
- 241 -

ASTERISK·: AN EXTENSIBLE TESTB ED
FOR SPLINE DEVELOPMENT

Jonathan R. Gross t
Tony D. DeRose t
Brian A Barsky

Berkeley Computer Graphics Laboratory
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA. 94720
U.S.A.

Abstract

Asterisk* is a test bed system designed to support the
development of new kinds of splines. The key concept is the
integration of symbolic computation facilities with tools for
interactively modifying and comparing different splines. By
mode ling a spline as a list of attributes, Asterisk* can be
used to create and manipulate almost any spline, without
making assumptions about the future directions of spline
research.

Resume

Asterisk* est un systeme d 'etude cree pour appuyer le
developpement de nouvelles sortes de courbes a. base de
splines. Le concept clef est l'integration d'outils interactlfs
pour modifier et comparer differents courbes, avec un
systeme de calcul symbolique. En decrivant une courbe par
une liste d 'attributs, le systeme Asterisk* peut etre utilise
pour creer et manipuler presque n'importe courbe a. base
de splines sans presumer les directions de cette recherche a
l'avenir.

KEYWORDS: geometric modeling, software, symbolic
computation, parametric curves.

1. Introduction and Motivation

A spline is a mathematical formulation of a curve
used for a wide variety of modeling applications. Unlike
polygonal representations, splines provide compact and
resolution-independent descriptions of complex objects.
Many splines combine a set of control vertices with a set of
blending functions to determine the path of a curve through
space. Different splines have different properties, and the
choice of which spline to use depends on the problem at
hand. For example, some splines interpolate (pass through)
the control vertices, while others approximate (pass near)

them.

There is no single type of spline that is ideal for all
applications; each spline is a tool best suited to some
particular set of tasks. Current spline research involves
developing new splines with specific properties as solutions
to different problems. To create a spline representation
with a desired set of properties, the blending functions
must satisfy a set of constraints. Sometimes this involves
combining constraints from existing splines to arrive at a
new formulation [4]; in other cases it requires substantial
trial and error to find a suitable set of constraints that
produces the desired properties.

Most splines can be described mathematically in simple
terms. In spite of this, establishing the constraints that
correspond to desired properties, and then solving for a
set of blending functions that satisfy those constraints is
a task that can easily become overwhelming. Computer
algebra sYstems such as Vaxima [5] can perform error-

• A Simple Testbed for the Evaluation and Rendering (Interactively) of Splines of many Kinds .

t Author's current address: Vertigo Systems International, Suite 221-119 West Pender Street,

Vancouver, B.C. Canada V6B 1S5.

t Author's current address: Department of Computer Science, FR-35, University of Washington,

Seattie , WA. 98195, U.S.A.

This work was supported in part by the Defense Advanced Research Projects Agency under contract

number NOOO39-82-C-0235, the National Science Foundation under grant number ECS-8204381, the Natural

Sciences and Engineering Research Council of Canada, the State of California under a Microelectronics

Innovation and Computer Research Opportunities grant, and a Shell Doctoral Fellowship.

Graphics Interface '86 Vision Interface '86

- 2 4:1 -

free symbolic (as opposed to numeric) computations of
complexity too great for humans to handle. Vaxima.
takes a description of the constraints and produces a.
symboli c representation of the blending functions. Recent
efforts in spline development have taken advantage of such.
capabilities [1,4J.

To understand the behaviour of new splines, it is useful
to draw them, preferably in an interactive setting. This
generally requires an evaluation routine to compute points
on the curve, and a collection of routines to graphically
display and modify the curve. The coding of the evaluatioIl
routine requires tedious translation from the symbolic
representation into the implementation language.

Intuition gained from visual feedback, as well as
comparison with other spline representations, often leads tc>
modification of the constraints that define the spline. This
in turn changes the symbolic representation, necessitating
a recoding of the evaluation routine.

We would like to tighten this specification/visualizatioIl
loop and automate the translation step. Feng & Riesen­
feld [6J describe just 'such a system for the development
of Boolwn sum surfaces. Although Feng& Riesenfeld had
access to the symbolic algebra system REDUCE[7J, they
chose not to use it for two reasons: they were interested
primarily in simple operations on rational bivariate poly­
nomials, and they f~lt that they could not provide a suffi­
ciently high level of user interaction by running a large sys­
tem like REDUCE. Instead, Feng & Riesenfeld implemented
a small, specialized algebra system capable of performing
operations such as operator composition, evaluation, and
symbolic differentiation of bivariate polynomials.

This paper describes a testbed system called Asterisk*'
designed to integrate the power of symbolic computation
with convenient, extensible, interactive tools for modifying
and comparing different splines [8J. Asterisk* is intended
for use by those doing research in spline techniques rather
than those wishing to design specific objects using splines.
Our system is similar to that of Feng& Riesenfeld, but
differs in that the emphasis is on generality. Since future
spline representations may not conform to all the paradigms
of current spline techniques, one of our primary goals was
to avoid making too many assumptions about the future
directions of spline research.

Asterisk* supports generality in three ways: the use
of a complete symbolic algebra system (Vaxima), all
extensible model of a spline (a list of attributes), and
an extensible set of interactive spline management and
graphics routines (written in Lisp). The blending functions
may be developed and verified within Vaxima, and thell
used directly to draw or plot the resulting curves. As
new algorithms are developed to manipulate the spline
representations, routines to implement these algorithms Call

be written quickly, thus extending the basic building blocks
that Asterisk* provides. In this way, spline researchers

Graphics Interface 'S6

can adapt the interactive test bed to their particular
requirements and preferen""s.

2. The Asterisk· Solution

2 .1. The Asterisk· Model of a Spline

Thoughout this paper we use the term spline to mean
a piecewise parametric function of the form

m

Q(u) = E Vi Bi(U) (2.1)
i=O

wllere the V i represent a set of m + 1 control vertices and
the Bi (t£) represent a set of blending ft£nctions.

Asteris.k* provides a uniform definition protocol for
spline specification by mode ling a spline as a list of
attributes. Each attribute is a <name,value> pair. Table 1
summa.rizes some common attributes. In Lisp, these are
stored as property lists of the spline's name. For instance,
the attribute list for a spline named "ucb..spline" is stored
on the property list for the symbol ucLspline. The
attribute list in Figure 1 was used to define the spline
ilIllBtrated in Colour Plate 1.

(.plinename ucb __ pline

polycolor GREEN

poly.tyle DASHED

polydisplay ON

curvecolor WHITE

curve.tyle SOLID

curvedhplay ON

controlpolygon « .42 . 41) (.41 . 73) (.66 . 86)

(. 86 . 76) (. 86 . 69) (.61 . 68)

(.61 .38) (. 83 .36»

evalroutine ucb_eval

parameteratep 0 .0626)

Figure 1: The attribute list for ucb_8pline.

2.~. System Architecture

Conceptually, the Asterisk* test bed consists of three
logical parts:

• A Varima to Lisp translator for automatically generat­
ing evaluation routines from Vaxima descriptions. ' This
is the transition from the analytic expressions for the
blending functions (the symbolic representation), to the
procedures that evaluate the blending functions (the
numeric representation required for graphical display).

• Interface routines for support of graphical interactions
such as geometric input or display of a curve. This mod­
ule provides a device independent graphical interface to
the rest of the system.

Vision Interface 'S6

- 243 -

Attribute Name Value Type Purpose

controlpolygon List of vertices V, Rough specification of curve path.

evalroutine Name of a function Names the function which evaluates points on the curve.

parameterstep Real number The amount the domain parameter U is varied between

consecutive calls to the evaluation routine.

polystyle DOTTED Style used to draw control polygon (curve)

(curvestyle) DASHED

SOLID

polycolor Colour name Colour used to draw control polygon (curve)

(c urvecolor)

polydisplay ON Should polygon (curve) be displayed?

(curvedisplay) OFF

degree Integer The polynomial degree of the curve.

knotvector List of real numbers u, Specifies a set of parameter values associated with the break-
points between curve segments. This attribute is useful for B-

spline curves and cubic interpolatory splines (cf. Bartela et aI[3]).

be tal Real number Shape parameters for geometrically continuous techniques such as

(beta2) Beta-splinesll,2j.

Table 1: Common Attributes

• Spline management routines for manipulating attribute
lists. The spline management routines facilitate con­
venient modification of the spline attributes. These
routines invoke the interface routines to interact with
the user and invoke the evaluation routines to generate
curve segments for each spline.

When a draw curve operation is initiated, the spline
management routines repeatedly invoke the evaluation rou­
tine for the spline, passing in a value of the parameter. The
parameter step attribute determines which, and how many,
parameter values are passed in. It is the responsibility of
the evaluation routine to return the point on the curve cor­
responding to each given parameter value. This is done by
referring to the specific attributes that are needed - at­
tributes which do not affect the computation are ignored.
The spline management routines invoke the interface rou­
tines to connect the points on the curve into a piecewise
linear approximation of the curve.

Ideally, we would like the spline management and in­
terface routines running within the Vaxima environment.
This approach was taken in an early implementation; un­
fortunately, the code space requirements of Vaxima caused
excessive page faulting, resulting in poor performance. This
problem can be avoided by executing Vaxima and the Vax­
ima to Lisp translator in one process, and the spline man­
agement and interface routines in another. In the current
implementation these processes run on separate machines
and communicate via disk files transmitted over a local area
network. An advantage of the two-process structure is the
ability to substitute an alternate symbolic computation sys­
tem, such as REDUCE, by supplying an appropriate trans­
lation routine.

Graphics Interface '86

2.3. Extension Features

Asterisk* supports extensibility in two ways. Both
the set of functions that manipulate splines and the data
structures used to represent splines can be extended as
needed.

Functional extension is a byproduct of the Lisp environ­
ment . Extension of spline representations follows from the
fact that each evaluation routine ignores attributes which
do not affect its computation. Thus, not all splines require
all attributes, and new attributes can easily be added for
evaluation routines which require them. More importantly,
these additions are completely transparent to other eval­
uation routines, meaning that existing code need not be
modified.

3. Applications

3.1. Comparisons of Spline Curves

It is often desirable to compare and contrast the
behaviour of various curves . For instance, one might want
to determine the effect of changing the control polygon,
the shape parameters, or the polynomial degree of a curve.
One may also wish to compare the shapes of two curves
of different tvoes defined by the same control polygon. In
Asterisk*, all of these comparisons can be accomplished
using the following three steps:

1. Define the curve that is to be the basis of the
comparison.

2. Make a copy of the curve by copying its attribute
list .

Vision Interface '86

- 244 -

3. Change one (or more) of the new curve's attributes.

To visually distinguish between the two curves it is
often useful to change display attributes such as the line
style or colour of the control polygon or curve. Colour
Plates 1 through 4 illustrate such comparisons.

3.2. The Development of a New Curve Type

As mentioned in Section 1, one of the main motivations
for Asterisk'" was the ability to easily define and assess
new curve types in an interactive setting. The process
of designing new curve types typically involves repeated
iteration through the following steps:

1. Determine the desired properties for the curve.

2. State these properties as mathematical constraints.

3. Use vaxima to solve the constraints.

4. Interactively assess and experiment with the curve.

As an example, Table 2 describes a new curve that was
constructed and tested using Asterisk"'. The three columns
of the table contain the desired properties for the curve
(step 1), the corresponding mathematical constraints (step
2), and the associated Vaxima expressions (step 3). In the
bottom right section of the table, the lengthy derivation of
the Vaxima expressions describing the convex hull property

Property Constraint.

Cubic polynomial curve defined
3

has been omitted for the sake of brevity. Figure 2 contains
the Lisp evaluation routine produced by the Vaxima to Lisp
translator.

To interactively assess the new technique (step 4), we
create a new spline attribute list and graphically specify a
control polygon to which the evaluation routine is applied
(see Colour Plate 3). The techniques of Section 3.1 can
then be used to observe the behaviour of the curve under
various conditions.

3.3. Interactive Testing of Algorithms

To this point, we have concentrated on the specification
and comparison of splines themselves. As mentioned
above, this involves creation and modification of spline
attribute lists, using various operations which Asterisk'"
provides. Another aspect of current spline research is the
development of algorithms that operate on splines. To
test interactively such an algorithm without the benefit of
a testbed system such as Asterisk"', one would be forced
to write a specialized program to manage data structures
and user·interaction, in addition to performing the required
computation.

With Asterisk"', one is able to concentrate on writing
a Lisp function to implement the new algorithm alone;
data structure manipula.tion is handled by the spline

Vaxima Expression

poly(a,b,c,d) :- a+b*u+c*u"2+d"3;

by 4 control vertices bO(u) :- "(poly(kOO,k01,k02.k03»;
Q(u) = LV.BiCu) b1(u) :- "(poly(k10,k11,k12,k13»;

,=0 b2(u) :- "(poly(k20,k21,k22,k23»;
where

3 b3(u) :- "(poly(k30,k31,k32,k33»;

B,(u) = Lki;ui .
.

;=0

Symmetry: reversing the control b2(u) : - .. (b1(l-u»;

points reverses the curve. Bo(u) = B3 (1- u) b3(u) : - "(bO(l-u»;

Bdu)=B2 (1-u)
unknowns : [kOO, k01, k02, k03,

k10,k11,k12 , k13] ;

Interpolation of first and eO:bO(O)-l; e1 :bO(1/2)-o; e2:bO(1)=0;

last control vertices and the Q(O) = V() e3 :b1(O)-O; e4:b1(1/2)-1/2; e5:bl(1)=O;

midpoint of the center leg of the 1 V 1 + V 2
control polygon. Q(-) =

2 2

Q(I) = Va

Convex hull: the curve should bOd1(u) :- "(diff(bO(u),u»;

lie entirely within the smallest 3 b1d1 (u) :- "(diff (b1(u) ,u» ;

convex region containing the LB,(u) = 1 e6 :bOdi{O) - -1; eT: b1dl(O)-O;

control polygon. ,=0 equations : [eO,e1,e2,e3,e4,e5,e6,eT] ;

B,(u) ~ 0, u E [0,1]
answer : linsolve(equationa, unknowns) ;

Table 2: Definition of a New Curve Type

Graphics Interface '86 Vision Interface '86

- 245 -

(def bO (lambda (u)

(+ 1.0 (.. -5.0 u)

(.. 8 .0 (expt u 2.0»

(.. -4.0 (expt u 3 .0»»)

(def bl (lambda (u»

(+ (.. 4 .0 u)

(.. -8 .0 (expt u 2 . 0»

(.. 4 .0 (expt u 3 .0»»)

(def b2 (lambda (u)

(+ (.. 4.0 (expt u 2 . 0»

(.. -4 .0 (expt u 3 .0»»)

(def b3 (lambda (u)

(+ u (.. -4 . 0 (expt u 2 .0»

(• . 4 . 0 (expt u 3 .0»»)

Figure 2: Code produced by the vaxima to lisp translator
for the example of Table 2.

management routines and user interaction is handled by
the interface routines. If the operation provided by the
algorithm is of lasting interest, it is a simple matter to
include it on one of the Asterisk* menus, thereby allowing
the user to graphically invoke the algorithm by selecting
the menu item and the spline that is to be operated on.

As a specific example, consider an algorithm to perform
linear subdivision of polynomial splines. The subdivision
process takes as input the control polygon describing one
segment of a curve, and returns a control polygon that
generates only a portion of the original curve (see Colour
Plate 4). This operation was added to Asterisk* by
writing a Lisp function that requests a copy of a spline's
attribute list, and replaces the controlpolygon attribute
with a subdivision polygon. The new operation can now
be applied interactively and the subdivided curves can be
directly compared to the original ones.

4. Summary

Symbolic algebra systems have allowed increasingly
complex spline formulations to be developed. However,
interactive visual feedback is needed to understand the
behaviour of the resulting curves. Intuition thus gained
often leads to reformulation of the underlying mathematics.

Asterisk* has been developed to tighten this design
loop by automating the conversion between symbolic
and graphical representations. As such, it provides a
framework for the interactive development, manipulation,
and comparison of new splines j it is not merely a program
with a fixed set of built-in splines. Asterisk* also provides
facilities for quickly implementing and exercising new
algorithms that operate on spline representations. In
addition, because Asterisk* allows one to concentrate on
the mathematics and implementation of computational
algorithms without worrying about user interaction and

Graphics Interface '86

graphical display, we believe that it will prove useful as
a tool for teaching basic curve and surface techniques.

The Asterisk* model of a spline as a list of attributes
does not restrict us to dealing with two-dimensional
curves. Modifying the data structures and graphical display
routines to handle three-dimensional curves and surfaces is
an obvious extension.

References

1. Brian A. Barsky, The Beta-spline: A Local Representa­
tion Based on Shape Parameters and Fundamental Ge­
ometric Measures, Ph.D. Thesis, University of Utah,
Salt Lake City, Utah (December, 1981).

2. Brian A. Barsky, Computer Graphics and Geometric
Modelling Using Beta-splines, Springer-Verlag, Tokyo
(1986).

3. Richard H. Bartels, John C. Beatty, and Brian A.
Barsky, An Introduction to the Use of Splines in Com­
puter Graphics, UCB/CSD 83/136, Computer Science
Division, Electrical Engineering and Computer Sciences
Department, University of California, Berkeley, Califor­
nia, USA (August, 1983). Also Tech. Report No. CS-
83-9, Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada.

4. Tony D. DeRose and Brian A. Barsky, "Geometric
Continuity and Shape Parameters for Catmull-Rom
Splines (Extended Abstract}," pp. 57-62 in Proceedings
of Graphics Interface '8 .. , Ottawa (27 May - 1 June,
1984) .

5. Richard J . Fateman, Addendum to the MACSYMA
Reference Manual for the VAX, Computer Science
Division, University of California, Berkeley (1982) .

6. David Y. Feng and Richard F. Riesenfeld, "A Symbolic
System for Computer-Aided Development of Surface
Interpolants," Software - Practice and Experience,
Vol. 8, No. 4, July-August, 1978, pp. 461-481.

7. Martin L. Griss, A REDUCE Symbolic-Numeric Tu­
torial, Utah Symbolic Computation Group Operating
Note, Technical Report No. UCP-32, Department of
Computer Science, University of Utah (October, 1977).

8. Jonathan R. Gross, Software Tools for Computer
Graphics Research and Development, Masters Report,
University of California, Berkeley (May, 1984).

Vision Interface '86

- 24& -

Colour Plate 1: A uniform cubic B-spline. The control
polygon is coloured green and the curve is coloured white.

Colour Plate 3: This plate illustrates a midpoint curve
(shown in red), together with its control polygon (showIl
in green) . As required by the representation, the curve
interpolates the first and last control vertices, as well as
the midpoint of the middle leg of the control polygon.

Graphics Interface '86

Colour Plate 2: Two splines that share a common control
polygon (shown in green), but have different evaluation
routine attributes. The white curve is a uniform cubic B­
spline, and the red curve is a seventh degree Bezier curve.

Colour Plate 4: This plate demonstrates the behaviour
of a subdivision algorithm for a cubic Bezier curve. The
original control polygon (shown in green) generates the
green curve when its parameter varies on the interval [0,1].
The subdivision polygon (shown in white) generates the
white curve when its parameter varies on the interval
[0,1]. The subdivision polygon is constructed so that
the white curve is identical to the portion of green curve
corresponding to the interval [0, 2/ 3].

Vision Interface '86

