
- 20 -

SEMANTIC NETWORK REASONING 
FOR PICTURE COMPOSITION 

Rafail Ostrovsky 
Corn pu ter Science 

Department 

Brian R. Gardner 
University Professors 

Program 

Marek HO!yllski 
Com puter Science 

Department * 

Boston University, Boston, MA 02215 

ABSTRACT 

To design an intelligent graphics system, con­
ceptual information has to be represented and 
reasont'd about. This paper t'xplores knowledge 
representation schema, tools and techniques which 
are necessary for creating such a system. We Will 
present a system that allows us to relate t?e mean­
ing of a picture to its graphic representation . Two 
major blocks of tht' system art' respon sibl~ for 
abstract reasoning ahout a picturt' and for plcture 
composition respt'Ctively. We will show how .a 
Semantic Nt'twork. formalism and Semantlc 
Network.-based reasoning can bt' employed to allow 
abstract reasoning ahout a picture. How based on 
conct'ptual level information, the system reasons 
about appropriate scene composition and image gen­
eration. A smooth transition from conceptual level 
information to the actual picturt' composition is also 
achieved. 'Ve introduce a simple environmt'nt in 
which we have tested our approach. With in the 
constraints of this environment our system reasons 
about abstract non-visual concepts, decides which 
physical objects should be displayt'd, and rtllders 
them into an image. 

KEYWORDS: 
Intelligent' graphics system; Knowled~~ representa-
tion; Temporal reasoning; Scene com posltlOn. 

1. Introduction 

Current graphic systems place the tasks of sce~e 
composition and object formation on the user. TheIr 
performance is lim ited to the representatIOn of an 
image that was fu lly determined bY,a programmer. 
The situation would improve when, lllstead of bur­
densome testing of different versions of an image, the 
user could obtain some assistance in deciding about 

* A Iso. Center for Advanced V isual Studies. Massac husetts In­
stitute of Technology. Cambridge. MA 02139. 

Graphics Interface 'S6 

the user could obtain some assistance in deciding 
about graphic presentation from an intelligent com­
puter graphics system. 

In order for a system to provide such assistance, 
it should have some knowledge about the nature of 
the objects which user wants to display. In many 
cases, the user may wish to give onl y abstract 
spt'cifications of the picture he wants t o set'. How 
does a system decide what to display and in what 
f orm it should be displayed? What kind of 
k.nowledge rt'presentation and reasoning mechanisms 
do we need to cope with this problem? How does 
one go from abstract specification of the picture to 
the actual image being generated? In this paper we 
will try to answer some of this questions and 
present a design of a system which is resROnsible for 
the appropriate picture composition and generation. 

To create an intelligent graphics system, tools 
must first be developed which integrate techniques 
from the fields of Artificial Intelligence and Com­
puter Graphics in a coherent manner [2]. Our system 
consists of two modules. Reasoning and determina­
tion of the conceptual specifications for the picture is 
facilitated by the Semantic Network Processing Sys­
tem (SNePS) [4]. SNePS allows us to create the con­
ceptual knowledge base in tht' form of a semantic 
network and is capable of including rules of infer­
ence in the same rt'presentation. It d ecides on the 
appropriate meaning of the picture and on the 
objects which should therefore be incl udt'd in the 
picture. SNePS passes this information to a graphics 
module (Grafiisp [1]) along with some set of restric­
tions for the picture composition. 

A graphics module is responsible for object gen­
eration. transformation and display rendering. 
Grafii sp maintains knowledge of object structures 
and of inter-relationships between objects. Objects 
bart' a special class inheritance. This allows objects 
to be comprised of any forms which can be func­
tionally ddined, ratht'r than limi ting them to be 
built- lip from a polygonal base. Users may define 
and link their own classes to the classes which are 
currently defined (polygons, spheres. surfaces of 
revolution, etc.). In addition to t he smooth shading, 

Vision Interface 'S6 



- 21 -

realism and perceptual clarity is enhanced by the 
use of color or tex ture pattems on th e object's 
surface. The system can reference both the color 
and texture mapping functions associated to an 
object at render-time. This allows either th e map­
ping of images (from a camera or a previous image) 
or of a functionally defined artificial texture onto an 
object 's surface (see Fig. 1). 

2. Conceptual level 

Since we want to deal with various concepts, 
we have to represent them in our system. There­
fore, w e use a semantic network in which every con­
cept is represented by a node. Such a semantic net­
work formalism has been implemented by S. C. 
Shapiro [4]. The arcs be tween concepts represent 
relation s of one concept to another concept. We can 
talk about th e distance from one concept to the 
other, where, the shortest path via some set of arcs 
as an intuitive "closeness" of two concepts . In gen­
eral , the meaning of every concept (i.e. node) in the 
network is d efi ned in terms of the rest of the net­
work.. 

We ,,;ill differentiate between abstract concepts 
and concepts of some phy sical objects . Whenever a 
user refers to some abstract concept, a correspon­
dence should be found between thi s abstract concept 
and some physical object. To achieve this correspon­
dence the domain-specific knowledge and "di stance" 
factors are used. If the abstract concept corresponds 
to several physical objects , the system queries the 
user and stores the answer as a default choice for 
future reference. Later, if the system is faced with 
the same choice, the previous decision is made. The 
user, of course, may override the default. 

Som eti mes, in addition to the objects directly 
specified by th e user, we want to display some 
objects which are semantically appropriate in the 
image. For example, if somebody wants to see a 
drawing of the president's home, he may expect to 
see related objects in the scene, such as the president 
in front of the White House. Thus, at a present 
time, the system should display Reagan in front of 
the White House. However, if we ask the system to 
draw th e same picture five years later, it will not be 
Reagan. Two different kinds of inference are present. 
A semantic inference tells us that when we want 
to see a picture of the White House, it may be 
appropriate to display the president in front if it. A 
temporal inference tells us that at the present time 
the president of U.S. is Reagan. We will examine. 
both semantic and temporal reasoning in our sys­
tem. 

Graphics Interface '88 

3. Puppets World 

To study what type of representation and infer­
ence is necessary for integrating conceptual infonna­
tion with the actual picture generation we needed to 
have a domain which does not require a large body 
of common-sense' knowledge. It should be rich 
enough to have several abstract concepts, several 
phy sical objects and in which temporal reasoning 
can be tested. We have chosen Puppets World t. In 
Puppets World several puppets live in several 
houses. The system knows a physical description of 
every puppet as well as a correspondence of each 
concept of a puppet to its 3-D graphical "body". 
First, we create concepts (i.e. nodes) of several pup­
pets. We tell to the system that every puppet has a 
place to live and a place to work. Then , we intro­
duce concepts of a home and a workplace. We 
assume that during every day of the week each pup­
pet goes to hi s corresponding work and is at home 
during any other time. Thus, if the system needs to 
know who is present at a certain time and a certain 
location, the temporal reasoning mechanisms will 
have to be employed. 

We give the following information to the sys­
tem: Ron , Bill and lane are puppets. There are two 
locations: the White House and a Regular House. 
Bill and Jane live at the Regular House. lane works 
at home and Bill works at the White House. Ron 
lives and works at the White House. 

We want our system to be able to generate pic­
tures from the following types of queries: "Show 
me the house of Bill"; "Show me the home of Ron"; 
"Show me a picture of a puppet and a house"; 
"Show me a workplace of lane", ete. We would like 
the system to decide what various abstract concepts 
(like home and a work place) correspond to. We also 
want our system to display appropriate puppets 
with every location if they are at this location at the 
given time. For example, we want the system to 
display a regular house and lane if we ask "Show 
me the home of Bill" during Bill 's work-time. 

4. Semantic Inference 

After the "Puppets World" data is given to the 
system, we al so have to tell the system about the 
relations among different concepts. The system 
knows in which house which puppet lives. We can 
now proceed to specify what the concepts of "work­
place" and "home" mean: 

t This name was given as an analog the the well -known 
Blocks World. 

Vision Interface '86 



- 22 -

Figure 1. Grafiisp example of calor mapping. light 
modelling and hidden su rface removal. 

Figure 3. Situation at the White House during off­
hou rs. 

Figure 5. Si tuation at the home of Bill during busi­
ness hours. 

Graphics Interface '86 

Figure 2. System's response to a request to display a 
RegUlar House . 

Figure 4. System's response to a user's request to 
d isp lay the White House. 

Figure 6. Situation at the work.place of Jane du ring 
free time. 

Vision Interface '86 



; For all x 
if x is a puppet 

then for all y 
if Y is a house where x lives 

then y is a home of x. 

(build avb $x 
ant (build member *x 

class puppet> 
cq (build avb $y 

ant (build verb live 

actor *x 
place house 
placeName *y) 

cq (build verb live 
actor *x 

I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

I 
place home I 
placeName *y))) I 

In the above rule "avb" arc stands for "a11-
variables-bound" and represents a universal 
quantifier. SNePS uses its rules in both forward 
and back ward reasoning. In t his rule, an English 
description is given first, (lines starting with semi­
colons) an actual SNePS User Language code follows 
and then a semantic network which is actually 
built. In this semantic network rule, node m17 
represents the entire rul e. If the antecedent of the 
rule has matches in the network (node m13 ), then 
a consequent of the rule (node m16 ) is executed. 
But the network under node m16 is also a rule. 

Graphics Interface '86 

- 23 -

Thus, the system looks for matches of proposItIOn 
represented by the rule node m14 and asserts the 
proposition under m15 with appropriate bindings 
for x and y. A similar rule is created to represent 
the fact that a place where puppet works is his 
work place: 

I. 
I 
I 
I 
I 
I 

; For all x 
if x is a puppet 

then for all y 

if y is a house where x works 
then y is a workplace of x. 

Since the system has the initial knowledge of 
places where people live and places where people 
work, it will be able to deduce what a reference to 
somebody's home or work place mean. For example, 
imagine that we ask the system to display a work­
place of lane. The system will first check if lane is 
a puppet (which is given), then it will look for a 
place where lane works and bind value of y to the 
workplace of lane. The graphics package will then 
proceed to di splay a house, which is where lane 
works, realizing that it is the right house to display 
(see Fig. 2 ). 

5. Temporal Reasoning 

We can express the rules that all puppets are at 
work during work-hours and at home during off 
hours: "If it is a freeTime , then a puppet must be at 
home"; "If it is a work Time , then a puppet must be 
at work". 

; For all x 
if x is a puppet 

then if currentState is workTime 
then x is at his workplace. 

(build avb $x 
ant (build member *x 

class puppet) 
cq (build ant (build 

currentState work Time) 
cq (build 

verb currentlyPresent 
actor *x 
place workplace») 

The system may not know what a home (or a 
work place) of x is. It just assumes that an actor is 
at some work place or home. Then, it will have to 
deduce what the particular home or work place of x 
is. (Two SNePS rules have been created to make this 
inferences.) To decide whether it is a work Time or a 
freeTime, the next set of rules is buil t: 

Vision Interface '86 



(build avb ($day Shour Sminute) 
ant (build name: isItWorkTime 

dayOfTheWeek 'day 
hour 'hour 
minute 'minute) 

cq (build currentState workTime» 

(build avb ($day Shour Sminute) 
ant (build name: isItFreeTime 

dayOfTheWeek 'day 

I 
I 
I 

hour 'hour I 
minute 'minute) I 

cq (build currentState freeTime» I 
These two rules assert that it is a work Time or 

it is a freeTime if and only if a function node "islt­
Work time" or "isItFreeTime" succeeds. The system 
uses non-monotonic reasoning, so the state may 
change from workTime to freeTime. The system 
must not use old assertions about the time; instead, 
it must check the time again if it needs to. The sys­
tem solves this problem by removing the temporal 
assertions each time, thus forcing the system to 
deduce them again. 

. We have tested our system by asking it 
dlfferent queries during different times of the day. 
During "freeTime" we ask the system to display the 
s!tuation at the home of Ran ( Fig. 3 ). During day 
bme we ask the system to show the situation at a 
home of Bill (see Fig. 5 ). In the evening, we ask the 
system to display the work place of Jane ( Fig. 6 ). 

When SNePS needs to display a set of objects, it 
creates a process which queries Graflisp about its 
capability to display those given objects. If Graflisp 
is capable of displaying the given set of objects, it 
collects , orders, orients, composes and renders that 
given set into an image. Then Graflisp passes a suc­
cess message to the SNePS process, which conse­
quently enables SNePS to deduce that the conceptual 
request is displayable. If the description which 
SNePS was provided with on a conceptual level can 
not be visualized in an image, Graflisp will be 
unable to find the corresponding objects or rules 
necessary to compose the scene and will pass failure 
back. to the SNePS process. 

Based on the information being passed from 
SNePS, the Graflisp module of the system is respon­
sible for composing and rendering the image within 
the constraints of its view camera. The view camera 
determines the area of space to be viewed, the degree 
of perspective deformation , and the orientation of 
the image it will produce. 

6. Scene Composition 

After the system has inferred which objects are 
actually going to appear in the picture, it is the 

Graphics Interface '86 

- 24 -

responsibility of the graphics module to arrange 
~hese objects into a coherent scene and produce the 
lmage. To do this, first it must gather all of the con­
ceptual constraints to be placed on the image and 
extrapolate them into three dimensional env iron­
mental constraints. The system starts thi s process 
?y calculating a bounding hull for each object 
mvol:ed; thes~ hulls are used to speed up rough cal­
culatlOns and msure that no two solid objects will 
occupy the same space. 

The graphics module (Graflisp) starts to build 
an object hierarchy for the scene. The algorithm that 
it uses is very similar to the way in which a photo­
grapher might shoot a picture of a table-top scene. 
After using the hulls to calculate how much space it 
will need, Graflisp creates a sufficiently large blue 
backdrop and a horizontal green surface to serve as 
the sky and grassy ground for the environment in 
which it will place the objects. It then places a 
simulated camera into that environment at what 
would be eye-level for a puppet, and adjusts the 
camera's settings accordingly (lens angle, focal 
point, f-stop, etc). Additionally , a light source is set 
up above and behind the camera to serve as the Pup­
pet World sun. 

Next, the graphics module utilizes production 
rules to implement the particular preferences of the 
user. For example, if the user prefers to see puppets 
to the left and buildings to the right in images, then 
the system will query its objects as to their object 
class and order them from left to right accordingly, 
relative to the camera. Given this left-right ordering, 
and allowing an equal amount of image space for 
each object, three dimensional constraint pyramids 
are extrapolated out from the camera's film plane 
into the scene to serve as constraints on each object 's 
placement in the scene. Objects are then placed into 
the scene as near to the camera as is possible 
without the object's bounding hull violating the 
object's constraint pyramid. Once all of these con­
straints are used to determine the objects' place­
ments, Graflisp completes structuring the scene 
hierarchy and uses a z-buffer algorithm to render 
the scene into an image as it would have been seen 
by the simulated camera. 

7. Reasoning about the display 

How does the inference engine know whether 
the abstract concepts have a physical counterpart, 
and if they do , whether the graphics module is capa­
ble of displaying them? In order to perform further 
reasoning about the picture, the system has to have 
a way to assume that some picture elements have 
been displayed. A solution is to attach special Lisp 
functions to our rules, which will query the graph­
ics module about its success or failure. SNePS func­
tion nodes give a procedural attachment capability to 

Vision Interface '86 



- 25 -

the otherwise declarative style of SNePS program­
ming. To "prove" a function node, the system must 
call the function which is associated with it. This is 
the actual SNePS-Grafiisp interface. Here is one 
example of such a display rule: 

; For all x. y. and z 
if x is working in a place z by the name y 

then if process of drawing y succeeds 
it must be the case that we displayed it. 

(build 
avb (Sx Sy Sz) 
ant (build verb work 

actor *x 

cq (build 

place *z 
placeName *y) 

ant (build name: showPicture 
placeName *y) 

cq (build action display 

description 
(build verb work 

actor *x 
place *z 
placeName *y) 

type *z))) 

This rule allows the system to reason about a 
particular action: displaying the work place of one of 
the puppets known to the system. The arc named 
"name:" is a special system predefined arc which 
points to a function node. A function node creates a 
process which calls a Lisp function with an argu­
ment bound to y. The process can either succeed or 
fail. If the above process succeeds, then the conse­
quent rule is asserted. 

If we had used this rule in a back ward chain­
ing, the system would have tried to prove that for 
some actor x, working somewhere at place z, with 
the "placeName" y the picture had been displayed. 
If none of the variables were bound, this would be 
similar to the query: "Show me all the places of 
work for all the puppets". If, on the other hand, 
some of the variables were bound, it would be a 
reference to some specific instance of x , y or z. For 
example, if x is bound to Ron and y and z are free, 
this would be equivalent to the query: "Show me 
the place in which Ron works" . To prove this, we 
would have to prove that the entire nested rule is 
valid. This rule would create a SNePS process, which 
would call Grafiisp. When Grafiisp displays the pic­
ture, the function node succeeds and returns true , 
and then the final consequent would be asserted. 
An English description of the rule for display ing a 
puppet's living place is provided below. 

Graphics Interface '86 

; For all X. y. and z I 
if x is living in a place z by the name y I 

then if process of drawing y succeeds I 
it must be the case that we displayed it. I 

For example, if we ask the system to show the 
house w hen' Ron lives, the White House will be 
displayed (see Fig. 4 ) . 

8. Conclusions 

The developed . system allows us to relate the 
meaning of a picture to its graphic representation. 
Its two major blocks facil itate the intelligent com­
puter graphics system's needs for reasoning about 
the content of a picture, the picture composition and 
the image generation. By interlinking SNePS and 
Grafiisp, we have been able to obtain images ori­
ginating from abstract requests. We have intro­
duced a simple environment consisting of several 
puppets living and working in several places (called 
Puppet's World). Using abstract concepts (such as a 
home or a work place) our system has succ.essfully 
deduced which objects should be displayed and has 
displayed them. 

In the next phase of this research, we plan to 
incorporate default display rules of user preferences. 
To collect and generate such rules, we will use the 
system described in [3]. We plan to develop an 
interactive visual test generator and rule acquisition 
paCkage which can be used to customize default 
display rules to the preferences of a particular user 
as well as to the preferences of different classes of 
users. 

References 

[1] Gardner, Brian R., "GRAFLISP: A Graphics 
Package Design for Artificial Intelligence Appli­
cations", Masters Thesis, Department of Com­
puter Science, Boston University, 1985. 

[2] HOiynski Marek, Brian R. Gardner and Rafail 
Ostrovsky, "Towards Intelligent Computer 
Graphics System " , Technical Report , Boston 
University, 1986. 

[3] Hoiynski Marek and Lewis, Elaine, "Effective 
Visual Representation of Computer Generated 
Images", IEEE Proceedings , 5th Symposium on 
Small Computers in the Arts , IEEE Computer 
Society Press , 1985. 

[4] Shapiro, Stuart, "The SNePS semantic network 
processing system " , Associative Networks , 
N.V.Findl er (ed. ), Academic Press , ppI 79-203 , 
1979. 

Vision Interface '86 


