
- 26 -

EXPERIENCES WITH USING PROLOG FOR GEOMETRY

Wm. Randolph FrankIin
. C;omputer Science Division, 543 Evans

Umverslty of California, Berkeley, CA, 94720, USA.
(Arpanet: wrf@Berke!ey.EDU)

and
Rensselaer Polytechnic Institute

Troy, NY, 12180, USA
(wrj%RPI-MTS.Mailnet@MIT-Mu!tics.ARPA)

Margaret Nichols
North American Philips Lighting Co., Bloomfield NJ, USA

Sumitro Samaddar
Peter Wu

Rensselaer Polytechnic Institute
Troy, NY, 12180, USA

(Peter _ Wu%RPI-MTS.Mailnet@MIT-Mu!tics.ARPA)

ABSTRACT

The Prolog language is a useful tool for geometric and
graphics implementations because its primitives, such
as unification, match the requirements of many
geometric algorithms. We have implemented several
problems in Prolog including a subset of the Graphics
Kernel Standard, convex hull finding, planar graph
traversal, recognizing groupings of objects, and boo lean
combinations of polygons using multiple precision
rational numbers. Certain paradigms, or standard
forms, of geometric programming in Prolog are becom­
ing evident. They include applying a function to every
element of a set, executing a procedure so long as a
certain geometric pattern exists, and using unification
to propagate a transitive function. Certain strengths
and weaknesses of Prolog for these applications are
now apparent.

RESUME

Le langage Prolog est un outil tres utile pour la concep­
tion de logiciels geometriques et graphiques. Ceci est
dO au fait que ses primitives, corn me par exemple
l'unification, repondent bien aux exigences de nom­
breux algorithmes geometriques. Nous avons resolu en
Prolog plusieurs problemes dont la representation d'un
sous-ensemble de la norme graphique Kernel, la
determination d'enveloppes convexes, le traitement de
graphes plans, la reconnaissance de families d'objects
et la realisation de combinaisons booleennes de poly­
gones utilisant des nombres rationnels cl precision
elevee. Certaines hypotheses ou formes standard de
programmation deviennent evidentes en Prolog. Ceci
est vrai entre autre pour l'application d'une fonction a
tous les elements d'un ensemble, I'execution d'une
procedure tant qu'un certain motif geometrique existe
et l'utilisation de l'unjfication pour la propagation
d'une fonction transitive. Certaines forces et faiblesses
de Prolog vis a vis de ces applications sont maintenant
apparentes.

Graphics Interface '86

KEYWORDS: Prolog, Geometry, Graphics Kernel
Standard

INTRODUCTION

The fifth generation logic programming language
Prolog[Clocksin81a, Coelh080a], appears appropriate
for research in geometry and graphics. Some examples
of its use in architectural design are given in
[Swinson82a, Swinson83a, Swinson83b]. Its use in
CAD has been evaluated in [Gonzalez84a]. Construct­
ing geometric objects from certain constraints is
described in [BIiiderlin85a]. Over the past two years,
the authors of this present paper have implemented
several geometric and graphic problems in Prolog using
assorted machines. This paper describes the experi­
ences, including some paradigms of programming that
have appeared useful, and finally listing the advantages
and disadvantages of Prolog that we have experienced.

Over the last two years we have implemented
several graphics and geometric algorithms in Prolog,
totally a few thousand lines of code, using four
different Pro log interpreters on four different comput­
ers. The systems include:

Machine
IBM 3081
IBM 4341
Prime 750
VAX 780

Operating System
Michigan Termmal System
CMS
Primos
Unix bsd 4.3

Prolog Version
York (U.K.)
Waterlog
Salford
UN SW

This work was supported by the National Science
Foundation under grant no. ECS-8351942, the Data
Systems Division of the International Business
Machines Corporation, and by the Rome Air Develop­
ment Center under the postdoctoral development pro­
gram via Syracuse University.

Vision Interface '86

- 27 - '

The implementations include:

• Graphics Kernel Standard subset
• Convex Hull
• Planar Graph Traversal
• Big Rational Numbers
• Polygon Intersection
• Organization Inference

They will now be described in detail.

IMPLEMENTATIONS

Graphics Kernel Standard Subset

This graphics addition to Prolog was implemented
by Nichols [Nichols85a] on an IBM 4341 using Water­
log [Roberts84a], under the CMS operating system.
This allowed us to draw lines and so on on the 3270
graphics CRT from a Prolog program. We imple­
mented two classes of lines: permanent and backtrack­
able. If the Prolog procedure that drew a backtrack­
able line was backtracked over, then the line would be
erased. This used a feature of the graphics package
GSP.

The major problems were as follows. Wateriog,
like most Prologs, lacks floating point numbers, and
even four byte integers. (The latter was undoc~­
mented; large integers just didn't work.) However .It
has the powerful capability to be linked to programs 10

other languages such as Fortran. Thus we imple­
mented a real number in Prolog as a data structure of
the form real(A,B) where A and Bare Prolog integers
holding the upper and lower halfword, respectively, of
the integer. The user never looks at A and B, but
accesses the real numbers via procedures such as
addreal(X, Y, Z) and realtointeger(R, I) that took real
numbers in the stated form and did the obvious things.

Convex Hull

This Graham Scan algorithm was implemented by
Wu [Franklin85a] on both the IBM 4341, and on the
Prime in Salford Prolog [Salford84a]. The Salford sys­
tem allows both real numbers and dynamic linking to
Fortran routines. We also tested York Prolog
[Spivey83a], which is written in Pascal. The York sys­
tem has the advantage that it is portable to any
machine that can compile a thousand line Pascal pro­
gram that uses four byte integers. Unfortunately this
did not include the official Pascal compiler available
from Prime. (We have not evaluated third-party Pas­
cal compilers for Prime computers.) We also tested
York Prolog on an IBM 3081 running the Michigan
Terminal System, but found the other computers'
operating systems more flexible and cheaper to use.

The algorithm proceeds as follows, using a divide
and conquer paradigm. Duplicate points are removed
and then the set of points is split into a left and a right
subset based on the points' X-coordinates. The convex
hulls of these sets are found recursively. To merge the

Graphics Interface '86

two convex hulls, the top and bottom tangents or sup­
porting lines are required. The first approximation to
the top tangent is found by joining the top point of the
left convex hull to the top point of the right one. Then
if necessary these endpoints of the tangents are moved
right and left until the tangent does not intersect the
convex hulls (except at the endpoints). This algorithm
takes time T = O(N 10g(N».

The Prolog code is about 200 lines including com­
ments.

Boolean Combinations of Polygons

A program to perform operations such as intersec­
tion, union, and difference on two planar polygons was
implemented by Franklin and Wu [Franklin85a] on the
Prime and IBM 4341. The algorithm was by Franklin
[Franklin85al. Wu first implemented a ?ackage. to
perform arithmetic using rational numbers m multIple
precision. Each number, in life a quotient of an
integer numerator and denominator, is implemented as
a list of the numerator and denominator. Each of
them is a list of groups of the digits of the number:
For example, 123456789/987654321 is represented as
[[56789, 1234], [54321, 9876]]. Rational numbers ~re
used to avoid roundoff errors, as part of an ongomg
investigation into their utility in geometry and the map
overlay problem in cartography [Franklin84a].

The big rational package was designed in several
steps as follows. First, rational numbers were imple­
mented. A rational number Q is stored as the expres­
sion N / D. This is upward compatible with integers
since is, which knows nothing of rationals, thinks it is
just an integer expression. This also means that the
rational number prints normally without a separate
print procedure. We implemented a new infix opera­
tor, isr, which operates on rationals just as is o~erates
on integers. It also converts integers to ratlOnals.
Rational versions of all the integer arithmetic operators
were also implemented.

Next, a big integer arithmetic package was impl~­
mented, along with a new in fix operator are and bIg
versions of all the operators. Each big integer is stored
as a list of groups of digits. For 32 bit built-in integers,
each group is 4 digits. Zero is stored as [], one as [1] ,
72 as [72], 10001 as [1, 1], 2180077 as [80077, 21],
minus one as [-1], -123456 as [-56, -1234],and so on.

Then these were combined into one package with
the operator isx. Now we can say things like

X isx ([3456,12] + 23) / [222,3].

The big rational package was tested by calculating
7r from the following formula, whose simplicity over­
rides its very slow convergence.

2 2 446 6 8 8
7r=2 ' ! ' 3 ' 3 ' S 'S'7'7 '9 '

The UNSW Prolog code to execute this is:

pi([],[2]). % preset value: Pi = 2

Vision Interface '86

- 2B -

step :­
pi(R,P),
R1 are R+[1],
R2 are R1 mod [2] ,
P1 isx P*((R 1 + R2)/(R 1-R2 + [1])),
retract(pi(R,P)),
asserta(pi(R 1 ,P1)),
pb(R1),prin(,: '),pxq(P1),nl,L

go :- repeat, step, fail.

The polygon combination system uses an edge
based boundary representation. Each polygon is con­
sidered a set of .edges. Here are the actual data struc­
tures.

vert(vertex_name, x, y)
edge(edge_name, name_oCfirsC vertex,

name_of_second_vertex)
edge_eqn(edge_name, a, b, c)
poly(polygon_name, edge_name, which_side)

The edge equation is of the form ax + by + c = o.
There is one poly fact for each edge of each polygon.
Since a gi ven edge may be used by more than one
polygon, it is necessary to know which side of the edge
is the inside of this particular polygon. Legal values
are left and right.

With this data structure, special cases involving
multiple edges all ending at the same vertex are not a
problem; in fact , the algorithm never knows of their
existence. This data structure also does not store any
global topology, such as the number of connected com­
ponents, and which are inside which other. T~is. infor­
mation, which could be calculated if needed, IS In fact
never necessary.

The first stage of the algorithm is basically a for­
ward reasoning system. It searches for cases where two
edges intersect. Whenever this is found , those two
edges are deleted, and three or four new edges are
created. There will be three new edges if one edge's
end point falls on another edge. This includes the case
where the two edges are collinear. This process contin­
ues until no edges intersect, except possibly at both
their endpoints.

This process is a little more complicated than
appears since we are modifying the list of edge facts as
we are iterating through it. This is one of the areas
where different versions of Prolog behave differently.
One solution is as follows .

I . Handle deletions not by actually retracting the
edge, but by asserting a deleted(edge_name) fact to
record the information.

2. Initially consider all edges to be of level O.

3. Compare all the edges pair by pair. Whenever an
intersection is found between two edges that do
not have an associated deleted fact, then

a) assert a deleted fact about both of them, and

b) create three or four new edges by asserting
level 1 edges.

Graphics Interface '86

4. Then compare all the level 1 edges against each
other and against all the level 0 edges without
deleted facts. If any intersect, assert new level 1
edges and deleted facts about the intersecting
edges.

5. Then compare all the level 2 edges against each
other and against all the level 0 and I edges.

6. Repeat this until no new intersections are found.

7. Finally clean up the database.

The above procedure should be portable since it
does not modify any particular fact as control is iterat­
ing through instances of that fact.

Next in the boolean combination, each edge is
classified into one of six categories:

• an edge of polygon A that is inside polygon B,

• on A outside B,
• on B inside A,

• on B outside A,
• an edge that is on both polygons A and B, and both

polygons are on the same side of it, and

• on both polygons, and they are on opposite sides of
it.

Finally, a subset of the edges is selected depending
on the particular result desired. For e:xample, in a
union, edges on either polygon that are outside the
other polygon, plus edges on both polygons with both
on the same side, are needed. Since this selection
takes almost no time, all the boolean combinations are
found at no extra cost. For example, see figure I,
where polygon A is ABeD and polygon B is EFGHTJ.
After intersecting edges are cut, edges AB and EF are
cut into AB, EB , and BF. HI is cut into He and Cl.
When the resulting edges are classified, edge AB is on
polygon A outside of B. Edge EJ is on B inside A.
Edge EB is on both polygons A and B, and they are on
the same side. In contrast, edge Cl is on both
polygons, but they are on opposite sides.

H G

D

/ f:: ...
. ... }.i7::-.:::-<-.;.. .. -.. -.. -t . .{

,,' ", "

. "

..
A E B F

Figure I: Combining Polygons ABCD and EFGHIJ

Vision Interface '86

- 29 -

Planar Graph Traversal

At some point during an object space hidden sur­
face algorithm [FranklinSOa], we have the set of the
visible edges and must join them to find the visible
polygons. This requires a planar graph traversal, some­
times called a tesselation. For example, in figure 2,

4 e3 3

e e 5

e

Figure 2: Finding the Faces of a Planar Graph

we are given the vertices and edges in the form

vert(vert-name, x-coord, y-coord)
edge(edge-name, first vertex, second vertex,

angle)

for example

vert(v1, 0, 0)
edge(e1, v1, v2, 0)

The angle of the edge is supplied because of the
difficulty of computing arctangents using only integers.
The output is a set of facts of the form

polygon([v1, v2, v3, v4])

This was implemented in UNSW Prolog [SammutS3a]
on a Vax.

Organization Inference

In this work, described in more detail in
[SamaddarS5a], we wish to infer which units of an
army organization are present after seeing, via pho­
to reconnaissance, an incomplete picture of the equip­
ment they possess. The army organization, parts of
which may be present in the photo, is described with
Prolog facts such as the following.

child(Father, Son, Number)

This says that unit Father ideally contains Number of
the subunit Son. For example, a parts of Soviet motor­
ized rifle division might be defined thus:

child(motorized_rifle_division,btr Jegiment,2).
child(motorized_rifle_division,bmp_regiment,1).
child(motorized_rifle:...division, tank_regiment, 1).
child(motorized_rifle_division,

artillery_regiment,1).
child(bmp_regiment,bmp_battalion,3).
child(bmp_battalion,bmp_company,3).
child(bmp_company,bmp_platoon,3).

The equipment that each unit possesses is
described by the following form of fact:

eqpmncoverall(Unit, Ename, Number)

Graphics Interface '86

Unit is the name of the unit that owns the equipment,
such as art_reg for an artillery regiment. Ename is the
name of the equipment, such as sa-6 for an SA-6 anti­
aircraft missle. Number is the maximum number of
pieces of equipment that that unit can own. The fact
for a particular unit includes only equipment that the
unit owns directly, and not equipment owned by a
subunit. Some sample facts are:

eqpmncoverall(art_reg, sa_6, 20).
eqpmnCoverall(mr_div, amphi_brdm, 48).

Then facts defining what equipment has been
recognized are stated as follows:

equipment(Name, Number)

For example,

equipment(saJ,7).
equipment(rpg_7, 23).

Given this information, the inference engine reports
that

Based on that, my first guess about the unit
present, and the remaining equipment associated
with it, is:

Remaining = [[arm_per_car_btr, 38],
[mortar _120mm_1943, 6]]

Unit = moCriCbtln_btr

This inference engine is designed to be part of a
larger blackboard format system where a low level
image interpretation and geometry engine makes a first
guess about the objects present and passes the informa­
tion up to this unit. The output of this unit can be
used to bias the prior probabilities of the geometry sys­
tem as it continues to look.

This system is robust since it automatically han­
dles the cases of the unit on the ground being under
strength, and the image interpretation system not
finding everything.

STRENGTHS AND WEAKNESSES OF PROLOG

Certain advantages and disadvantages of Prolog
for graphics and geometric applications are becoming
evident from these implementations.

Advantages Of Prolog

• Prolog has same high level advantages of Lisp, as
the equivalence of code and data and dynamic data
allocation.

• There are the specific advantages of Prolog.
Unification makes determining graph connectivity a
primitive operation and in general is useful for pro­
pagating transitive properties such as graph connec­
tivity which occur frequently. This is a counterex­
ample to the proposition that, "Unification is what
you do when you don't know what you are doing".

Vision Interface '86

• The pattern matching fits with the form of expres­
sion of many algorithms. For example, our polygon
combination algorjthm proceeds as follows. When­
ever the pattern of two edges intersecting, or one
edge ends on the interior of another edge, occurs,
then retract those edges and assert new smaller
edges. When this pattern no longer exists, then we
have a superset of the edges in the output polygon.

• Although many of the above features could be
implemented in any language that is Turing
equivalent, Pro log is somewhat standard so that
different researchers can understand and use each
others' extensions.

Disadvantages Of Prolog

However, there are some problems with using Prolog
for geometry.

• There are software engineering problems with using
Prolog for a large project because of its lack of nest­
ing in the program and databases.

• Many geometry algorithms are more natural to a
forward reasoning system than a backward reason­
ing system. That is, we are more likely to want the
output from some given input than the reverse.

• The natural way of expressing pattern matching
algorithms requires us to modify a database as we
are searching through it. Thus in polygon overlay,
whenever we find the pattern of two edges crossing,
we retract them and assert four new edges. Back­
tracking and redoing a database that we are modify­
ing does not work on all Prologs.

• Prolog does not support coroutines, which are a
natural way to express many algorithms.

• In general Prolog is completely unstandardized
around the fringes as some tests of cuts in
[Moss85a] show.

PARADIGMS OF PROGRAMMING

Certain techniques have proven to be generally
useful in our implementations, and .may be useful to
others also. They include the following paradigms.

Set Based Algorithms

Many algorithms such as polyhedron intersection
and hidden surface algorithms, Franklin [Franklin82a,
Franklin80a], are the alternation of two types of steps:

• Applying function to every element of a set, and
• Combining all the elements having a common key.
This is clearly easy in Prolog.

Pattern Matching

The second paradigm uses pattern matching to
propagate certain properties. For example, in the
planar graph traversal algorithm, the edges around each
vertex are found and sorted by the angle at which they

Graphics Interface '88

- 30 -

leave it. Then the edges around each vertex are paired
to form corners. These corners can be considered to be
fragments of the output polygons. Whenever two frag­
ments exist such that the last edge of one is the same
as the first edge of another, then these two fragments
are retracted and a single longer fragment asserted.
When such a pattern no longer exists, then we have the
output polygons.

Unification

Frequently we wish to determine the closure of
some transitive property, such as when we are given a
set of graph edges edge(u, v), and wish to determine the
connected components. We have implemented the fol­
lowing short algorithm that uses unification and the set
processing paradigm.

3

4 5 6

Figure 3: Determining Graph Connectivity

• Create a property list (plist) with one record per
vertex, and the property of each vertex a free vari­
able. For example in figure 3i we would have
[[1,_].[2,_],[3,_].[4,_],[5,_],[6,_]].

• Process the set of edges and for each edge unify the
free variable properties of the end points. After this
we will have [[1,_1], [2,_1], [3,_1]. [4,_2], [5,_2],
[6,_3]] with one unique free variable per graph com~
ponent.

• Bind a name identifying each component to the free
variables in the list to give something like [[1 ,first],
[2,firstJ, [3,first], [4,second], [5,second], [6,third]].

A longer example of a simple hidden surface algorithm
would go as follows.
• Wherever the pattern of two edges' projections'

intersecting occurs, split the edges into four smaller
edge segments.

• For each edge segment find the set of faces hiding
its midpoint. Iff it is empty then the edge segment
is visible. Draw them.

• Use a planar graph traversal algorithm such as
described above to link the visible edges into
polygons.

• For each polygon, find a point inside it and then
find the set of faces whose projections contain the
projection of that point. Find the closest such face;
the polygon came from it. Color the polygon
accordingly. .

This illustrates all of the paradigms operating together.

Vision Interface '88

- 31 -

SUMMARY

Although not perfect, Prolog is a powerful tool for
expressing graphical and geometry algorithms in a con­
cise and natural format. This allows larger problems to
be solved in a given time, and raises the size of the
largest problem that it is feasible to solve.

REFERENCES

Bnlderlio85a.
Beat Bruderlin, "Using Pro log for Construc ting
Geometric Objects Defined by Constraints," Euro­
cal 85, Conference Proceedings, Linz, Austria,
1985. Institut fUr Informatik, ETH Zurich, CH-
8092, Zurich, Switzerland

Clocksin81 a.
W.F. Clocksin and C.S. Mellish, Programming In
Prolog, Springer-Verlag, New York, 1981.

Coelh080a.
H. Coelho, J.c. Cotta, and L.M. Pereira, How to
Solve it With Prolog, 2nd edition, Ministerio da
Habitacao e Obras Publicas, Labatorio Nacional
de Engenharia Civil, Lisboa, 1980.

Franklin80a.
Wm. Randolph Franklin, "A Linear Time Exact
Hidden Surface Algorithm," ACM Computer
Graphics, vol. 14, no. 3, pp. 117-123, July 1980.
Proceedings of SIGGRAPH'80

Franklin82a.
Wm. Randolph Franklin, "Efficient Polyhedron
Intersection and Union," Proc. Graphics Inter­
face'82, pp. 73-80. Toronto, 19-21 May 1982.

Franklin84a.
Wm. Randolph Franklin, "Cartographic Errors
Symptomatic of Underlying Algebra Problems,"
Proc. International Symposium on Spatial Data
Handling, vol. 1, pp. 190-208, Zurich, Switzerland,
20-24 August 1984.

Franklin85a.
Wm. Randolph Franklin and Peter Y.F. Wu, Con­
vex Hull and Polygon Intersection Implemented in
Prolog, Rensselaer Polytechnic Institute, Troy,
NY, July 1985.

Gonzalez84a.
J.c. Gonzalez, M.H. Williams, and I.E. Aitchison,
"Evaluation of the Effectiveness of Prolog for a
CAD Application," IEEE Computer Graphics and
Applications, pp. 67-75, March 1984.

Moss85a.
Chris Moss and Earl Fogel, Tests to Distinguish
Various Implementations of Cut in Prolog,
Imperial College and Logicware Inc., June 1985.
Reported on Usenet in Net.iang.Prolog, message-id
<1742@utecfa.UUCP>.

Graphlce Interface '86

Nichols85a.
Margaret Nichols, The Graphic Kernal System in
Prolog, ECSE Dept. , Rensselaer Polytechnic Insti­
tute, Masters Thesis, Troy, NY, August 1985.

Roberts84a.
Grant Roberts, Waterloo Core Prolog Users
Manual (version 1.5), Intralogic Inc., Waterloo,
Ont, Canada, 1984.

Salford84a.
University of Salford, LISPlPROLOG Reference
Manual, March 1984.

Samaddar85a.
Sumitro Samaddar, An Expert System for Photo
Interpretation, ECSE' Dept., Rensselaer Polytechnic
Institute, Masters Thesis, Troy, NY, August 1985.

Sammut83a.
Claude Sammut, UNSW Prolog User Manual.
University of New South Wales (Australia), 1983.

Spivey83a.
J. M. Spivey, University of York Portable Prolog
System (Release I) User's Guide, York, U.K.,
March 1983.

Swinson82a.
P.S.G. Swinson, "Logic Programming: A Comput­
ing Tool for the Architect of the Future," Com­
puter Aided Design, vol. 14, -no. 2, pp. 97-104,
March 1982.

Swinson83b.
P.S.G. Swimon, "Prolog: A Prelude to a New
Generation of CAAD," Computer Aided Design,
vol. 15, no. 6, pp. 335-343, November 1983.

Swinson83a.
P.S.G. Swinson, F.C.N. Periera, and A. Bijl, "A
Fact Dependency System for the Logic Program­
mer," Computer Aided Design, vol. 15, no. 4, pp.
235-243, July 1983.

Vlelon Interface '86

