
- 32 -

THE INFERENCE MACHINE LABORATORY: GRAPHIC
TOOLS FOR KNOWLEI>GE MANAGEMENT

J. W. Le wal, Ph.D.

Artificial Intelligence Department
Martin MarieU .. Laboratories

1450 South !tolling Road
Baltimore, MD 21227

ABSTRACT
The Inference Machine Laboratory is a collection of

experiments in applying graphic interfaces to various types
of knowledge bases. Each experiment involves a canonical
representation, invertible transformations into multiple

, representations, and multiple directly manipulable views
of those representations. Initial experiments in"e1ude
RULE*CALC (simple production rules), HAPStation
(OPS5-like production rules), RFIX (diagnostics), and
TIMLS (frames in PROLOG).

KEYWORDS : expert systems, intelligent interfaces,
knowledge acquisition, direct manipulation

INTRODUCTION
The major barrier to successful expert systems

development continues to be the acquisition, review, re­
structuring, and long-term maintenance of large
knowledge bases involving complex relationships 11).
Meaningful military and industrial expert systems are
expected to require as many as 10,000 "rules" 12), domain
coverage of better than 95 %, and an error rate of less
than 0.1 %. To achieve these performance figures-­
perhaps one to two orders of magnitude beyond the
current state of the art -- the next generation of knowledge
management tools must enable each individual involved in
designing, building, using, and maintaining knowledge
bases to view, understand, and manipulate their contents
in an intuitive manner.

For simple interactive systems, adequate tools and
techniques are already available. The direct manipulation
of icons has already lead to successful icon-based interfaces
for commercial systems such as the XEROX Star and the
Apple MacIntosh 13). Research activities, such as those in
the MIT Medii Graphics Laboratory, have shown impres­
sive capabilities for text and video interfaces 14). More
recently, tools such as UNITS 15) and GEN-X 16) have
provided effective interfaces to knowledge bases in expert
systems.

Graphics Interface '86

THE INFERENCE MACHINE LABORATORY
The Inference Machine Laboratory (IML) addresses

these performance goals for expert systems by providing
each knowledge-base user with a tailored set of directly
manipulable views of the knowledge base and by main­
taining consistency among the various views. Over the
last two years, a family of successively more complex
knowledge management systems has been c()nstructed.
The 'early systems have involved simple production rule
knowledge bases, and the later systems are based on predi­
cate calculus representations.

Physically, the laboratory con __ sts of two VAX com­
puters, several LISP machines, a color monitor, a color
video projector, several mice, a foot-mouse, a DECTALK
voice generator, and a Polhemus 3-D graphics pointing
device. The half-dozen individuals interacting with the
kn()wledge base are grouped around a small table in front
of the projection screen. They are able to select views,
make queries against the knowledge base, a.nd modify the
kn()wledge base using the interactive graphics devices.

All of the software systems in the laboratory fit into a
common framework (Fig. 1), which supports various kinds
of graphic input/output, logic-based knowledge represen­
tations, and natural language input/output, In the IML,
each system user works with a particular set of windows
on the know ledge base. These windows are defined by

o Virtual cameras - to generate shaded images, schemat­
ics, tables, graphs, trees, and other diagrams

o Views - to specify the particular image generated by
defining the location of the user in the knowledge base,

o Filters - to determine the granularity, or level of detail ,
in a particular view.

Once a view is presented, the user can modify the
knowledge base by pointing at particular elements of the
view and indicating changes.

RULE*CALC
The simplest and earliest project in the laboratory is

RULE*CALC, a VISI-CALC-style development environ­
ment for EMYCIN-e1ass production rules with uDcertainty
17) . The rules are laid out in a spreadsheet-like tableau .

Vision Interface '86

WI NDOWS ON KNOWLEDG E BASE

- 33 -

I
I ~~ I ~~ I <.'I-~c,'<-",-~\c, (:P

,?o(o. ~O
---c, ------

..,t.'I-<" I <.~ I ~\.;..
0(0.<'; ~c, ... '?~

~c, ~ \:. ~
Projection

TV
I

I
Menu picks

Icons

I
I
I

~(~+------i
I I...-_---J Committee of Experts
I

Text Spec. I

~ :----------~

Figure 1. The Inference Machine Laboratory framework

(See Fig. 2 for a few of the rules in a 300-rule system for
F AA radar trouble-shooting.) Each row in the tableau
corresponds to a fact in the rules, and each column
represents one rule. Rules are defined by entering a sym­
bol in the appropriate column, which indicates how that
fact is involved in the particular rule. A blank indicates
that the fact is not involved in the rule at all; an = or - =
symbol indicates that the fact is a positive or negative
clause in the lefthand side of the rule, and an :-T or :-F
symbol indicates that the fact is asserted or negated when
that particular rule fires . The user modifies the table by
pointing to the appropriate entry with a mouse and hitting
function keys for setting symbols in the table,
cutting/pasting rules (rows), cutting/pasting facts
(columns), and looking at different windows on the set of
rules.

Each fact defines a simple object which could have
one or more of three associated action procedures
(methods) : on-demand (triggered when a value is
requested), on-true (triggered when the fact is asserted
true), and on-false (triggered when the fact is asserted
false). If the system is run from a terminal, the methods
type out messages on the screen and elicit responses from
the keyboard . If the system is run by calling in on a tele­
phone, the methods generate a voice over the phone and
elicit responses from the telephone keypad.

When the system executes, the state of the inference
engine and the resulting dialog can be displayed in a pair
of windows in the rule-debugging screen. One window
shows the interactive dialog and the other displays the rule
stack along with the facts involved in those rules. Alto­
gether, in RULE*CALC there are five fixed views: the
rule-edit tableau, fact-edit tableau, method definition ,
interactive dialog, and rule-debugging.

Graphics Interface '86

HAPStation

The second system is HAPStation, a somewhat more
complex inference engine with a simpler interactive inter­
face. HAPStation runs on a SYMBOLICS LISP
workstation in COMMON LISP (Fig. 3). HAPS is a
forward-chaining, production-rule-based language similar
in style to OPS4, GRAPES, and OPS83 [8,9J . Like other
forward-chaining production rule systems, HAPS is com­
posed of two memories -- a working rpemory (WM) and a
production rule memory (PM) -- with an accompanying
interpreter. The working memory elements are composed
of a sequence of terms in parentheses, e.g., "(this is a
working memory element)." The production rules are com­
posed of a lefthand side (also called the LHS, antecedent,
or IF-part) and a righthand side (also called the RHS, con­
sequent, or THEN-part). The LHS of each rule is com­
posed of a sequence of positive and negative clauses, which
are in turn composed of the patterns to be matched
against the WM. The RHS of each rule is composed of a
sequence of action terms involving making and ,removing
working elements, computing expressions, and
input/output.

The interpreter cycles through a recognize-act cycle
in which it first searches for all working memory elements
that match the clauses in the LHS of the rules. The result­
ing set of rules is called the conflict set (CS), and the rule
that fires is selected from the Cs by a programmable
conflict-resolution strategy. When the rule fi res, the terms
in its RHS are executed in sequence. This cycle continues
indefinitely until the conflict set is' empty or a rule exe­
cutes a HAL Taction.

The interactive interface is composed of a set of win­
dows on the memories in the production rule interpreter:

Vision Interface '86

- 34 -

.----.-.. .. , ~ iiu·i •• cCi it:· ····· ···· 0150·· to · 0164···r:-:-: it'u ies···
55 581'59 60 64 ~artin ~arietta laboratories. 50 51 5253 S4 56 57 61 62 63

rflTF :f'ac:ts rf'''C
•• READV lamps off . · .,
• trans avai I lamp on -,. · -. • preheat lamp on -. ..
• U. 2,Sec .7,S . 17 ~T

• set r'cvr sOli tches =
• set CANCELLER switch · • M.C. sw i tch to oper · step 2e ~T ~T .. " ..
• ANTENNA ON indicator . ." z

• push ANTENNA ON -" ..
• U.I,Sec .7,S .21 ~T

step 2f rT rT = = =
• log " I" at OFFLA orB = -= -=
•• check wgs ~II or ~31 . -=
• step 9 .g ~T

• log 0 Rm. A CJB ANON IIi -= = " • U.6,Sec . 7,S .3 rT
• log I A CJGww HUIA/B '" -=
• U.2,Sec .7,S.18 ~T • replace CJB A2A4A6A6 ~T

'-- ~ '''' "" "" :0
101 IQ 12l

Figure 2. A RULE*CALC tableau

The central window (or HAPS window) contains the nor­
mal sequential dialog with the interpreter. The HAPSedit
window enables the user to modify the rules through the
ZMACS "smart" editor on the LISP machines. Other win­
dows display the WM, the CS, and the possible matches
with the LHS of a rule. Many of the elements of the screen
are "mousable" so that the user can call up a pop-up menu
of actions (run, stop, etc .) and a menu of the rule names
against which to apply those actions.

INTEGRATED DIAGNOSTIC SYSTEMS

.c oe l

.. 1IIl'1rt __ _

•
'i~.ltl_.

(P REnOVE-PllREftf -STRTE
(IH-STIIT! 2/)

The third project area is IDS (Integrated Diagnostic
Systems). This project is·focussed on a specific applica­
tion: isolating and addressing faults in complex systems.
In particular, the project addresses intermittents, multiple
faults , consequent faults, design errors, unusual operating
modes, and other failures that challenge teams of experts.
Tile IDS has two interfaces, one that serves the domain

(STRTE 21 (IHlO eRr (IS 314)) f) CCH! tflf/(!rI 11/0 (PRRENf 8) .' ?)
(51111 £ 8 (lrtlO (H r (15 37f)) ,11) ? (PHI(£/YI 8) .;>?) (OLD>

..
~ --.

(HREI1OfIf <OLD)

HapIJ list ener 17

1322. (lff-srRfE 2J) K,N, ,x,
Q.1. (s rRTE 21 (JItFO eR K'N' ' x '
182 . (S"ITE B (IffFO (It)(, I

Sl.p
Sa\'.

Lo' d
Compile

Watc h
Stuw
O.t.

Br
hh l chu
£aclse

IlI lt l dlu
lI.elet

, 4 4 P

I

Conll ict Set hbleau

Figure 3. A HAPStation screen

Graphics Interface '88 Vision Interface '86

expert in building or applying the knowledge base and
another that serves the end user during the troub leshoot­
ing process. The expert interface shows multip le views of
the device and of the status of the inference engine work­
ing against it. For example, the RFIX system in Fig. 4
shows six distinct windows on the robot being diagnosed,
the robot's schematic diagram, the dialog, and the under­
lying inference engine.

The physical window is generated by a Giroud shad­
ing a lgorithm from a faceted surface model of the robot.
The drive motors are shown through the translucent skin
of the robot. The schematic view shows a block diagram
of the LSI11 CPU and of the analog control system. The
other windows show the current action , current question ,
and the current rule stack. In each window, the status of
each of the elements of the robot control system is
indicated by a color: blue to indicate state unknown but
presumed good, green to indicate known good, and red to
indicate a known failure. Eventually, all elements of the
display will be independently mousable, enabling the user
to call up parts descriptions, to explain the detailed state
of the indicated object, and to request that tests be
applied to the object.

- 35 -

PROLO G QUERY TABLE

The final project area is TIMLS (The Inference
Machine Laboratory System). The focus of TIMLS is
building and maintaining situation assessment or planning
knowledge bases for autonomous vehicles. The current
knowledge base is a complex PROLOG-based frame sys­
tem that implements simple property inheritance and tem­
porallogic using the method of temporal arguments [10] .
The model scenario was drawn from the September 1943
British X-craft midget submarine attack on the German
battleship Tirpitz [11] . All events in that attack are cap­
tured in a PROLOG data base. The data base includes
more than one hundred relations of the form

break_clear (X-craft, Barrier, Time, Flags) .
come_out_to (X-craft, Object, Time, Flags).
come_outjrom (X-craft, Enclosure, Time, Flags).
dive_into (X-craft, Enclosure, Time, Flags) . ..

As in the other projects, the interface provides multi­
ple interactive views of the knowledge base. Two of the
windows are color-map views of the Kaa Fjord at different
levels of detail. In those windows, the paths and positions

Figu re 4 . RFIX: The Robot Troubleshooting System

Graphics Interface '86 Vision Interface '86

of the German and British ships are shown relative to ob­
stacles such as submarine nets and buoys. The other win­
dows contain the raw PROLOG , an English-language
description of the weather generated from case frames,
and the PROLOG query table (PQT).

Like RULE*CALC, the PQT follows the VISI-CALC
paradigm. It is a close relative of the Query By Example
(QBE) System [12] and PROLOG implementations of it
[13] . The recently implemented PQT consists of two
separate windows (Fig. 5). The upper window shows the
current constraints on subsequent queries. Each con­
straint involves fixed values for one or more of the binary
relations defined on the objects in the data base by the
frame system. For the example given, the constraints are
that the time is 9/22/1943 and that some number of X
craft are in the Kaa Fjord.

Partly c loudy sky today will cover the upper section of
Norway and showers will occur . The winds will be from
the NW at 15 to 20 knots. The temperature will reach 35

PROLOG QUERY TABLE

Constraints ...
TIME ISA LOCATIO N
X ON 9/22/1943 X-CRAFT KAA-FJORD

! Query I Re.ponse ...
OBJECT SINK LOCATION
X-6 UNDERWATER UNDER(

STARBOARD(
BOWlTIRPITilll

X-7 UNDERWATER UNDER(BATTLE_
PRACTICE_
TARGET Il

Figure 5. Two of the TIMLS windows

TIME
7 :30 ON
9/ 22/ 1943

8:30 ON
9/ 22/ 1943

The header of the second window is the specific query
on the data base. Each header element is the name of
other relations defined by the frame system. The body of
the table -is the response to the constrained query in the
form of a list of n-tuples. The other windows echo that
query with path(s) on the map or a new natural-language
weather report. Many of the elements in the PQT are
mousabIe so that new relations (columns) and constraints
(upper window) can be defined, or old relations and con­
straints removed .

Graphics Interface '86

- 36 -

ACKNO WLED GMENTS

The key implementor for RULE* CALC has been
J. Thorp , and H. Mayerfeld was responsible for the
knowledge engineering on the ASR8 radar application.
The HAPStation interface was coded by J. Sanborn as
part of a collaboration with D. Marshall of Denver
Aerospace. The development team for the RFIX interface
included J. Mills (integration), C. Phillips (shaded graph­
ics), and T . Burzio (diagrams). The TIMLS work was
done by B. Haugh (logic), Y. Sekine (natural language),
S. Barash (PQT), and B. Kobler (graphic interface) .

REFE RENCES

[I] E. A. Feigenbaum, Knowledge Engineering fer the
1980's. Technical report, Computer Science Depart­
ment, Stanford University, 1982.

[2] Defense Advanced Research Projects Agency
(DARPA), Strate gic Computing New-Generation
Computing Technology: A Strategic Plan for Its
De velopment and Application to Critical Problems in
Defmse . Oct. 28, 1983.

[3] B. Shneiderman, "Direct Manipulation: a step beyond
programming languages," IEEE Computer 8 (16),
pp. 57-68.

[4] R.L. Currier, "Interactive videodisc learning sys­
terns," High Technology, Nov. 1983, pp. 51- 59.

[5] D.A. Waterman, A Guide to Building Expert Systems.
Addison-Wesley, 1985, p. 350

[6] Ibid., pp. 342, 359.

[7] J.W. Lewis, J .R. Thorp , and H.M. Mayerfeld, The
Rule *Calc Manual. Martin Marietta Laboratories
report MML TR85-6, February 1985.

[8] R. Sauers, "On the requirements of future expert sys­
tems,lI IJCAI '83, pp. 740-743.

[9] D. Marshall and J . San born, The HAPS Use rs
Manual. Martin Marietta Laboratories Technical
Report, 1985.

[10] J . Alien, "Towards a general theory of action and
time," Artificial Intelligence 24, pp. 123·154, 1984.

[11] G. Frere-Cock, The Attacks on the Tirpitz. Naval
Institute Press, 1973.

[12] IBM Corporation, Query-by-Example Terminal User 's
Guide. IBM Form No. SH20-2078.

[13] J .C. Neves, S.O. Anderson, and M.H. Williams, "A
PROLOG implementation of query-by-example, n in
Proc . 7th International Computing S ymposium,
Nuremberg, Germany, pp. 318-332.

Vision Interface '86

