are completely transparent to other eval­
uation routines, meaning that existing code need not be 
modified. 

3. Applications 

3.1. Comparisons of Spline Curves 

It is often desirable to compare and contrast the 
behaviour of various curves . For instance, one might want 
to determine the effect of changing the control polygon, 
the shape parameters, or the polynomial degree of a curve. 
One may also wish to compare the shapes of two curves 
of different tvoes defined by the same control polygon. In 
Asterisk*, all of these comparisons can be accomplished 
using the following three steps: 

1. Define the curve that is to be the basis of the 
comparison. 

2. Make a copy of the curve by copying its attribute 
list . 
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3. Change one (or more) of the new curve's attributes. 

To visually distinguish between the two curves it is 
often useful to change display attributes such as the line 
style or colour of the control polygon or curve. Colour 
Plates 1 through 4 illustrate such comparisons. 

3.2. The Development of a New Curve Type 

As mentioned in Section 1, one of the main motivations 
for Asterisk'" was the ability to easily define and assess 
new curve types in an interactive setting. The process 
of designing new curve types typically involves repeated 
iteration through the following steps: 

1. Determine the desired properties for the curve. 

2. State these properties as mathematical constraints. 

3. Use vaxima to solve the constraints. 

4. Interactively assess and experiment with the curve. 

As an example, Table 2 describes a new curve that was 
constructed and tested using Asterisk"'. The three columns 
of the table contain the desired properties for the curve 
(step 1), the corresponding mathematical constraints (step 
2), and the associated Vaxima expressions (step 3). In the 
bottom right section of the table, the lengthy derivation of 
the Vaxima expressions describing the convex hull property 

Property Constraint. 

Cubic polynomial curve defined 
3 

has been omitted for the sake of brevity. Figure 2 contains 
the Lisp evaluation routine produced by the Vaxima to Lisp 
translator. 

To interactively assess the new technique (step 4), we 
create a new spline attribute list and graphically specify a 
control polygon to which the evaluation routine is applied 
(see Colour Plate 3). The techniques of Section 3.1 can 
then be used to observe the behaviour of the curve under 
various conditions. 

3.3. Interactive Testing of Algorithms 

To this point, we have concentrated on the specification 
and comparison of splines themselves. As mentioned 
above, this involves creation and modification of spline 
attribute lists, using various operations which Asterisk'" 
provides. Another aspect of current spline research is the 
development of algorithms that operate on splines. To 
test interactively such an algorithm without the benefit of 
a testbed system such as Asterisk"', one would be forced 
to write a specialized program to manage data structures 
and user·interaction, in addition to performing the required 
computation. 

With Asterisk"', one is able to concentrate on writing 
a Lisp function to implement the new algorithm alone; 
data structure manipula.tion is handled by the spline 

Vaxima Expression 

poly(a,b,c,d) :- a+b*u+c*u"2+d"3; 

by 4 control vertices bO(u) :- "(poly(kOO,k01,k02.k03»; 
Q(u) = LV.BiCu) b1(u) :- "(poly(k10,k11,k12,k13»; 

,=0 b2(u) :- "(poly(k20,k21,k22,k23»; 
where 

3 b3(u) :- "(poly(k30,k31,k32,k33»; 

B,(u) = Lki;ui . 
. 

;=0 

Symmetry: reversing the control b2(u) : - .. (b1(l-u»; 

points reverses the curve. Bo(u) = B3 (1- u) b3(u) : - "(bO(l-u»; 

Bdu)=B2 (1-u) 
unknowns : [kOO, k01, k02, k03, 

k10,k11,k12 , k13] ; 

Interpolation of first and eO:bO(O)-l; e1 :bO(1/2)-o; e2:bO(1)=0; 

last control vertices and the Q(O) = V() e3 :b1(O)-O; e4:b1(1/2)-1/2; e5:bl(1)=O; 

midpoint of the center leg of the 1 V 1 + V 2 
control polygon. Q(-) = 

2 2 

Q(I) = Va 

Convex hull: the curve should bOd1(u) :- "(diff(bO(u),u»; 

lie entirely within the smallest 3 b1d1 (u) :- "(diff (b1(u) ,u» ; 

convex region containing the LB,(u) = 1 e6 :bOdi{O) - -1; eT: b1dl(O)-O; 

control polygon. ,=0 equations : [eO,e1,e2,e3,e4,e5,e6,eT] ; 

B,(u) ~ 0, u E [0,1] 
answer : linsolve(equationa, unknowns) ; 

Table 2: Definition of a New Curve Type 
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(def bO (lambda (u) 

(+ 1.0 ( .. -5.0 u) 

( .. 8 .0 (expt u 2.0» 

( .. -4.0 (expt u 3 .0»») 

(def bl (lambda (u» 

(+ ( .. 4 .0 u) 

( .. -8 .0 (expt u 2 . 0» 

( .. 4 .0 (expt u 3 .0»») 

(def b2 (lambda (u) 

(+ ( .. 4.0 (expt u 2 . 0» 

( .. -4 .0 (expt u 3 .0»») 

(def b3 (lambda (u) 

(+ u (.. -4 . 0 (expt u 2 .0» 

( • . 4 . 0 (expt u 3 .0»») 

Figure 2: Code produced by the vaxima to lisp translator 
for the example of Table 2. 

management routines and user interaction is handled by 
the interface routines. If the operation provided by the 
algorithm is of lasting interest, it is a simple matter to 
include it on one of the Asterisk* menus, thereby allowing 
the user to graphically invoke the algorithm by selecting 
the menu item and the spline that is to be operated on. 

As a specific example, consider an algorithm to perform 
linear subdivision of polynomial splines. The subdivision 
process takes as input the control polygon describing one 
segment of a curve, and returns a control polygon that 
generates only a portion of the original curve (see Colour 
Plate 4). This operation was added to Asterisk* by 
writing a Lisp function that requests a copy of a spline's 
attribute list, and replaces the controlpolygon attribute 
with a subdivision polygon. The new operation can now 
be applied interactively and the subdivided curves can be 
directly compared to the original ones. 

4. Summary 

Symbolic algebra systems have allowed increasingly 
complex spline formulations to be developed. However, 
interactive visual feedback is needed to understand the 
behaviour of the resulting curves. Intuition thus gained 
often leads to reformulation of the underlying mathematics. 

Asterisk* has been developed to tighten this design 
loop by automating the conversion between symbolic 
and graphical representations. As such, it provides a 
framework for the interactive development, manipulation, 
and comparison of new splines j it is not merely a program 
with a fixed set of built-in splines. Asterisk* also provides 
facilities for quickly implementing and exercising new 
algorithms that operate on spline representations. In 
addition, because Asterisk* allows one to concentrate on 
the mathematics and implementation of computational 
algorithms without worrying about user interaction and 
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graphical display, we believe that it will prove useful as 
a tool for teaching basic curve and surface techniques. 

The Asterisk* model of a spline as a list of attributes 
does not restrict us to dealing with two-dimensional 
curves. Modifying the data structures and graphical display 
routines to handle three-dimensional curves and surfaces is 
an obvious extension. 
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Colour Plate 1: A uniform cubic B-spline. The control 
polygon is coloured green and the curve is coloured white. 

Colour Plate 3: This plate illustrates a midpoint curve 
(shown in red), together with its control polygon (showIl 
in green) . As required by the representation, the curve 
interpolates the first and last control vertices, as well as 
the midpoint of the middle leg of the control polygon. 
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Colour Plate 2: Two splines that share a common control 
polygon (shown in green), but have different evaluation 
routine attributes. The white curve is a uniform cubic B­
spline, and the red curve is a seventh degree Bezier curve. 

Colour Plate 4: This plate demonstrates the behaviour 
of a subdivision algorithm for a cubic Bezier curve. The 
original control polygon (shown in green) generates the 
green curve when its parameter varies on the interval [0,1]. 
The subdivision polygon (shown in white) generates the 
white curve when its parameter varies on the interval 
[0,1 ]. The subdivision polygon is constructed so that 
the white curve is identical to the portion of green curve 
corresponding to the interval [0, 2/ 3]. 
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