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ABSTRACT 

The Prolog language is a useful tool for geometric and 
graphics implementations because its primitives, such 
as unification, match the requirements of many 
geometric algorithms. We have implemented several 
problems in Prolog including a subset of the Graphics 
Kernel Standard, convex hull finding, planar graph 
traversal, recognizing groupings of objects, and boo lean 
combinations of polygons using multiple precision 
rational numbers. Certain paradigms, or standard 
forms, of geometric programming in Prolog are becom­
ing evident. They include applying a function to every 
element of a set, executing a procedure so long as a 
certain geometric pattern exists, and using unification 
to propagate a transitive function. Certain strengths 
and weaknesses of Prolog for these applications are 
now apparent. 

RESUME 

Le langage Prolog est un outil tres utile pour la concep­
tion de logiciels geometriques et graphiques. Ceci est 
dO au fait que ses primitives, corn me par exemple 
l'unification, repondent bien aux exigences de nom­
breux algorithmes geometriques. Nous avons resolu en 
Prolog plusieurs problemes dont la representation d'un 
sous-ensemble de la norme graphique Kernel, la 
determination d'enveloppes convexes, le traitement de 
graphes plans, la reconnaissance de families d'objects 
et la realisation de combinaisons booleennes de poly­
gones utilisant des nombres rationnels cl precision 
elevee. Certaines hypotheses ou formes standard de 
programmation deviennent evidentes en Prolog. Ceci 
est vrai entre autre pour l'application d'une fonction a 
tous les elements d'un ensemble, I'execution d'une 
procedure tant qu'un certain motif geometrique existe 
et l'utilisation de l'unjfication pour la propagation 
d'une fonction transitive. Certaines forces et faiblesses 
de Prolog vis a vis de ces applications sont maintenant 
apparentes. 
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INTRODUCTION 

The fifth generation logic programming language 
Prolog[Clocksin81a, Coelh080a], appears appropriate 
for research in geometry and graphics. Some examples 
of its use in architectural design are given in 
[Swinson82a, Swinson83a, Swinson83b]. Its use in 
CAD has been evaluated in [Gonzalez84a]. Construct­
ing geometric objects from certain constraints is 
described in [BIiiderlin85a]. Over the past two years, 
the authors of this present paper have implemented 
several geometric and graphic problems in Prolog using 
assorted machines. This paper describes the experi­
ences, including some paradigms of programming that 
have appeared useful, and finally listing the advantages 
and disadvantages of Prolog that we have experienced. 

Over the last two years we have implemented 
several graphics and geometric algorithms in Prolog, 
totally a few thousand lines of code, using four 
different Pro log interpreters on four different comput­
ers. The systems include: 

Machine 
IBM 3081 
IBM 4341 
Prime 750 
VAX 780 

Operating System 
Michigan Termmal System 
CMS 
Primos 
Unix bsd 4.3 

Prolog Version 
York (U.K.) 
Waterlog 
Salford 
UN SW 

This work was supported by the National Science 
Foundation under grant no. ECS-8351942, the Data 
Systems Division of the International Business 
Machines Corporation, and by the Rome Air Develop­
ment Center under the postdoctoral development pro­
gram via Syracuse University. 
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The implementations include: 

• Graphics Kernel Standard subset 
• Convex Hull 
• Planar Graph Traversal 
• Big Rational Numbers 
• Polygon Intersection 
• Organization Inference 

They will now be described in detail. 

IMPLEMENTATIONS 

Graphics Kernel Standard Subset 

This graphics addition to Prolog was implemented 
by Nichols [Nichols85a] on an IBM 4341 using Water­
log [Roberts84a], under the CMS operating system. 
This allowed us to draw lines and so on on the 3270 
graphics CRT from a Prolog program. We imple­
mented two classes of lines: permanent and backtrack­
able. If the Prolog procedure that drew a backtrack­
able line was backtracked over, then the line would be 
erased. This used a feature of the graphics package 
GSP. 

The major problems were as follows. Wateriog, 
like most Prologs, lacks floating point numbers, and 
even four byte integers. (The latter was undoc~­
mented; large integers just didn't work.) However .It 
has the powerful capability to be linked to programs 10 

other languages such as Fortran. Thus we imple­
mented a real number in Prolog as a data structure of 
the form real(A,B) where A and Bare Prolog integers 
holding the upper and lower halfword, respectively, of 
the integer. The user never looks at A and B, but 
accesses the real numbers via procedures such as 
addreal(X, Y, Z) and realtointeger(R, I) that took real 
numbers in the stated form and did the obvious things. 

Convex Hull 

This Graham Scan algorithm was implemented by 
Wu [Franklin85a] on both the IBM 4341, and on the 
Prime in Salford Prolog [Salford84a]. The Salford sys­
tem allows both real numbers and dynamic linking to 
Fortran routines. We also tested York Prolog 
[Spivey83a], which is written in Pascal. The York sys­
tem has the advantage that it is portable to any 
machine that can compile a thousand line Pascal pro­
gram that uses four byte integers. Unfortunately this 
did not include the official Pascal compiler available 
from Prime. (We have not evaluated third-party Pas­
cal compilers for Prime computers.) We also tested 
York Prolog on an IBM 3081 running the Michigan 
Terminal System, but found the other computers' 
operating systems more flexible and cheaper to use. 

The algorithm proceeds as follows, using a divide 
and conquer paradigm. Duplicate points are removed 
and then the set of points is split into a left and a right 
subset based on the points' X-coordinates. The convex 
hulls of these sets are found recursively. To merge the 
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two convex hulls, the top and bottom tangents or sup­
porting lines are required. The first approximation to 
the top tangent is found by joining the top point of the 
left convex hull to the top point of the right one. Then 
if necessary these endpoints of the tangents are moved 
right and left until the tangent does not intersect the 
convex hulls (except at the endpoints). This algorithm 
takes time T = O(N 10g(N». 

The Prolog code is about 200 lines including com­
ments. 

Boolean Combinations of Polygons 

A program to perform operations such as intersec­
tion, union, and difference on two planar polygons was 
implemented by Franklin and Wu [Franklin85a] on the 
Prime and IBM 4341. The algorithm was by Franklin 
[Franklin85al. Wu first implemented a ?ackage. to 
perform arithmetic using rational numbers m multIple 
precision. Each number, in life a quotient of an 
integer numerator and denominator, is implemented as 
a list of the numerator and denominator. Each of 
them is a list of groups of the digits of the number: 
For example, 123456789/987654321 is represented as 
[[56789, 1234], [54321, 9876]]. Rational numbers ~re 
used to avoid roundoff errors, as part of an ongomg 
investigation into their utility in geometry and the map 
overlay problem in cartography [Franklin84a]. 

The big rational package was designed in several 
steps as follows. First, rational numbers were imple­
mented. A rational number Q is stored as the expres­
sion N / D. This is upward compatible with integers 
since is, which knows nothing of rationals, thinks it is 
just an integer expression. This also means that the 
rational number prints normally without a separate 
print procedure. We implemented a new infix opera­
tor, isr, which operates on rationals just as is o~erates 
on integers. It also converts integers to ratlOnals. 
Rational versions of all the integer arithmetic operators 
were also implemented. 

Next, a big integer arithmetic package was impl~­
mented, along with a new in fix operator are and bIg 
versions of all the operators. Each big integer is stored 
as a list of groups of digits. For 32 bit built-in integers, 
each group is 4 digits. Zero is stored as [ ], one as [1] , 
72 as [72], 10001 as [1, 1], 2180077 as [80077, 21], 
minus one as [-1], -123456 as [-56, -1234],and so on. 

Then these were combined into one package with 
the operator isx. Now we can say things like 

X isx ([3456,12] + 23) / [222,3]. 

The big rational package was tested by calculating 
7r from the following formula, whose simplicity over­
rides its very slow convergence. 

2 2 446 6 8 8 
7r=2 ' ! ' 3 ' 3 ' S 'S'7'7 '9 ' 

The UNSW Prolog code to execute this is: 

pi([],[2]). % preset value: Pi = 2 
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step :­
pi(R,P), 
R1 are R+[1], 
R2 are R1 mod [2] , 
P1 isx P*((R 1 + R2)/(R 1-R2 + [1])), 
retract(pi(R,P)), 
asserta(pi(R 1 ,P1)), 
pb(R1 ),prin(,: '),pxq(P1 ),nl,L 

go :- repeat, step, fail. 

The polygon combination system uses an edge 
based boundary representation. Each polygon is con­
sidered a set of .edges. Here are the actual data struc­
tures. 

vert(vertex_name, x, y) 
edge(edge_name, name_oCfirsC vertex, 

name_of_second_vertex) 
edge_eqn(edge_name, a, b, c) 
poly(polygon_name, edge_name, which_side) 

The edge equation is of the form ax + by + c = o. 
There is one poly fact for each edge of each polygon. 
Since a gi ven edge may be used by more than one 
polygon, it is necessary to know which side of the edge 
is the inside of this particular polygon. Legal values 
are left and right. 

With this data structure, special cases involving 
multiple edges all ending at the same vertex are not a 
problem; in fact , the algorithm never knows of their 
existence. This data structure also does not store any 
global topology, such as the number of connected com­
ponents, and which are inside which other. T~is. infor­
mation, which could be calculated if needed, IS In fact 
never necessary. 

The first stage of the algorithm is basically a for­
ward reasoning system. It searches for cases where two 
edges intersect. Whenever this is found , those two 
edges are deleted, and three or four new edges are 
created. There will be three new edges if one edge's 
end point falls on another edge. This includes the case 
where the two edges are collinear. This process contin­
ues until no edges intersect, except possibly at both 
their endpoints. 

This process is a little more complicated than 
appears since we are modifying the list of edge facts as 
we are iterating through it. This is one of the areas 
where different versions of Prolog behave differently. 
One solution is as follows . 

I . Handle deletions not by actually retracting the 
edge, but by asserting a deleted(edge_name) fact to 
record the information. 

2. Initially consider all edges to be of level O. 

3. Compare all the edges pair by pair. Whenever an 
intersection is found between two edges that do 
not have an associated deleted fact, then 

a) assert a deleted fact about both of them, and 

b) create three or four new edges by asserting 
level 1 edges. 
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4. Then compare all the level 1 edges against each 
other and against all the level 0 edges without 
deleted facts. If any intersect, assert new level 1 
edges and deleted facts about the intersecting 
edges. 

5. Then compare all the level 2 edges against each 
other and against all the level 0 and I edges. 

6. Repeat this until no new intersections are found. 

7. Finally clean up the database. 

The above procedure should be portable since it 
does not modify any particular fact as control is iterat­
ing through instances of that fact. 

Next in the boolean combination, each edge is 
classified into one of six categories: 

• an edge of polygon A that is inside polygon B, 

• on A outside B, 
• on B inside A, 

• on B outside A, 
• an edge that is on both polygons A and B, and both 

polygons are on the same side of it, and 

• on both polygons, and they are on opposite sides of 
it. 

Finally, a subset of the edges is selected depending 
on the particular result desired. For e:xample, in a 
union, edges on either polygon that are outside the 
other polygon, plus edges on both polygons with both 
on the same side, are needed. Since this selection 
takes almost no time, all the boolean combinations are 
found at no extra cost. For example, see figure I, 
where polygon A is ABeD and polygon B is EFGHTJ. 
After intersecting edges are cut, edges AB and EF are 
cut into AB, EB , and BF. HI is cut into He and Cl. 
When the resulting edges are classified, edge AB is on 
polygon A outside of B. Edge EJ is on B inside A. 
Edge EB is on both polygons A and B, and they are on 
the same side. In contrast, edge Cl is on both 
polygons, but they are on opposite sides. 
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Figure I: Combining Polygons ABCD and EFGHIJ 
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Planar Graph Traversal 

At some point during an object space hidden sur­
face algorithm [FranklinSOa], we have the set of the 
visible edges and must join them to find the visible 
polygons. This requires a planar graph traversal, some­
times called a tesselation. For example, in figure 2, 

4 e3 3 

e e 5 

e 

Figure 2: Finding the Faces of a Planar Graph 

we are given the vertices and edges in the form 

vert(vert-name, x-coord, y-coord) 
edge(edge-name, first vertex, second vertex, 

angle) 

for example 

vert(v1, 0, 0) 
edge(e1, v1, v2, 0) 

The angle of the edge is supplied because of the 
difficulty of computing arctangents using only integers. 
The output is a set of facts of the form 

polygon([v1, v2, v3, v4]) 

This was implemented in UNSW Prolog [SammutS3a] 
on a Vax. 

Organization Inference 

In this work, described in more detail in 
[SamaddarS5a], we wish to infer which units of an 
army organization are present after seeing, via pho­
to reconnaissance, an incomplete picture of the equip­
ment they possess. The army organization, parts of 
which may be present in the photo, is described with 
Prolog facts such as the following. 

child(Father, Son, Number) 

This says that unit Father ideally contains Number of 
the subunit Son. For example, a parts of Soviet motor­
ized rifle division might be defined thus: 

child(motorized_rifle_division,btr Jegiment,2). 
child(motorized_rifle_division,bmp_regiment,1 ). 
child(motorized_rifle:...division, tank_regiment, 1). 
child(motorized_rifle_division, 

artillery_regiment,1 ). 
child(bmp_regiment,bmp_battalion,3). 
child(bmp_battalion,bmp_company,3). 
child(bmp_company,bmp_platoon,3). 

The equipment that each unit possesses is 
described by the following form of fact: 

eqpmncoverall(Unit, Ename, Number) 
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Unit is the name of the unit that owns the equipment, 
such as art_reg for an artillery regiment. Ename is the 
name of the equipment, such as sa-6 for an SA-6 anti­
aircraft missle. Number is the maximum number of 
pieces of equipment that that unit can own. The fact 
for a particular unit includes only equipment that the 
unit owns directly, and not equipment owned by a 
subunit. Some sample facts are: 

eqpmncoverall(art_reg, sa_6, 20). 
eqpmnCoverall(mr_div, amphi_brdm, 48). 

Then facts defining what equipment has been 
recognized are stated as follows: 

equipment(Name, Number) 

For example, 

equipment(saJ,7). 
equipment(rpg_7, 23). 

Given this information, the inference engine reports 
that 

Based on that, my first guess about the unit 
present, and the remaining equipment associated 
with it, is: 

Remaining = [[arm_per_car_btr, 38], 
[mortar _120mm_1943, 6]] 

Unit = moCriCbtln_btr 

This inference engine is designed to be part of a 
larger blackboard format system where a low level 
image interpretation and geometry engine makes a first 
guess about the objects present and passes the informa­
tion up to this unit. The output of this unit can be 
used to bias the prior probabilities of the geometry sys­
tem as it continues to look. 

This system is robust since it automatically han­
dles the cases of the unit on the ground being under 
strength, and the image interpretation system not 
finding everything. 

STRENGTHS AND WEAKNESSES OF PROLOG 

Certain advantages and disadvantages of Prolog 
for graphics and geometric applications are becoming 
evident from these implementations. 

Advantages Of Prolog 

• Prolog has same high level advantages of Lisp, as 
the equivalence of code and data and dynamic data 
allocation. 

• There are the specific advantages of Prolog. 
Unification makes determining graph connectivity a 
primitive operation and in general is useful for pro­
pagating transitive properties such as graph connec­
tivity which occur frequently. This is a counterex­
ample to the proposition that, "Unification is what 
you do when you don't know what you are doing". 
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• The pattern matching fits with the form of expres­
sion of many algorithms. For example, our polygon 
combination algorjthm proceeds as follows. When­
ever the pattern of two edges intersecting, or one 
edge ends on the interior of another edge, occurs, 
then retract those edges and assert new smaller 
edges. When this pattern no longer exists, then we 
have a superset of the edges in the output polygon. 

• Although many of the above features could be 
implemented in any language that is Turing 
equivalent, Pro log is somewhat standard so that 
different researchers can understand and use each 
others' extensions. 

Disadvantages Of Prolog 

However, there are some problems with using Prolog 
for geometry. 

• There are software engineering problems with using 
Prolog for a large project because of its lack of nest­
ing in the program and databases. 

• Many geometry algorithms are more natural to a 
forward reasoning system than a backward reason­
ing system. That is, we are more likely to want the 
output from some given input than the reverse. 

• The natural way of expressing pattern matching 
algorithms requires us to modify a database as we 
are searching through it. Thus in polygon overlay, 
whenever we find the pattern of two edges crossing, 
we retract them and assert four new edges. Back­
tracking and redoing a database that we are modify­
ing does not work on all Prologs. 

• Prolog does not support coroutines, which are a 
natural way to express many algorithms. 

• In general Prolog is completely unstandardized 
around the fringes as some tests of cuts in 
[Moss85a] show. 

PARADIGMS OF PROGRAMMING 

Certain techniques have proven to be generally 
useful in our implementations, and .may be useful to 
others also. They include the following paradigms. 

Set Based Algorithms 

Many algorithms such as polyhedron intersection 
and hidden surface algorithms, Franklin [Franklin82a, 
Franklin80a], are the alternation of two types of steps: 

• Applying function to every element of a set, and 
• Combining all the elements having a common key. 
This is clearly easy in Prolog. 

Pattern Matching 

The second paradigm uses pattern matching to 
propagate certain properties. For example, in the 
planar graph traversal algorithm, the edges around each 
vertex are found and sorted by the angle at which they 
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leave it. Then the edges around each vertex are paired 
to form corners. These corners can be considered to be 
fragments of the output polygons. Whenever two frag­
ments exist such that the last edge of one is the same 
as the first edge of another, then these two fragments 
are retracted and a single longer fragment asserted. 
When such a pattern no longer exists, then we have the 
output polygons. 

Unification 

Frequently we wish to determine the closure of 
some transitive property, such as when we are given a 
set of graph edges edge(u, v), and wish to determine the 
connected components. We have implemented the fol­
lowing short algorithm that uses unification and the set 
processing paradigm. 

3 

4 5 6 

Figure 3: Determining Graph Connectivity 

• Create a property list (plist) with one record per 
vertex, and the property of each vertex a free vari­
able. For example in figure 3i we would have 
[[1,_].[2,_],[3,_].[4,_],[5,_],[6,_]]. 

• Process the set of edges and for each edge unify the 
free variable properties of the end points. After this 
we will have [[1,_1], [2,_1], [3,_1]. [4,_2], [5,_2], 
[6,_3]] with one unique free variable per graph com~ 
ponent. 

• Bind a name identifying each component to the free 
variables in the list to give something like [[1 ,first], 
[2,firstJ, [3,first], [4,second], [5,second], [6,third]]. 

A longer example of a simple hidden surface algorithm 
would go as follows. 
• Wherever the pattern of two edges' projections' 

intersecting occurs, split the edges into four smaller 
edge segments. 

• For each edge segment find the set of faces hiding 
its midpoint. Iff it is empty then the edge segment 
is visible. Draw them. 

• Use a planar graph traversal algorithm such as 
described above to link the visible edges into 
polygons. 

• For each polygon, find a point inside it and then 
find the set of faces whose projections contain the 
projection of that point. Find the closest such face; 
the polygon came from it. Color the polygon 
accordingly. . 

This illustrates all of the paradigms operating together. 
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SUMMARY 

Although not perfect, Prolog is a powerful tool for 
expressing graphical and geometry algorithms in a con­
cise and natural format. This allows larger problems to 
be solved in a given time, and raises the size of the 
largest problem that it is feasible to solve. 
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